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The Invisibles School will take place at La Cristalera UAM workshop facility in Miraflores de la Sierra, a
beautiful village located in the mountain range north of Madrid.

Accomodation for all the participants will be arranged in the facilities of La Cristalera complex which, apart
from the academic facilities, includes a restaurant, bar, swimming pool and many terraces and gardens
ideal for outdoor discussions. The registration fee includes full board (all meals and coffee breaks) as well
as transportation between La Cristalera and Madrid center and Barajas airport. All rooms have individual
bathrooms; students may have to share the room (same fee).

Shuttle buses from the airport and the center of Madrid to La Cristalera will be arranged for
Sunday 14th of June as well as return buses for Saturday 20th. The school starts early on Monday
15th and finishes late on Friday 19th. The exact schedules will be fixed at a later date to try to
accommodate the travel plans of all participants.

In case of arrival in different dates, you will need to reach the Cristalera by yourself.

How to get to La Cristalera

GPS coordinates: 40°49'14"N  3°47'1"W

Google maps coordinates: 40.820556, -3.783611

Buses from Plaza de Castilla (Madrid)  and Colmenar Viejo (nearby village)

Madrid Intercambiador Plaza Castilla - Isla 4. Dársena 28, 3rd floor, line 725
Colmenar Viejo Avda. Liberdad, 41. Phone: 91-845-00-51
Stop at Miraflores de la Sierra stop at the road towards Bustarviejo
Schedules for night intercity bus service:

Friday, Saturday and eve of public holidays in the Community of Madrid
Departures from Madrid:    0:30   2:45   5:30
Departures from Miraflores de la Sierra    23:15   1:45   4:15

 

By car from Madrid:

First, take the M-30 or M-40 northbound. Once in M-30, follow the direction to Miraflores de la Sierra: exit
in Salida 30 - Colmenar Viejo, and join the M-607. If instead you chose the M-40, you also find an exit to

the M-607 - Colmenar Viejo. 

Pass the campus of the Universidad Autónoma de Madrid, Tres Cantos, Colmenar Viejo and Soto del Real. 
Exit M-607 (end of road) and join M-609: at the junction turn right, and Miraflores de la Sierra is
indicated. Keep following indications towards Miraflores de la Sierra, exiting M-609 to join M-862, then  M-
608, and further M-611 until you reach Miraflores. Follow then M-611 towards Puerto de la Morcuera and
Rascafría and at km. 10 to your left is the Cristalera.
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Outline (totally subjective) 

• Some motivation.

• Calculating LHC cross sections (Xsection).

• Parton distribution functions, parton luminosities.

Lecture I:

• Example, top-pair Xsection calculation.

• Kinematics & resonance search.

Lecture II:
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Outline

• Resonance production vs. EFT production.

• Intro to jet phys.

Lecture III:

• Jets cont’.

• Jet substructure phys., boosted massive jets. (if time permits)

Lecture IV:
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Lecture I: 
Some motivation (SM problems, naturalness); 

How to calculate Xsections @ the LHC;

Parton distribution functions (PDFs) parton 
luminosities.  
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Link to notes: https://www.dropbox.com/s/znmb3xod9en41hi/LHC_Gilad_Perez_Lectures
%20new.pdf?dl=0
Mathematica notebook+PDF files that are public, if you are interested in doing the ex.:
https://www.dropbox.com/s/xnr0449ehjndri1/Example_invisibles_LHC.nb?dl=0
https://www.dropbox.com/s/q1mdtbt5qyoj229/Lall14.txt?dl=0
https://www.dropbox.com/s/7j6xelcg7k38m8r/Lall100.txt?dl=0
Credit: my student, Yotam Soreq.
For advanced tools, see Fabio Maltoni’s lectures.

https://www.dropbox.com/s/znmb3xod9en41hi/LHC_Gilad_Perez_Lectures%20new.pdf?dl=0
https://www.dropbox.com/s/xnr0449ehjndri1/Example_invisibles_LHC.nb?dl=0
https://www.dropbox.com/s/q1mdtbt5qyoj229/Lall14.txt?dl=0
https://www.dropbox.com/s/7j6xelcg7k38m8r/Lall100.txt?dl=0


Why the LHC? What are the problems of the 
Standard Model* (SM), before the LHC started?

* Let’s set quantum gravity aside for simplicity …
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data driven,
clear scale

conceptual,
vague scale

data driven,
no clear 

reachable scale
conceptual

WW/unitarity, 
masses

fine tuning,
naturalness

neutrino masses flavor puzzle 

dark matter (strong CP)

baryogenesis 
unification, 

charge 
quantisation

Why the LHC? What are the problems of the 
Standard Model* (SM), before the LHC started?
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Why the LHC? (2 subjective reasons)

• Higgs & unitarity, suggests physics < TeV.

