Lecture 8 -Circulating Beams and Imperfections

ACCELERATOR PHYSICS

MT 2014

E. J. N. Wilson

Previously - Longitudinal dynamics II

- Transition - does an accelerated particle catch up - it has further to go
- Phase jump at transition
- Synchrotron motion
- Synchrotron motion (continued)
- Large amplitudes
- Buckets
- Buckets
- Adiabatic capture
- A chain of buckets

Lecture 7-Circulating Beams and Errors Contents

- Phase space at various points in a lattice
- Adiabatic damping
- Adiabatic damping of proton beam
- Liouville's theorem - Strict Version
- Emittance definitions
- Acceptance
- Making an orbit bump grow
- Circle diagram
- Closed orbit in the circle diagram
- Uncorrelated errors
- Sources of distortion
- FNAL measurement
- Diad bump
- Overlapping beam bumps
- Effect of quadrupole errors.
- Chromaticity
- Closed orbit in the circle diagram
- Gradient errors
- Working daigram

Betatron phase space at various points in a lattice

Lecture 7 - E. Wilson-11/2/2014-Slide 4

Adiabatic damping

- Accelerator coordinates

Canonical coordinates of Hamilton

$$
\begin{aligned}
& p=m \frac{d q}{d t} \gamma=m \frac{d s}{d t} \frac{d q}{d s} \gamma=m(\beta \gamma) x^{\prime} \\
& \int p d q=m c(\beta \gamma) \int x^{\prime} d x=p_{0} \int x^{\prime} d x
\end{aligned}
$$

$\mathrm{Emittan} \mathrm{ce}=\pi \varepsilon=\int x^{\prime} d x=\underset{\pi \varepsilon_{\text {no matise }} /}{ } /(\beta \gamma) \propto 1 / p_{0}$

Adiabatic damping of proton beam

Lecture 7 - E. Wilson - 11/2/2014-Slide 6

Emittance definitions

Lecture 7 - E. Wilson-11/2/2014-Slide 7

Acceptance

- Largest particle grazing an obstacle defines acceptance.
- Acceptance is equivalent to emittance

$$
A=\frac{\hat{x}^{2}}{\beta}
$$

Making an orbit bump grow

- As we slowly raise the current in a dipole:
- The zero-amplitude betatron particle follows a distorted orbit
- The distorted orbit is CLOSED
- It is still obeying Hill's Equation
- Except at the kink (dipole) it follows a betatron oscillation.
- Other particles with finite amplitudes oscillate about this new closed orbit

Circle diagram

Closed orbit in the circle diagram

$$
\Delta x^{\prime}=\frac{\Delta(B l)}{(B \rho)}
$$

Tracing a closed orbit for one turn in the circle diagram with a single kick. The path is ABCD .
$\frac{\Delta p}{2}=\frac{\beta_{k} \delta x^{\prime}}{2}=a \sin \left(\frac{2 \pi Q}{2}\right)$
$a=\frac{\beta_{k} \delta x^{\prime}}{2 \sin \pi Q}$ elsewhere $\hat{x}=a \sqrt{\frac{\beta(s)}{\beta_{k}}}=\frac{\sqrt{\beta_{k} \beta(s)}}{2 \sin \pi Q} \delta x^{\prime}$

Uncorrelated errors

- A random distribution of dipole errors
- Take the r.m.s. average of $\delta y_{i}=\Delta(B l) /(B \rho)$
- Weighted according to the β_{k} values
- The expectation value of the amplitude is:

$$
\langle y(s)\rangle=\frac{\sqrt{\beta(s)}}{2 \sqrt{2} \sin \pi Q} \sqrt{\sum_{i} \beta_{i} \delta y_{i}^{\prime 2}}
$$

\bullet Kicks from the \boldsymbol{N} magnets in the ring.

$$
\approx \frac{\sqrt{\beta(s) \bar{\beta}}}{2 \sqrt{2} \sin \pi Q} \sqrt{N} \frac{(\Delta B \ell)_{r m s}}{B \rho}
$$

The factor $\sqrt{2}$ takes into account the averaging over both sine and cosine phases

- A further factor 2 safety is applied to include $\mathbf{9 8 \%}$ of all sample distributions.

Sources of distortion

Δy

Δ

Table 1
Sources of Closed Orbit Distortion

Type of element	Source of kick	r.m.s. value	$\left.{ }^{\prime} \Delta B \mathrm{l} /(B \rho)\right\rangle_{r m s}$	plane
Gradient magnet	Displacement	< $\$ >> & $k_{i} l_{i}\langle\Delta y>$	x, z	
Bending magnet (bending angle $=\theta i)$	Tilt	< 4 >	θ_{i} < $\Delta>$	z
Bending magnet	Field error	$\langle\Delta B / B>$	$\theta i<\Delta B / B>$	x
Straight sections (length $=$$d_{i}$)	Stray field	$\left\langle\Delta B_{S}>\right.$	$d_{i} \backslash \Delta B_{s} \backslash /(B \rho)_{i n j}$	x, z

FNAL MEASUREMENT

- Historic measurement from FNAL main ring

Each bar is the position at a quadrupole $+/-100$ is width of vacuum chamber

- Note mixture of 19th and 20th harmonic - The Q value was 19.25

Diad bump

- Simplest bump is from two equal dipoles 180 degrees apart in betatron phase. Each gives:

$$
\delta=\frac{\Delta(B 1)}{B \rho}
$$

The trajectory is $: y(s)=\delta \sqrt{\beta(s) \beta_{k}} \sin \left(\phi-\phi_{0}\right)$

