Lecture 6

ACCELERATOR PHYSICS

MT 2014

E. J. N. Wilson

Lecture 6 - Longitudinal dynamics II -contents

- Transition - does an accelerated particle catch up - it has further to go
\rightarrow Phase jump at transition
- Synchrotron motion
- Synchrotron motion (continued)
- Large amplitudes

Buckets

- Buckets
- Adiabatic capture
- A chain of buckets

Recap of previous lecture - Longitudinal

dynamics I

- RF Cavity Cells
- Phase stability
- Bucket and pendulum
- Closed orbit of an ideal machine
- Analogy with gravity
- Dispersion
- Dispersion in the SPS
- Dispersed beam cross sections
- Dispersion in a bend (approx)

Dispersion - from the "sine and cosine" trajectories

- From "three by three" matrices..

Transition - does an accelerated particle catch up - it has further to go

$$
f=\frac{\beta c}{2 \pi R}, \quad(\beta=v / c)
$$

Is a function of two, momentum dependent, terms β and R.
$p=\frac{E_{0} \beta}{\sqrt{1-\beta^{2}}} . \quad$ and $\quad R \approx R(\Delta p / p=0)+D \frac{\Delta p}{p}$
Using partial differentials to define a slip factor:

This changes from negative to positive and is zero at ' transition' when:

GAMMA TRANSITION

Lecture 6 - E. Wilson - Slide 4

Phase jump at transition

BECAUSE $\quad \eta_{r f}==\frac{1}{\gamma^{2}}-\frac{1}{\gamma_{t r}^{2}}$

Lecture 6 - E. Wilson - Slide 5

Synchrotron motion

\succ Recall $\quad p=m_{0} c(\beta \gamma)$.
\succ Elliptical trajectory for small amplitude

$$
\begin{aligned}
& \Delta(\beta \gamma)=\Delta(\beta \gamma) \cos 2 \pi f_{s} t \\
& \phi=\hat{\phi} \sin 2 \pi f_{s} t
\end{aligned}
$$

\succ Note that frequency is rate of change of phase
\succ From definition of the slip factor $\boldsymbol{\eta}$

$$
\dot{\phi}=2 \pi h[f(\beta \gamma)-f(0)]=2 \pi h \Delta f
$$

\succ Substitute and differentiate again

$$
\begin{gathered}
\Delta f=\eta f \frac{\Delta p}{p}=\eta f \frac{\Delta(\beta \gamma)}{(\beta \gamma)}=\frac{\eta f}{\beta^{2}} \frac{\Delta \gamma}{\gamma}=\frac{\eta f}{E_{0} \beta^{2} \gamma} \Delta E \\
\ddot{\phi}=-\frac{2 \pi h \eta f^{2}}{E_{E} \beta^{2} \gamma}(\Delta E)
\end{gathered}
$$

\succ But the extra acceleration is

૪ THUS

$$
\begin{array}{r}
\Delta E=V_{0}\left(\sin \phi-\sin \phi_{s}\right) \\
\ddot{\phi}=-\frac{2 \pi V_{0} h \eta f^{2}}{E_{0} \beta^{2} \gamma}\left(\sin \phi-\sin \phi_{s}\right)
\end{array}
$$

Synchrotron motion (continued)

\succ This is a biased rigid pendulum

$$
\ddot{\phi}=-\frac{2 \pi V_{0} h \eta f^{2}}{E_{0} \beta^{2} \gamma}\left(\sin \phi-\sin \phi_{s}\right)
$$

\succ For small amplitudes

$$
\ddot{\phi}+\frac{2 \pi V_{0} h \eta f^{2}}{E_{0} \beta^{2} \gamma} \phi=0
$$

\succ Synchrotron frequency

$$
f_{S}=\sqrt{\frac{|\eta| h V_{0} \cos \phi_{S}}{2 \pi E_{0} \beta^{2} \gamma}} f .
$$

\succ Synchrotron "tune"

$$
Q_{s}=\frac{f_{s}}{f}=\sqrt{\frac{|\eta| h V_{0} \cos \phi_{s}}{2 \pi E_{0} \beta^{2} \gamma}}
$$

Large amplitudes

$\ddot{\phi}=-\frac{2 \pi V_{0} h \eta f^{2}}{E_{0} \beta^{2} \gamma}\left(\sin \phi-\sin \phi_{s}\right)$

- and
- become

$$
\Omega_{s}=\sqrt{\frac{\eta h V_{0} \cos \phi_{s}}{2 \pi E_{0} \beta^{2} \gamma}} \omega_{r e v}
$$

$$
\ddot{\phi}=-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\sin \phi-\sin \phi_{s}\right)
$$

- Integrated becomes an invariant

$$
\frac{\dot{\phi}^{2}}{2}-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)=\text { const } .
$$

- The second term is the potential energy function

Lecture 6 - E. Wilson - Slide 8

Buckets

Seen from above this is a bucket (in phase space) for different values of ϕ_{s}

The equation of each separatrix is

$$
\begin{gathered}
\frac{\dot{\phi}^{2}}{2}-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)= \\
-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left[\cos \left(\pi-\phi_{s}\right)+\left(\pi-\phi_{s}\right) \sin \phi_{s}\right] .
\end{gathered}
$$

A chain of buckets

Lecture 6 - E. Wilson - Slide 10

Bucket length I

$$
\ddot{\phi}=-\frac{2 \pi V_{0} h \eta f^{2}}{E_{0} \beta^{2} \gamma}\left(\sin \phi-\sin \phi_{s}\right)
$$

The right hand side is negative beyond:

$$
\phi=\pi-\phi_{s}
$$

Lecture 6 - E. Wilson - Slide 11

Bucket length II

- And the other lingit in phase when $\phi=\phi_{m}$ where
$\cos \phi_{m}+\phi_{m} \sin \phi_{s}=\cos \left(\pi-\phi_{s}\right)+\left(\pi-\phi_{s}\right) \sin \phi_{s}$

Bucket height

- And the half height when $\ddot{\phi}=0$ at

$$
\begin{gathered}
\left(\Delta E / E_{s}\right)_{\max }= \pm \beta\left\{\frac{e V_{0}}{\pi h \eta E_{s}} G\left(\phi_{s}\right)\right\}^{1 / 2} \\
G\left(\phi_{s}\right)=\left[2 \cos \phi_{s}-\left(\pi-2 \phi_{s}\right) \sin \phi_{s}\right]
\end{gathered}
$$

G varies from ± 2 to 0 as $\sin \phi_{\mathrm{s}}$ varies from 0 to 1

Adiabatic capture

- Area of a stationary bucket is :

$$
A_{0}=16 \beta \sqrt{\frac{E_{s} e V_{0}}{\pi|\eta| h}} \text { in units }[\Delta E . \Delta \phi]
$$

Lecture 6 - E. Wilson - Slide 14

Longitudinal Dynamics II - Summary

- Transition - does an accelerated particle catch up - it has further to go
- Phase jump at transition

Synchrotron motion
Synchrotron motion (continued)
Large amplitudes
Buckets
Adiabatic capture
A chain of buckets

