ACOUSTIC HOLOGRAPHIC VISION

Henrik D. Kjeldsen henrik.daniel.kjeldsen@cern.ch

CERN openlab workshop 11th of November, 2014

Human Echolocation

and its technological reproduction

Reality:

smithsonianmag.com

"the visually impaired"

CERN fire training (Anna Pantelia)

Vision:

entretags.de

aisencaro.com

What to aim for?

Animal Echolocation

Ultrasound is better:

Distance
Speed (acquisition)
Directional

Neuroscience:

Visual areas involved imply advanced scene reconstruction, but no accepted neural theory

adurkin.weebly.com

Echolocation expert

"Visual"
brain areas

Sound bounces off object. A practiced echolocator can identify objects around him by the echo, much like bats do. Sounds are played back to participants later during MRI scan. These scans show activity in areas of the brain that normally process visual information.

The echolocator uses his tongue and mouth to create

clicking sounds.

Acoustic Holography

Issues:

- 1. Resolution
- 2. Processing power

Proposed solutions:

1. Compressive sensing via sparsity

2. Real-time cloud services

New mobile devices with cloud services How mobile?

Real-time Near-field Acoustic Holography

Jørgen Hald, Brüel & Kjær Sound & Vibration Measurement A/S, Nærum, Denmark SOUND AND VIBRATION/FEBRUARY 2001

Acoustic Holography

Simulation example (one dimension suppressed):

Acoustic Holography with Compressive Sensing

Based on:

What is compressive sensing? **Sparsity is required (compressible)** Random sampling is key

Nearfield Acoustic Holography using sparsity and compressive sampling principles

Gilles Chardon and Laurent Daudet

Institut Langevin, ESPCI ParisTech - Univ Paris Diderot - UPMC Univ Paris 06 - CNRS UMR 7587, 10 rue Vauguelin F-75005 Paris France

Antoine Peillot and François Ollivier

UPMC Univ Paris 06, UMR 7190 - Institut Jean Le Rond d'Alembert, F-75005 Paris France.

CNRS - IRISA-UMR 6074, Campus de Beaulieu, F-35042 Rennes Cedex France

INRIA, Centre Inria Rennes - Bretagne Atlantique, Campus de Beaulieu, F-35042 Rennes Cedex France

Example:

Restored image, 26.7876dB

Can we implement it?

Near-field Electromagnetic Holography

MEA ELECTROMAGNETIC INCOHERENT NEAR-FIELD HOLOGRAPHY

for

super-resolution
spike localization and sorting in 3D
energy flow and dissipation
current source density, energy source density

Most recent work in experimental neuroscience

Henrik D. Kjeldsen henrik.kjeldsen@ncl.ac.uk

Venue September, 2013

Proven implementation of a generalization of acoustic holography

Background

Translation of known technique:

Near-field Acoustic Holography (NAH)

Figure 5. Data flow chart for time domain holo

Jørgen Hald, Brüel & Kjær Sound & Vibration Measurement A/S, Nærum, Denmark SOUND AND VIBRATION/FEBRUARY 2001

Example

Super-resolution: x3

Example

Energy flow reveals network causality patterns

phase-locked average of previous clip

Acoustic Holographic Vision

DESIGN SPECIFICATION OUTLINE:

Ultrasound holography with super-resolution via compressed sensing and real-time cloud services

Mobility

Computability

Quality

Recognition Navigation Response

Acknowledgements

Marcus Kaiser and Newcastle Dynamic Connectome Lab

Miles Whittington and York Oscillations Group

Gary Green and York Neuroimaging Centre

Marco Manca and CERN Medical Applications

