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Electron beam dynamics in storage rings 

 

Synchrotron radiation  

and its effect on electron dynamics 

Lecture 1: Synchrotron radiation 

 

Lecture 2: Undulators and Wigglers 

 

Lecture 3: Electron dynamics-I  

 

Lecture 4: Electron dynamics-II 
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Summary 



From the lecture on radiation damping 

We have seen that the emission of synchrotron radiation  

induces a damping of the betatron and synchrotron oscillations; the  

radiation damping times can be summarized as 
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Ji are the damping partition numbers 

One would expect that all particle trajectories would collapse to a single point  

(the origin of the phase space, i.e. 6D the closed orbit). This does not happen  

because of the quantum nature of synchrotron radiation 

start 1 synch period 10 synch period 50 synch period 

Tracking example: synchrotron period 273 turns, radiation damping of 6000 turns: 



Quantum nature of synchrotron emission 

The radiated energy is emitted in quanta: each quantum carries an energy  

u = ħ; 

 

The emission process is instantaneous and the time of emission of individual  

quanta are statistically independent; 

 

The distribution of the energy of the emitted photons can be computed from  

the spectral distribution of the synchrotron radiation; 

 

The emission of a photon changes suddenly the energy of the emitting   

electron and perturbs the orbit inducing synchrotron and betatron  

oscillations.  

 

These oscillations grow until reaching an equilibrium when balanced by  

radiation damping 

 

Quantum excitation prevents reaching zero emittance in both planes with 
pure damping. 



From the lecture on synchrotron radiation 

Total radiated power 
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Frequency distribution of the power radiated 

)(S
c9

e2
dx)x(K

c4

e3

d

dI

0

2

/

3/5

c0

2

c














 

 


Critical frequency 
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Critical angle at the critical frequency 
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Energy distribution of photons emitted by 

synchrotron radiation (I)  

Energy is emitted in quanta: each quantum carries an energy u = ħ 
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From the frequency distribution of the power radiated 
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We can get the energy distribution of the photons emitted per second: 

n(u) number of photons emitted per unit time with energy in u, u+du 

un(u) energy of photons emitted per unit time with energy in u, u+du 

un(u) must be equal to the power radiated in the frequency range du/ħ at u/ ħ 
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Using the energy distribution of the rate of emitted photons one can compute: 
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Total number of photons 

emitted per second 
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Mean energy of photons 

emitted per second 

Mean square energy of 
photons emitted per second 

Energy distribution of photons emitted by 

synchrotron radiation (II)  
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Introducing the function F() 

we have 

[See Sands] 



Let us consider again the change in the invariant for linearized synchrotron 
oscillations 

Quantum fluctuations in energy oscillations (IV) 
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After the emission of a photon of energy u we have 

u

22 2 uudA  

The time position  w.r.t. the synchronous particle does not change 

We do not discard the u2 term since it is a random variable and its average  

over the emission of n(u)du photons per second is not negligible anymore. 

 

Notice that now also the Courant Snyder invariant becomes a random 
variable!  

 



Quantum fluctuations in energy oscillations (II) 

We want to compute the  average of the random variable A over the  

distribution of the energy of the photon emitted 

ppp uNuNdA  22 2  Quantum excitation 

Radiation damping 

We have to compute the averages of u and u2 over the distribution n(u)du of 
number of photons emitted per second. 

 

As observed the term with the square of the photon energy (wrt to the 
electron energy)  is not negligible anymore 



Quantum fluctuations in energy oscillations (VI) 

Using these expressions… 
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and depends on the location in the ring. We must average over the position 

in the ring, by taking the integral over the circumference. 

Following [Sands] the excitation term can be written as 
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The contribution from the term linear in u, after the average over the 

energy distribution of the photon emitted, and the average around the ring 

reads 
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Quantum fluctuations in energy oscillations (VII) 

The change in the invariant averaged over the photon emission and 

averaged around one turn in the ring still depends on the energy deviation 

 of the initial particle.  