• Given the Higgs, the  fine tuning problem 
requires new physics at a scale, generically, 
within the reach of the LHC.
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[Fermion masses: another unitarity problem,       

 relevant to LHC H-phys. (no time to discuss)]



The SM Higgsless Unitarity Problem

The amplitude for scattering of longitudinal W’s and Z’s grows 
with the energy and eventually violates the unitarity bound:

WL WL

+ +
Z,γ

Z,γ

WL WL

Ex: A(W+
L W�

L �W+
L W�

L ) =
g2
2

4M2
W

(s + t)

each longitudinal polarization 

gives a factor 

Unitarity is violated at 
⇥

s � � = 1.2 TeV

E
�µ
L =

pµ

MW
+ O

�
E

MW

⇥

Unitarity is restored by adding diagrams with intermediate Higgs in them as long as mh < 800 GeV . 

Mandelstam variables

8

Higgs as a solution to the unitarity problem

We can resolve theW+W− → W+W− cross section divergence with two

additional diagrams

but only ifmH < 1 TeV

There is also a theoretical lower limit; if the mass is too small then the weak vacuum

become unstable, however, experiment gives the current best lower limit.

Physics 506A 18 - Higgs boson Page 3

Le↵ = M2
WW+

µ W�µ +
1

2
M2

Z



The Higgs & the fine tuning/naturalness problem

’t Hooft definition of technical naturalness: 
a parameter is natural if when it’s set to 0 there’s an enhanced symmetry.

Additive renormaliztion (unnatural parameters):  
Multiplicative renormalization (natural parameters):  

d�/dlnµ / �g(µ) + f(µ)
d�/dlnµ / �g(µ)

ֿ
The Higgs mass parameter is subject to additive renormalisation. 
Thus, it is sensitive to microscopic new physics dynamics.
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Figure 2: Dependence of the asymmetries for the LHC on the lepton pt for three di↵erent scale

choices, calculated by POWHEG. The left and right panel show Ac and Al respectively and

middle one shows the ratio Al/Ac. These plots show the ideal SM scenario where no cuts have

been applied.
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Naturalness might give a hint: Higgs mass is additive, sensitive to microscopic 
scales. Within the SM it translates to UV sensitivity:                                        .

See: Giudice (13)

Igor Stravinsky used, when he said “Silence will save me from being wrong, but it
will also deprive me of the possibility of being right.”

The basic observation is that quadratic divergences are fully related to UV physics.
This means that, if the matching condition of the Higgs bilinear at an arbitrary scale
⇤ in the far UV is mH(⇤) ⇡ 0, then mH remains small at all scales below ⇤, as long
as there are no massive thresholds at intermediate energies. This is evident once we
consider the one-loop renormalisation-group equation for mH in the SM

dm2
H

d lnµ
=

3m2
H

8⇡2

 

2�+ y2t �
3g22
4

� 3g21
20

!

. (6)

The Higgs parameterm2
H is onlymultiplicatively renormalised and so SM infrared (IR)

contributions do not bring back the naturalness problem, once it has been eradicated
from the UV. These considerations suggest a possible solution to the naturalness of
the Higgs, which I will call here UV Naturalness. It is based on two assumptions:
(i) a miracle occurs in quantum gravity, which sets m2

H(MPl) to be approximately
zero (i.e. about 34 orders of magnitude smaller than the naive expectation); (ii) if
there are new particles with mass between MPl and mh, then they must be su�ciently
decoupled from the Higgs field.

In his Summa contra gentiles, St. Thomas Aquinas classifies miracles in three
categories. A miracle of the third degree is when God does something that nature
can do, but without intervention of a natural agent (e.g. a storm that suddenly
stops just before the ship sinks). A miracle of the second degree is when God does
something that nature can do, but without respecting the natural temporal order
(e.g. a man regains sight after being blinded or comes back to life after death). The
highest degree of miracle is when God does something that nature can never do (e.g.
parting the waters of the Red Sea or causing the sun to stand still at Gibeon).

