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Previously - Longitudinal dynamics Il

¢ Transition - does an accelerated particle
catch up - it has further to go

¢ Phase jump at transition

¢ Synchrotron motion

¢ Synchrotron motion (continued)
¢ Large amplitudes

¢ Buckets

¢ Buckets

¢ Adiabatic capture

¢ A chain of buckets
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Betatron phase space at various

points in a lattice
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Adiabatic damping

¢ Accelerator coordinates

g

dq dsdq

p=m—y= ;t;y md fy)x’

fpdq m—pof
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Adiabatic damping of proton beam
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Emittance definitions
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Acceptance

=z AP x VAP =TA

¢ Largest particle grazing an obstacle defines
acceptance.

¢ Acceptance is equivalent to emittance
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Making an orbit bump grow

¢ As we slowly raise the current in a dipole:

¢ The zero-amplitude betatron particle follows
a distorted orbit

¢ The distorted orbit is CLOSED
¢ It is still obeying Hill’s Equation

¢ Except at the Kink (dipole) it follows a
betatron oscillation.

¢ Other particles with finite amplitudes
oscillate about this new closed orbit
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Circle diagram
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Closed orbit in the circle diagram

Y

Tracing a closed orbit for one turn
in the circle diagram with a single Kick.

The path is ABCD.
Ap _ S.ox’ _ asm(zﬂQ)
2 2 2
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Uncorrelated errors

¢ A random distribution of dipole errors

¢ Take the r.m.s. average of 5)&-, = A(Bl)/(Bp)
¢ Weighted according to the 5 values
¢ The expectation value of the amplitude is:

s
f\/IZTnﬂQ \/ Z'Bl
¢ Kicks from the N magnets in the ring.

~ ] /B(S)B m (ABf)rmS
2+/2 sin 7O Bp

/S\
w(s)) = 5

# The factor V2 takes into account the
averaging over both sine and cosine phases

¢ A further factor 2 safety is applied to include
98% of all sample distributions.
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Sources of distortion

Table 1
Sources of Closed Orbit Distortion
Type of Source of r.m.s. value {ABI/(Bp)) | plane
element kick
Gradient Displacement <Ay> kjli<dy> X,Z
magnet
Bending Tilt <> 6 <A> Z
magnet
(bending angle
= _A)
Bending Field error <4B/B> & <AB/B> X
magnet
Straight Stray field <ABs> | di{AB}[(Bp), . | xz
sections ’
(length=dj)
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FNAL MEASUREMENT
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¢ Historic measurement from FNAL main ring
¢ Each bar is the position at a quadrupole

¢ +/- 100 is width of vacuum chamber

¢ Note mixture of 19th and 20th harmonic

¢ The QQ value was 19.25
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Diad bump

¢ Simplest bump is from two equal dipoles 180
degrees apart in betatron phase. Each gives:

5 AB
Bp
# The trajectory is :v (s )=6yB (s ) B sin (6—6, )
by
Ay = VPpBy 3
s

trix is

(j T&l }ﬁlg cosAg+ g sin Ag) , JBoB sinAg ][yoj
)

( 1/@){(& 0‘0) cosAg + (1 + aao)sinA¢} , (‘/B / ‘/,B_OXCOS A¢ — a sinA¢

Y0

Lecture 7 - E. Wilson - 11/2/2014 - Slide 15



Overlapping beam bumps

¢ Each colour shows a triad bump centred on a
beam position measurement.

¢ A computer calculates the superposition of
the currents in the dipoles and corrects the
whole orbit simultaneously
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Gradient errors

B —koés)ds (l)j ’

"=l spe 1)

[cos¢0+a0 sing, , By sing j
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M—( cos @y + ap sin @ , Bo sin @, j
—k(s)ds(cos gy + ag sin ¢y )—ysin ¢y , —k(s)dsfy sin gy + cos gy — g sin @y

A(Tr M)/ 2= Acos@)=—-Adsing, = sir21¢0 Bo(s)K(s)ds
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Lecture 7 - E. Wilson - 11/2/2014 - Slide 17



Q diagram
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Multipole field shapes
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Physics of Chromaticity

¢ The Q is determined by the lattice
quadrupoles whose strength is:

1 dB 1

“(Bp) dx  p

P
¢ Remember from gradient error analysis

Ak Ap
¢ Differentiating: k

AQ = i [ BK(s) ds .

GlVlng by substitutipn
0= ptsitos=| =L POR(sXis |2
20=0 "2 . .
p 0’ is the chromaticity

¢ “Natural” chromaticity

Q' =—L §ﬂ (s )k (s )ds =~-1.30

N.B. Old books say s=292_2

Q dp
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Measurement of Chromaticity

¢ We can steer the beam to a different mean
radius and a different momntum by changing
the rf frequency and measure Q

Ap A
Afa =fa77_ Ar:l)av_p
P P
¢ Since AQ=0 '%

¢ Hence 0 "=/, Ud_]g
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Correction of Chromaticity

AN

S

¢ Parabolic field of a 6 pole is really a gradient
which rises linearly with x

¢ If x is the product of momentum error and
dispersion DA

- (Bo p

¢ The effect of all this extra focusing cancels

1 B"(s),B(s)D(s)ds}dp
AQ = .
¢ {MI (Bp) p
¢ Because gradient is opposite in v plane we
must have two sets of opposite polarity at F
and D quads where betas are different
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