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Previously  - Longitudinal dynamics II 
 

 

 Transition - does an accelerated particle 
catch up - it has further to go 

 Phase jump at transition 

 Synchrotron motion 

 Synchrotron motion (continued) 

 Large amplitudes 

 Buckets 

Buckets 

Adiabatic capture 

A chain of buckets 
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Betatron phase space at various 
points in a lattice 
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Adiabatic damping 

Accelerator coordinates 

 

 

 

 

 

 

 

Canonical coordinates of Hamilton 
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Adiabatic damping of proton beam 
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Emittance definitions 
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Acceptance 

 Largest particle grazing an obstacle defines 
acceptance. 

Acceptance is equivalent to emittance 

  
A

ˆ x 2
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Making an orbit bump grow 

As we slowly raise the current in a dipole: 

 The zero-amplitude betatron particle follows 
a distorted orbit 

 The distorted orbit is CLOSED 

 It is still obeying Hill’s Equation 

 Except at the kink (dipole) it follows a 
betatron oscillation. 

Other particles with finite amplitudes 
oscillate about this new closed orbit 

DIPOLE 
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Circle diagram 
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Closed orbit in the circle diagram 

 

Tracing a closed orbit for one turn  

in the circle diagram with a single kick.   

The path is ABCD. 

p

2

k x 

2
 asin

2Q

2











a 
k x 

2sinQ
elsewhere  ˆ x  a

(s)

k


k (s)

2sinQ
 x 

 x 
(Bl)

B 



Lecture 7 - E. Wilson - 11/2/2014 - Slide 12 

Uncorrelated errors 

A random distribution of dipole errors 

  

Take the r.m.s. average of  

Weighted according to the        values 

 The expectation value of the amplitude is: 

 

 

Kicks from the N magnets in the ring. 

 

 

   

The factor         takes into account the 
averaging over both sine and cosine phases 

 

A further factor 2 safety is applied to include 
98% of all sample distributions. 
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Sources of distortion 

y 

 Table 1   

Sources of  Closed Orbit Distortion

Type of

element

Source of

kick

r.m.s. value plane

Gradient

magnet

Displacement <y> k ili<y> x,z

Bending

magnet

(bending angle

= i)

Tilt <> i <> z

Bending

magnet

Field error <B/B> i <> x

Straight

sections

(length = d i)

Stray  field <s> x,z

  
Bl B 

rms

  
di Bs B 

inj
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FNAL MEASUREMENT 

Historic measurement from FNAL main ring 

 Each bar is the position at a quadrupole 

 +/- 100 is width of vacuum chamber 

Note mixture of 19th and 20th harmonic 

 The Q value was 19.25 
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Diad bump 

 Simplest bump is from two equal dipoles 180 
degrees apart in betatron phase. Each gives: 

 

 

 The trajectory is :  
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Overlapping beam bumps 

 Each colour shows a triad bump centred on a 
beam position measurement. 

A computer calculates the superposition of 
the currents in the dipoles and corrects the 
whole orbit simultaneously 
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Q diagram 

 
  nQ p ,

  lQH mQV  p ,
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Multipole field shapes 
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 The Q is determined by the lattice 
quadrupoles whose strength is: 

 

 

 

Differentiating: 

Remember from gradient error analysis 
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                           Q’  is the chromaticity 

 “Natural” chromaticity 
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We can steer the beam to a different mean 
radius and a different momntum by changing 
the rf frequency and measure Q 
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Measurement of Chromaticity 
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Correction of Chromaticity 

 Parabolic field of a 6 pole is really a gradient 
which rises linearly with x 

 If x is the product of momentum error and 
dispersion 

 

 The effect of all this extra focusing cancels 
chromaticity 

 

 

 

 Because gradient is opposite in v plane we 
must have two sets of opposite polarity at F 
and D quads where betas are different 
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