We can get inspiration from ancient wisdom and, in a modern Summa contra natu-
ralitatem, classify the degree of quantum-gravity miracles required by the assumption
(i) above. A miracle of the third degree occurs if graviton loops do not a↵ect the Higgs
mass and do not modify the evolution of the SM couplings in the far UV (i.e. in the
transplanckian region). In this case gravity does not introduce a naturalness problem,
but one may need to introduce new physics to avoid the non-asymptotic freedom of
the hypercharge coupling or other possible Landau poles. A miracle of the second
degree corresponds to a situation in which both gravity and the SM are well-behaved:
the Higgs mass is not a↵ected by any large corrections and all couplings reach UV
fixed points. Finally, a first degree miracle would happen if quantum-gravity e↵ects
magically erase any large quantum correction to the Higgs mass generated at any
scale, larger or smaller than MPl. The latter possibility seems utterly implausible
and I will disregard it, since it requires an exact correlation between contributions
occurring at completely di↵erent energy scales. So, resorting to a quantum-gravity
miracle (say of the second or third degree), we can conceive the possibility of a special

7

Beyond the SM: any scale that couples to the Higgs (or even to tops, gauge ...)
will induce a large shift to the Higgs mass,                   .

ducing the problem of tachyonic sleptons [20]. Moreover, it gives a prediction for the
Higgs mass which is comfortably in the right range [27], unlike most natural versions
of supersymmetric models. Finally, it o↵ers a chance for discovery at the high-energy
phase of the LHC through gluino pair production, although it is not guaranteed that
gluinos are kinematically accessible.

UV Naturalness

As I have already mentioned, whenever we encounter a threshold with particles of
mass M , coupled to the Higgs field, we expect that quantum corrections give a con-
tribution

�m2
H ⇡ ↵

4⇡
M2 . (5)

This introduces a naturalness problem.
So let us suppose that no heavy particles coupled to the Higgs exist at all. For the

moment I disregard all indications in favour of new heavy thresholds based on dark
matter, strong CP, baryogenesis, inflation, unification, etc. Nonetheless, there is one
mass scale I cannot dispense with: the Planck mass MPl associated with quantum
gravity. This leads me to consider the following question: Does gravity introduce a
Higgs naturalness problem? In practice, one would like to compute loop diagrams
with two external Higgs lines, involving virtual gravitons and SM particles. Do these
diagrams give a contribution �m2

H / M2
Pl or not? In classical general relativity, the

Planck mass enters only through the combination GN = M
�1/2
Pl , as a coupling with

inverse powers of MPl. Does quantum gravity introduce positive powers of MPl in the
result? One generally expects that the answer is in the a�rmative. Pure gravity loop
diagrams do not contribute to the Higgs mass, because of the Higgs shift symme-
try. But there is no obvious reason why two-loop diagrams involving gravity and top
Yukawa (or Higgs quartic) couplings should vanish. For instance, we can interpret
microscopic black holes as virtual quantum states that contribute at the loop level
to gravitational corrections �m2

H / M2
Pl. However, since we cannot solve quantum

gravity, it is di�cult to make a firm statement. Some authors have considered (either
implicitly or explicitly) [28–38] the hypothesis that quantum gravity may not nec-
essarily introduce any ‘Planckian particles’ and quantum-gravity corrections to the
Higgs mass may be free from positive powers of MPl. Some (still unspecified) miracle
is expected to cure the UV behaviour of gravity and the presence of GN would not
significantly a↵ect the Higgs mass.

Although it goes against e↵ective field-theory intuition, one can conceive the pe-
culiar possibility that quantum-gravity corrections �m2

H / M2
Pl vanish. It has never

been proven to be true, but the opposite hasn’t been proven either. This may not
seem such a scientifically cogent reason, but it follows the same successful logic that

6

Farina, Pappadopulo & Strumia (13)
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Tunning vs. fine tuning/naturalness problem

Flavor puzzle: the parameters’ are small and hierarchical.
Is the flavor sector fine tuned? mu/mt ~ 10-5 .

L
fermions

2  ̄L@µ�µ L +  ̄R@µ�µ RMassless fermions theory:

Two separate U(1)’s:  L,R ! e✓L,R L,R

Mass term breaks it to a single U(1):  ̄Lm R

Only invariant under transformation with ✓L = ✓R = ✓

Sym’ is indeed
enhanced when
the mass vanishes.
(modulo anomalies)
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Flavor is natural, what’s left for the LHC?

Flavor parameters are natural, subject to tuning & then radiatively stable, no UV
sensitivity.

Within the SM the only exception is the Higgs mass. (& the QCD angle & the cosmological constant)

11

Motivates: study the Higgs & electroweak sym’ breaking + naturalness. 

Can be done at the LHC, a concrete task.



LHC physics
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Need more E!
Sync’ radiation,

                            problem for circular e-collider:

LEP (1989-2000)

dW
dt |e ⇤

�
e
r

⇥2
⇤

E
me

⌅4
⇥ 104 GeV s�1 ⌅ �1012e ⇥ MWs radiation!