We can average in phase space over a distribution of particle with the 

same invariant A. A will become the averaged invariant 
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The linear term in u generates a term similar to the expression obtained 

with the radiative damping. We have the differential equation for the 

average of the longitudinal invariant   

  epepep uNuNdA 22 2 



Quantum fluctuations in energy oscillations (VIII) 
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The average longitudinal invariant decreases exponentially with a damping 

time  and reaches an equilibrium at 

This remains true for more general distribution of electron in phase 

space  with invariant A (e.g Gaussian) 
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The variance of the energy oscillations is for a Gaussian 

beam is related to the Courant-Snyder invariant by 



Quantum fluctuations in energy oscillations (IX) 

For a synchrotron with separated function magnets 
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The relative energy spread depends only on energy and the lattice (namely 

the curvature radius of the dipoles) 
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The equilibrium value for the energy spread reads 



A tracking example 

Diffusion effect off  

synchrotron period 200 turns; damping time 6000 turns; 

Diffusion effect on  



Quantum fluctuations in horizontal oscillations (I) 

Invariant for linearized horizontal betatron oscillations 

after the emission of a photon of energy u we have 

Neglecting for the moment the linear part in u, that gives the horizontal  

damping, the modification of the horizontal invariant reads 

Defining the function 
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As before we have to compute the effect on the invariant due to the  

emission of a photon, averaging over the photon distribution, over the  

betatron phases and over the location in the ring [see Sands]: 

Dispersion invariant 



Quantum fluctuations in horizontal oscillations (II) 
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The linear term in u averaged over the betatron phases gives the horizontal 

damping 
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Combining the two contributions we have the following differential 

equation for the average of the invariant in the longitudinal plane 

We obtain 

2

0

22

E

HuN

dt

Ad p


 



At equilibrium 

Quantum fluctuations in horizontal oscillations (III) 
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The emittance depends on the dispersion function at bendings, where 

radiation emission occurs 
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The variance of the horizontal oscillations is 

Therefore we get the emittance 
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Low emittance lattices strive to 

minimise <H/3> and maximise Jx 



Quantum fluctuations in vertical oscillations (I) 
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Invariant for linearized vertical betatron oscillations 

after the emission of a photon of energy u the electron angle is changed by 

222 ''2 zzzzA  

With zero dispersion the previous computation will predict no quantum  

fluctuations i.e. zero vertical emittance. 

However a small effect arises due to the  

fact that photons are not exactly  

emitted in the direction of the  

momentum of the electrons 

 

The electron must recoil to preserve the  

total momentum 



At equilibrium 

Quantum fluctuations in vertical oscillations (II) 
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In practice this effect is very small: the vertical emittance is given by vertical 

dispersion errors and linear coupling between the two planes of motion. 
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the modification of the vertical invariant after the emission of a photon  

reads 

Averaging over the photon emission, the betatron phases and the location  

around the ring: 



Quantum lifetime (I) 

Electrons are continuously stirred by the emission of synchrotron radiation 

photons 

It may happen that the induced oscillations hit the vacuum chamber or get 

outside the RF aperture: 

The number of electron per second whose amplitudes exceed a given 

aperture and is lost at the wall or outside the RF bucket can be estimated 

from the equilibrium beam distribution [see Sands] 
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Quantum lifetime (II) 
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quantum lifetime for losses in the transverse plane 

Exponential decay of the number of particle stored 
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  quantum lifetime for losses in the longitudinal plane 

Given the exponential dependence on 

the ratio between available aperture and 

beam size the quantum lifetime is 

typically very large for modern 

synchrotron light sources, e.g. Diamond 
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Related beam quantities: beam size 
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The horizontal beam size has contributions from the variance of betatron 

oscillations and from the energy oscillations via the dispersion function: 

Combining the two contributions we have the bunch size: 

The vertical beam size has contributions from the variance of betatron 

oscillations but generally not from the energy oscillations (Dz = 0). 