The matrix is
$\binom{y}{y^{\prime}}=\left(\begin{array}{ll}\left(\sqrt{\beta} / \sqrt{\beta_{0}}\right)\left(\cos \Delta \phi+\alpha_{0} \sin \Delta \phi\right) & \sqrt{\beta_{0} \beta} \sin \Delta \phi \\ \left(-1 / \sqrt{\beta_{0} \beta}\right)\left\{\left(\alpha-\alpha_{0}\right) \cos \Delta \phi+\left(1+\alpha \alpha_{0}\right) \sin \Delta \phi\right\}, & \left(\sqrt{\beta} / \sqrt{\beta_{0}}\right)(\cos \Delta \phi-\alpha \sin \Delta \phi)\end{array}\right)\binom{y_{0}}{y_{0}}$

Overlapping beam bumps

- Each colour shows a triad bump centred on a beam position measurement.
- A computer calculates the superposition of the currents in the dipoles and corrects the whole orbit simultaneously

Gradient errors

$M=\left(\begin{array}{cc}\cos \phi_{0}+\alpha_{0} \sin \phi_{0}, & \beta_{0} \sin \phi_{0} \\ -\delta k(s) d s\left(\cos \phi_{0}+\alpha_{0} \sin \phi_{0}\right)-\gamma \sin \phi_{0}, & -\delta k(s) d s \beta_{0} \sin \phi_{0}+\cos \phi_{0}-\alpha_{0} \sin \phi_{0}\end{array}\right)$.
$\Delta(\operatorname{Tr} \mathrm{M}) / 2=\Delta(\cos \phi)=-\Delta \phi \sin \phi_{0}=\frac{\sin \phi_{0}}{2} \beta_{0}(s) \delta k(s) d s$
$2 \pi \Delta Q=\Delta \phi=\frac{\beta(s) \delta k(s) d s}{2}$.

$$
\Delta Q=\frac{1}{4 \pi} \int \beta(s) \delta k(s) d s
$$

$n Q=p$,
$1 Q_{H}+m Q_{V}=p$,

Lecture 7 - E. Wilson - 11/2/2014-Slide 18

Multipole field shapes

Lecture 7 - E. Wilson - 11/2/2014 - Slide 19

Physics of Chromaticity

The \mathbf{Q} is determined by the lattice quadrupoles whose strength is:

$$
k=\frac{1}{(B \rho)} \frac{d B_{z}}{d x} \propto \frac{1}{p}
$$

Differentiating:

$$
\frac{\Delta k}{k}=-\frac{\Delta p}{p} .
$$

Remember from gradient error analysis

$$
\Delta Q=\frac{1}{4 \pi} \int \beta(s) \delta k(s) d s
$$

Giving by substitution
$\Delta Q=\frac{1}{4 \pi} \int \beta(s) \Delta k(s) d s=\left[\frac{-1}{4 \pi} \int \beta(s) k(s) d s\right] \frac{\Delta p}{p}$.
$\Delta Q=Q \cdot \frac{\Delta p}{p}$
Q^{\prime} is the chromaticity
"Natural" chromaticity

$$
Q^{\prime}=-\frac{1}{4 \pi} \oint \beta(s) k(s) d s \approx-1.3 Q
$$

N.B. Old books say $\xi=\frac{p}{Q} \frac{d Q}{d p}=\frac{Q^{\prime}}{Q}$

Measurement of Chromaticity

- We can steer the beam to a different mean radius and a different momntum by changing the $r f$ frequency and measure Q

$$
\Delta f_{a}=f_{a} \eta \frac{\Delta p}{p} \quad \Delta r=D_{a v} \frac{\Delta p}{p}
$$

- Since $\Delta Q=Q^{\prime} \frac{\Delta p}{p}$

Hence

$$
\therefore Q^{\prime}=f_{a} \eta \frac{d Q}{d f_{a}}
$$

Correction of Chromaticity

Parabolic field of a 6 pole is really a gradient which rises linearly with x

If x is the product of momentum error and dispersion

$$
\Delta k=\frac{B^{\prime \prime} D}{(B \rho)} \frac{\Delta p}{p}
$$

- The effect of all this extra focusing cancels chromaticity

$$
\Delta Q=\left[\frac{1}{4 \pi} \int \frac{B^{\prime \prime}(s) \beta(s) D(s) d s}{(B \rho)}\right] \frac{d p}{p} .
$$

- Because gradient is opposite in v plane we must have two sets of opposite polarity at F and D quads where betas are different

Lecture 7-Circulating Beams and Errors Summary

- Phase space at various points in a lattice
- Adiabatic damping
- Adiabatic damping of proton beam
- Liouville's theorem - Strict Version
- Emittance definitions
- Acceptance
- Making an orbit bump grow
- Circle diagram
- Closed orbit in the circle diagram
- Uncorrelated errors
- Sources of distortion
- FNAL measurement
- Diad bump
- Overlapping beam bumps
- Effect of quadrupole errors.
- Chromaticity
- Closed orbit in the circle diagram
- Gradient errors
- Working daigram