1013 improvement when e <=> proton

Tevatron (1985-...) pp̄

E~2TeV (2000GeV) 

Why LHC?
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Nothing’s free - QCD dust

• Expect                           ,  who needs 2TeV?

• Proton anti-proton are composite:

mt = 130-200GeV

E2
event = x1x2E2

pp̄

• We don’t know what is ECM .

• We don’t know which particles interacted.

• And ...

• Typical E’s much smaller:

14

Tevatron



Calculating Xsections at the LHC:                     
Parton Distribution Functions (PDFs)

Let’s explore this formally

! 
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= ˆ " ij ˆ s ( ) dxidx j fi(xi) f j (x j )$ ˆ s % xix js( )
0

1

&
0

1

&
ij

'

=
ˆ " ij ˆ s ( )

ˆ s 
dxidx j fi(xi) f j (x j )$ 1% xix j

s

ˆ s 

( 

) 
* 

+ 

, 
- 

0

1

&
0

1

&
ij

'

. =
ˆ s 

s

d" pp# f( )
d.

=
ˆ " ij ˆ s ( )
.

dxidx j f i(xi) f j (x j )$ 1%
xix j

.

( 

) 
* 

+ 

, 
- 

0

1

&
0

1

&
ij

'

d" pp# f( )
d.

=
ˆ " ij ˆ s ( )
.

dxi

.

xi

f i(xi) f j

.

xi

( 

) 
* 

+ 

, 
- 

.

1

&
ij

'

<- to save some writing.

1 &CD AND E+E- ANNIHILATION 

.2 - 

0 I I I I I I / I I 
0 .2 .4 .6 .8 1 

21 
Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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At higher orders, gluon-quark scattering may also contribute,

dσhh′→Q2(s, Q2)

dQ2
=

∑

i,j=f,f̄,G

∫ 1

0
dξdξ′ φi/h(ξ, µ

2)Hij

(

Q2

ξξ′s
,
Q2

µ2
, αs(µ

2)

)

φj/h′(ξ′, µ2) . (122)

As in DIS, the hard-scattering function is a power series in αs(µ2). H depends on the scheme

chosen for the parton distributions. As an example, for Hff̄ , we have, to one loop in DIS scheme

[41],

Hff̄ =
dσ(Born)

ff̄

dQ2

(

δ(1 − z) +
αs

π

{

CF [(1 + z2)(

[

ln(1 − z)

1 − z

]

+

+ 3
[

1

1 − z

]

+

−6 − 4z − ln z) +

(

4π2

3
+ 1

)

δ(1 − z)]
}

)

, (123)

where z = Q2/ξξ′s. Given phenomenological parton distributions in some scheme, the factor-

ization formula gives an absolute prediction for the Drell-Yan cross section, which has been

successfully applied to a wide range of experiments. The corrections in H are not always small,

however, and as we shall see, we sometimes need information about contributions at arbitrarily

high power.

Another application of parton model ideas, extended to perturbative QCD, involves single-

particle inclusive cross sections, which count hadrons at fixed momenta, but are otherwise

inclusive in the hadronic final state,

h(p) + h′(p′) → C(pC) + X . (124)

If the hadron (C) is observed, for instance, at large transverse momentum, we know that a

hard scattering has taken place, and may hope that incoherence and hence factorization is

relevant [46, 47]. In this case, the parton model suggests that the hadron C arises from the

“hadronization”, or fragmentation, of some parton k. The process of hadronization should,

following our discussion of Section 1, occur over time scales that are independent of the hard-

scattering scale, and of the fragmentation of other partons, scattered in other directions. Hadron

C is thus expected to be produced in a universal fashion from parton k, and to inherit a

fraction 0 ≤ z ≤ 1 of that parton’s momentum. The (incoherent) probability for this evolution

is summarized in a “fragmentation function” dC/k(z, µ2), which describes the distribution of

hadrons in the fragments of a parton, and is analogous to the parton distribution φi/h, but

with the roles of hadron and parton reversed. In perturbation theory, d must be renormalized,

and thus it depends on the factorization scale µ. The corresponding factorization formula for

single-particle inclusive cross sections is

ωC
dσhh′→C(pC)(p, p′, pc)

d3pC
=

∑

i,j,k=f,f,G

∫ 1

0
dξdξ′

dz

z2
Hijk

(

µ2

ξξ′s
,
pC · ξp
zµ2

,
pC · ξ′p′

zµ2
, αs(µ
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Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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Physically only pairs of PDF are important
(assuming no p-rapidity or pt cuts)
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�̂(ŝ) Corresponds to the Born/hard/local/short distance Xsection that we 
would like to calculate/measure. 

