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Recap of previous lecture 
                        - Transverse dynamics II 

 

 Equation of motion in transverse co-
ordinates 

Check Solution of Hill 

 Twiss Matrix 

 Solving for a ring 

The lattice 

 Beam sections 

 Physical meaning of Q and beta 

 Smooth approximation 
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Lecture 5  - Longitudinal dynamics 
-contents 

 

RF Cavity Cells 

 Phase stability 

 Bucket and pendulum 

Closed orbit of an ideal machine 

Analogy with gravity 

Dispersion 

Dispersion in the SPS 

Dispersed beam cross sections 

Dispersion in a bend (approx) 

Dispersion  – from the “sine and cosine” 
trajectories 

 From “three by three” matrices 
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RF Cavity Cells 

CAV.GIF 
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Phase stability 

 

E 

t 



Lecture  5 - E. Wilson - 10/27/2014 - Slide 6 

Bucket and pendulum 

The “bucket” of synchrotron motion is just 
that of the rigid pendulum 

Linear motion at small amplitude 

Metastable fixed point at the top 

Continuous rotation outside 

q 

q 
•  
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Closed orbit 

Zero betatron 

amplitude 

Closed orbit of an ideal machine 

 In general particles executing betatron oscillations 
have a finite amplitude 

 One particle will have zero amplitude and follows an 
orbit which closes on itself 

 In an ideal machine this passes down the axis  

 x 

x
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Analogy with gravity 

What keeps particles in the machine 

 There is a solution to Hills Equation 

 It is closed and symmetric 

 It is closer to the axis at vertically Defocusing 
Quadrupoles  

 

 

Deflection is larger in F than D and cancels 
the force of gravity elsewhere. 

We could call the shape the “suspension” 
function. 

z' 
 

 
 k z

Fig. cas 1.4C 
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Dispersion 

 Low momentum particle is bent more 

 It should spiral inwards but: 

 There is a displaced (inwards) closed orbit 

 Closer to axis in the D’s 

 Extra (outward) force balances extra bends 

 

 

 

 

 

 

 D(s) is the “dispersion function” 

  
x  D(s)

p

p

Fig. cas 1.7-7.1C 
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Dispersion in the SPS 

 This is the long straight section where dipoles are 
omitted to leave room for other equipment - RF - 
Injection - Extraction, etc 

 The pattern of missing dipoles in this region indicated 
by “0” is chosen to control the Fourier harmonics and 
make D(s) small 

 It doesn’t matter that it is big elsewhere 
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Dispersed beam cross sections 

 These are real cross-section of beam 

 The central and extreme momenta are shown 

 There is of course a continuum between 

 The vacuum chamber width must accommodate the 
full spread 

 Half height and half width are: 

  
aV  V V  ,    aH  H H  D s 

p

p
 .
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Dispersion in a bend (approx) 

Bender.adb 
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Dispersion  – from the “sine and 
cosine” trajectories 

 The combination of diplacement, divergence and 
dispersion gives: 

 

 

 

 

 Expressed as a matrix 

 

 

 

 

 

 It can be shown that: 

 

 

 

 Fulfils the particular solution of Hill’s eqn. when 
forced : 

x

 x 

 

 
 

 

 
 

s


C S

 C  S 

 

 
 

 

 
 

x

 x 

 

 
 

 

 
 

s 0


p

p

D

 D 

 

 
 

 

 
 

x

x'

p p

 

 

 
 
 

 

 

 
 
 

s



C S D

 C  S  D 

0 0 1

 

 

 
 
 

 

 

 
 
 

x

x'

p p

 

 

 
 
 

 

 

 
 
 

s0

D(s)  S(s)
1

(t)
s0

s

 C t dt  C(s)
1

(t)
s0

s

 S t dt

  D (s)  K(s)D(s) 
1

(s)



Lecture  5 - E. Wilson - 10/27/2014 - Slide 14 

Principal trajectories  
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From “three by three” matrices 

 Adding momentum defect to horizontal divergence and 
displacement vector– 

 

 

 

 

 

 Compute the ring as a product of small matrices and 
then use: 

 

 

 

 

 

 

 

 

 

 

 To find the dispersion vector at the starting point 

 Repeat for other points in the ring 
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Lecture 7  - Transverse Dynamics 
                                             – Summary 

 

 
 

RF Cavity Cells 

Phase stability 

Bucket and pendulum 

Closed orbit of an ideal machine 

Analogy with gravity 

Dispersion 

Dispersion in the SPS 

Dispersed beam cross sections 

Dispersion in a bend (approx) 

Dispersion  – from the “sine and cosine” 

trajectories 

From “three by three” matrices. 