However the contribution from coupling is usually dominant 
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In 3rd generation light sources the horizontal emittance is few nm and the 

coupling k is easily controlled to 1% or less, e.g. for Diamond 
 

 x = 2.7 nm; k = 1%  y = 27 pm; 

 x = 120 m   y = 6 m 



R. Bartolini, John Adams Institute, 3 December 2009 23/26 

Brilliance and emittance 
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As = Cross section of electron beam 

X-ray‘s 

X-ray‘s 

 

 

Flux = Photons / ( s  BW) 

Brilliance = Flux / ( As   ) ,  [ Photons / ( s  mm2  mrad2  BW )] 

 

 

 

The brilliance represents the number of photons per second emitted in a given 

bandwidth that can be refocus by a perfect optics on the unit area at the 

sample.  

 /  = Opening angle in vert. / hor. direction 
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The brilliance of the photon beam is determined (mostly) by the electron beam 

emittance that defines the source size and divergence 

Emittance of third generation light source 



Lattice design has to provide low emittance and adequate space in straight 

sections to accommodate long Insertion Devices 
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Zero dispersion in the straight section was used especially in early machines 

 

 avoid increasing the beam size due to energy spread 

 hide energy fluctuation to the users 

 allow straight section with zero dispersion to place RF and injection 

 decouple chromatic and harmonic sextupoles 

 

DBA and TBA lattices provide low emittance with large ratio between  

Minimise  and D and be close to a waist in the dipole  

nceCircumfere

sections straight of Length

Flexibility for optic control for apertures (injection and lifetime) 

Low Emittance lattices 



ALS 

DBA used at:  
ESRF,  
ELETTRA,  
APS,  
SPring8,  
Bessy-II,  
Diamond,  
SOLEIL, 
SPEAR3 
... 

TBA used at  
ALS,  
SLS,  
PLS, 
TLS  
… 

Low emittance lattices 

APS 

Low emittance and adequate space in 

straight sections to accommodate long 

Insertion Devices are obtained in  

Double Bend Achromat (DBA)  

Triple Bend Achromat (TBA) 
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MAX-IV 

The original achromat design can be 
broken, leaking dispersion in the 

straight section 
 

ESRF  7 nm  3.8 nm 
APS 7.5 nm  2.5 nm 
SPring8 4.8 nm  3.0 nm 
SPEAR3 18.0 nm  9.8 nm 
ALS (SB) 10.5 nm  6.7 nm 

New designs envisaged to achieve 
sub-nm emittance involve 

 
MBA  
MAX-IV (7-BA) 
 
Damping Wigglers  
NSLS-II 
Petra-III 

Low emittance lattices 

APS 



Related beam quantities: bunch length 

Bunch length from energy spread 

The bunch length also depends on RF parameters: voltage and phase 

seen by the synchronous particle 
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 = 1.710–4; V = 3.3 MV;  = 9.6 10–4 z = 2.8 mm (9.4 ps)  

z depends on  

 the magnetic lattice (quadrupole magnets) via  

 the RF slope 

Shorten/Lengthen bunches increasing the RF slope at the 

bunch (Harmonic cavities) 

Shorten bunches decreasing  
(low-alpha optics) 
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Bunch lengthening 

Bunch shorthening 

bunch length manipulation: harmonic cavities 

RF cavities with frequency equal to an harmonic of the main RF 

frequency (e.g. 3rd harmonic) are used to lengthen or shorten the bunch 



Summary 

The emission of synchrotron radiation occurs in quanta of discrete energy 
 

The fluctuation in the energy of the emitted photons introduce a noise  

in the various oscillation modes causing the amplitude to grow 
 

Radiation excitation combined with radiation damping determine the 

equilibrium beam distribution and therefore emittance, beam size, energy 

spread and bunch length. 
 

The excitation process is responsible for a loss mechanism described by 

the quantum lifetime 
 

The emittance is a crucial parameter in the operation of synchrotron light 

source. The minimum theoretical emittance depends on the square of the 

energy and the inverse cube of the number of dipoles 
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