Accelerator Physics Exercises

Answers to be handed in before lecture on 29 October 2014

1. In the "weak focusing" accelerators, the field gradient is defined as

$$
k=-\frac{1}{\left(B_{0} \rho_{0}\right)} \frac{\partial B_{z}}{\partial x}
$$

Show that the equation of motion of a particle in the horizontal degree of freedom is

$$
\frac{1}{p_{0}} \frac{d}{d s}\left(p_{0} \frac{d x}{d s}\right)+\left(\frac{1}{\rho^{2}}-k\right) x=0
$$

and in the vertical plane:

$$
\frac{1}{p_{0}} \frac{d}{d s}\left(p_{0} \frac{d z}{d s}\right)+k z=0
$$

Vertical oscillations are stable as long as $k>0$, discuss the limit on k for horizontal stability.
2. A new 50 GeV (kinetic energy) proton synchrotron, the PS2 accelerator, is considered to replace the CERN PS. The new accelerator will sit in a new ring tunnel which has a mean radius of 215 m . and will receive an injected beam at 4 GeV (kinetic energy) from a new linear accelerator - the Superconducting Proton Linac (SPL). The 1.8 T magnetic field of the bending magnets is excited by a sine wave which oscillates between injection and top energy at a frequency of 0.3 Hz . Given that the mass of the proton is 0.9383 GeV :
a) What is the momentum at 4 GeV and at 50 GeV ?
b) What is the (Brho) at 4 GeV and at 50 GeV ?
c) What is the bending radius, rho?
d) What is the fraction of the ring filled with dipole magnets?
3. (a) A quadrupole doublet (half of the FODO cell from the mid-point of the F to the mid point D) consists of two lenses of focal length f_{1} and f_{2} separated by a drift length of $l \mathrm{~m}$. Assume that the lenses are thin and show, by writing the three matrices for the lenses, that the product matrix is:

$$
M=\left(\begin{array}{cc}
1-l / f_{1} & \ell \\
-1 / f^{*} & 1-l / f_{2}
\end{array}\right)
$$

where:

$$
\frac{1}{f^{*}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{l}{f_{1} f_{2}}
$$

(b) A FODO cell (from mid-F, through D and to the midpoint of the next F) may be considered to be one such matrix with $f_{1}=+2 f$ and $f_{2}=-2 f$ followed (and multiplied) by another matrix with $f_{1}=-2 f$ and $f_{2}=+2 f$. Using the result of the last question, write down these two matrices and show by taking their product that the matrix for a FODO cell from mid-F to mid-F quadrupole

$$
=\left(\begin{array}{cc}
1-l^{2} / 2 f^{2} & 2 l(1+l / 2 f) \\
-l / 2 f^{2}(1-l / 2 f) & 1-l^{2} / 2 f^{2}
\end{array}\right)
$$

(c) The matrix for a FODO period must have the form:

$$
M=\left(\begin{array}{cc}
\cos \mu+\alpha \sin \mu & \beta \sin \mu \\
-\gamma \sin \mu & \cos \mu-\alpha \sin \mu
\end{array}\right)
$$

Take the trace of this matrix and equate it to the result of (b) to obtain an expression for μ, the phase advance per period as a function of l and f

Now equate m_{12} to find β at the mid plane of the F quadrupole.
You are given the following data for the new PS2 ring:
(B rho) to be calculated from Exercise 2b.
Quadrupole half-length $(\mathrm{lq} / 2)=(1.49 / 2) \mathrm{m}$.
Quadrupole gradient $=17 \mathrm{~T} / \mathrm{m}$
Distance between quadrupole centres $=11.605 \mathrm{~m}$.
Substitute the data to obtain the numerical value of μ and beta.

4) The emittance of a proton beam at injection in the CERN SPS is 2 mm mrad.
a) Calculate the half-width of the beam at an F quadrupole where $\beta=108 \mathrm{~m}$.
b) What is the maximum value of the divergence in the beam if the β at a D quadrupole is 18 m . and $\alpha=0$?
c) What is the normalized emittance of this beam if the above data refer to a proton momentum of $10 \mathrm{GeV} / \mathrm{c}$?
d) If this normalized emittance is accelerated to $400 \mathrm{GeV} / \mathrm{c}$, what will be the halfwidth of the beam at an F quadrupole ($\beta=109 \mathrm{~m}$.)?

