Lecture 5

ACCELERATOR PHYSICS

MT 2014

E. J. N. Wilson

Recap of previous lecture

- Transverse dynamics II
- Equation of motion in transverse coordinates
- Check Solution of Hill
- Twiss Matrix
- Solving for a ring
- The lattice
- Beam sections
- Physical meaning of Q and beta
- Smooth approximation

Lecture 5 - Longitudinal dynamics -contents

- RF Cavity Cells
- Phase stability
- Bucket and pendulum
- Closed orbit of an ideal machine
- Analogy with gravity
- Dispersion
- Dispersion in the SPS
- Dispersed beam cross sections
- Dispersion in a bend (approx)
-Dispersion - from the "sine and cosine" trajectories
- From "three by three" matrices

RF Cavity Cells

Lecture 5 - E. Wilson - 10/27/2014-Slide 4

Phase stability

Lecture 5-E. Wilson - 10/27/2014-Slide 5

Bucket and pendulum

\succ The "bucket" of synchrotron motion is just that of the rigid pendulum
\succ Linear motion at small amplitude \succ Metastable fixed point at the top \succ Continuous rotation outside

Closed orbit of an ideal machine

Paricicle trajectories
\succ In general particles executing betatron oscillations have a finite amplitude
\succ One particle will have zero amplitude and follows an orbit which closes on itself
\succ In an ideal machine this passes down the axis

> Closed orbit Zero betatron amplitude

Analogy with gravity

What keeps particles in the machine

- There is a solution to Hills Equation
- It is closed and symmetric
- It is closer to the axis at vertically Defocusing Quadrupoles

$$
\Delta z^{\prime}=\frac{\Delta \ell \beta}{(\beta \rho)}=k \ell z
$$

- Deflection is larger in F than D and cancels the force of gravity elsewhere.
-We could call the shape the "suspension" function.

Dispersion

\succ Low momentum particle is bent more \succ It should spiral inwards but:
\succ There is a displaced (inwards) closed orbit
\succ Closer to axis in the D's
\succ Extra (outward) force balances extra bends

$$
x=D(s) \frac{\Delta p}{p}
$$

Dispersion in the SPS

This is the long straight section where dipoles are omitted to leave room for other equipment - RF Injection - Extraction, etc
\succ The pattern of missing dipoles in this region indicated by " 0 " is chosen to control the Fourier harmonics and make $D(s)$ small
\succ It doesn't matter that it is big elsewhere

Dispersed beam cross sections

\succ These are real cross-section of beam
γ The central and extreme momenta are shown
\succ There is of course a continuum between
\succ The vacuum chamber width must accommodate the full spread
\succ Half height and half width are:

$$
a_{V}=\sqrt{\beta_{V} \varepsilon_{V}}, \quad a_{H}=\sqrt{\beta_{H} \varepsilon_{H}}+D(s) \frac{\Delta p}{p}
$$

Dispersion in a bend (approx)

$\delta \theta=-\frac{d p}{p} \theta$
$x=\int_{0}^{\theta} x^{\prime} d s=\rho \int_{0}^{\theta} x^{\prime} d \theta=\left(\frac{d p}{p}\right) \cdot \int_{0}^{\theta} \theta d \theta=\left(\frac{d p}{p}\right) \rho\left[\frac{\theta^{2}}{2}\right]_{0}^{\theta}$

$$
\left\{\begin{array}{c}
x_{2} \\
\mid \\
\left.\left\lvert\, \begin{array}{ccc}
1 & \rho \theta & \left.\frac{\rho \theta^{2}}{2}\right)\left(\begin{array}{c}
x_{1} \\
x_{2}^{\prime}
\end{array}|=|\right. \\
\left\lvert\, \frac{-\theta}{\rho}\right. & 1 & \theta \| x_{1}^{\prime} \\
\left\lvert\, \frac{\delta p}{p}\right.
\end{array}\right.\right) \\
0 \\
0
\end{array}\right.
$$

Dispersion - from the "sine and cosine" trajectories

The combination of diplacement, divergence and dispersion gives:

$$
\binom{x}{x^{\prime}}_{s}=\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)\binom{x}{x^{\prime}}_{s_{0}}+\frac{\Delta p}{p}\binom{D}{D^{\prime}}
$$

Expressed as a matrix

$$
\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{s}=\left(\begin{array}{ccc}
C & S & D \\
C^{\prime} & S^{\prime} & D^{\prime} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{s_{0}}
$$

\succ It can be shown that:

$$
D(s)=S(s) \int_{s_{0}}^{s} \frac{1}{\rho(t)} C(t) d t-C(s) \int_{s_{0}}^{s} \frac{1}{\rho(t)} S(t) d t
$$

Fulfils the particular solution of Hill's eqn. when forced :

$$
D^{\prime \prime}(s)+K(s) D(s)=\frac{1}{\rho(s)}
$$

Principal trajectories

$$
y(s)=C(s) y_{0}+S(s) y_{0}^{\prime}+D(s) \frac{\Delta p}{p_{0}}
$$

$$
y^{\prime}(s)=C^{\prime}(s) y_{0}+S^{\prime}(s) y_{0}^{\prime}+D^{\prime}(s) \frac{\Delta p}{p_{0}}
$$

$$
p_{0}
$$

$$
\begin{gathered}
\left(\begin{array}{ll}
C_{0} & S_{0} \\
C_{0}^{\prime} & S_{0}^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\binom{D}{D^{\prime}}=\binom{0}{0}
\end{gathered}
$$

$$
\binom{y}{y^{\prime}}_{s}\left(\begin{array}{ll}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)=\binom{y}{y^{\prime}}_{0}+\frac{\Delta p}{p}\binom{D}{D^{\prime}}
$$

$$
\left(\begin{array}{c}
y \\
y^{\prime} \\
\Delta p / p
\end{array}\right)_{s}\left(\begin{array}{ccc}
C & S & D \\
C^{\prime} & S^{\prime} & D^{\prime} \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{c}
y \\
y^{\prime} \\
\Delta p / p
\end{array}\right)_{0}
$$

From "three by three" matrices

- Adding momentum defect to horizontal divergence and displacement vector-
$\left(\begin{array}{c}x \\ x^{\prime} \\ \Delta p / p\end{array}\right)_{2}=\left(\begin{array}{ccc}m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{c}x \\ x^{\prime} \\ \Delta p / p\end{array}\right)$,
- Compute the ring as a product of small matrices and then use:

$$
\begin{aligned}
& D^{\prime}(s)= \frac{m_{13} m_{21}+\left(1-m_{11}\right) m_{23}}{\left(1-m_{11}\right)\left(1-m_{22}\right)-m_{21} m_{12}} \\
& D(s)=\left(\frac{m_{13}-m_{12} D^{\prime}(s)}{1-m_{11}}\right) D^{\prime}(s)
\end{aligned}
$$

- To find the dispersion vector at the starting point Repeat for other points in the ring

Lecture 7 - Transverse Dynamics

- Summary
\bullet RF Cavity Cells
\rightarrow Phase stability
- Bucket and pendulum
- Closed orbit of an ideal machine
- Analogy with gravity
- Dispersion
- Dispersion in the SPS
- Dispersed beam cross sections
\checkmark Dispersion in a bend (approx)
Dispersion - from the "sine and cosine" trajectories
\checkmark From "three by three" matrices.

