Sylvain Ravat PH/DT-DI

MSS Beam Dump

MSS - Upgrade to MSS2

- Magnet Safety System (MSS) is used for all LHC experiments
- MSS re-designed to MSS2: NI cRIO FPGA platform to replace obsolete fuse programmable based FPGA
 - MSS2 tested on COMPASS Magnet in April-May 2014
- Upgrade to MSS2 during LS1 only for :
 - Alice Solenoid and Dipole
 - LHCb Dipole
 - Atlas Central Solenoid (MSSa)
- Keep current MSS for :
 - CMS Solenoid (MSSa and MSSb)
 - Atlas Toroids (MSSa and MSSb)
 - Atlas Central Solenoid (MSSb)

MSS rack structure

- MSS Rack is composed of 4 types of crates:
 - API: concentrates MSS Digital and Analog signals and distribute it to ACS and LCS crates.
 - ACS: receives, treats analog signals and sends results as digital signals to LCS crates,
 - LCS: receives digital signals from API and ACS, an FGPA will combine these signals and take actions to protect the magnets,
 - APC: sends FPGA orders to dependent system such as magnet power supply, cryogenic plant, quench heaters, beam dump...

MSS behaviour - APC Modification

Optocoupler patch to replace relays

Transition time = 1ms

MSS2 rack structure

- Similar Structure as MSS
- VAC module: Versatile Analogue Chassis, Analogue 3U chassis containing 8 analogue modules (2 or 4 channels)
- MAC module: Main Chassis, Principal 6U chassis of the MSS2 system; contains CRIO controller, interfaces and redundant power supplies, Integration of MSS APC functionalities.

MSS₂APC

Conclusion

- Transition time to trigger a beam dump reduced to ~3ms
- Both solution will be tested and validated with a CIBU in our lab in collaboration with Christophe Martin (TE-MPE-EP)
- Beam Dump will be implemented for :
 - Alice Dipole and Solenoid
 - Lhcb Dipole
 - Atlas Central Solenoid (MSSa and MSSb)
 - CMS Solenoid (MSSa and MSSb)