For instance gg ! t¯t

ŝ = (pt + pt̄)
2 = (pg + pg0)2
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At higher orders, gluon-quark scattering may also contribute,

dσhh′→Q2(s, Q2)

dQ2
=

∑

i,j=f,f̄,G

∫ 1

0
dξdξ′ φi/h(ξ, µ

2)Hij

(

Q2

ξξ′s
,
Q2

µ2
, αs(µ

2)

)

φj/h′(ξ′, µ2) . (122)

As in DIS, the hard-scattering function is a power series in αs(µ2). H depends on the scheme

chosen for the parton distributions. As an example, for Hff̄ , we have, to one loop in DIS scheme

[41],

Hff̄ =
dσ(Born)

ff̄

dQ2

(

δ(1 − z) +
αs

π

{

CF [(1 + z2)(

[

ln(1 − z)

1 − z

]

+

+ 3
[

1

1 − z

]

+

−6 − 4z − ln z) +

(

4π2

3
+ 1

)

δ(1 − z)]
}

)

, (123)

where z = Q2/ξξ′s. Given phenomenological parton distributions in some scheme, the factor-

ization formula gives an absolute prediction for the Drell-Yan cross section, which has been

successfully applied to a wide range of experiments. The corrections in H are not always small,

however, and as we shall see, we sometimes need information about contributions at arbitrarily

high power.

Another application of parton model ideas, extended to perturbative QCD, involves single-

particle inclusive cross sections, which count hadrons at fixed momenta, but are otherwise

inclusive in the hadronic final state,

h(p) + h′(p′) → C(pC) + X . (124)

If the hadron (C) is observed, for instance, at large transverse momentum, we know that a

hard scattering has taken place, and may hope that incoherence and hence factorization is

relevant [46, 47]. In this case, the parton model suggests that the hadron C arises from the

“hadronization”, or fragmentation, of some parton k. The process of hadronization should,

following our discussion of Section 1, occur over time scales that are independent of the hard-

scattering scale, and of the fragmentation of other partons, scattered in other directions. Hadron

C is thus expected to be produced in a universal fashion from parton k, and to inherit a

fraction 0 ≤ z ≤ 1 of that parton’s momentum. The (incoherent) probability for this evolution

is summarized in a “fragmentation function” dC/k(z, µ2), which describes the distribution of

hadrons in the fragments of a parton, and is analogous to the parton distribution φi/h, but

with the roles of hadron and parton reversed. In perturbation theory, d must be renormalized,

and thus it depends on the factorization scale µ. The corresponding factorization formula for

single-particle inclusive cross sections is

ωC
dσhh′→C(pC)(p, p′, pc)

d3pC
=

∑

i,j,k=f,f,G

∫ 1

0
dξdξ′

dz

z2
Hijk

(

µ2

ξξ′s
,
pC · ξp
zµ2

,
pC · ξ′p′

zµ2
, αs(µ

2)

)

×φi/h(ξ, µ
2)φj/h′(ξ′, µ2) dC/k(z, µ

2) . (125)
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To set the scale, x = 0.14 at LHC is 0.14 * 7TeV = 1TeV

=> The LHC is a gluon collider !!!

Sea dominates at low x
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Sea violates 
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(What are they?)

Probability of finding a constituent f with

a longitudinal momentum fraction of x ) ff (x)dx

PDFs are non-perturbative objects.
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At higher orders, gluon-quark scattering may also contribute,
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As in DIS, the hard-scattering function is a power series in αs(µ2). H depends on the scheme

chosen for the parton distributions. As an example, for Hff̄ , we have, to one loop in DIS scheme

[41],
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dσ(Born)
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where z = Q2/ξξ′s. Given phenomenological parton distributions in some scheme, the factor-

ization formula gives an absolute prediction for the Drell-Yan cross section, which has been

successfully applied to a wide range of experiments. The corrections in H are not always small,

however, and as we shall see, we sometimes need information about contributions at arbitrarily

high power.

Another application of parton model ideas, extended to perturbative QCD, involves single-

particle inclusive cross sections, which count hadrons at fixed momenta, but are otherwise

inclusive in the hadronic final state,

h(p) + h′(p′) → C(pC) + X . (124)

If the hadron (C) is observed, for instance, at large transverse momentum, we know that a

hard scattering has taken place, and may hope that incoherence and hence factorization is

relevant [46, 47]. In this case, the parton model suggests that the hadron C arises from the

“hadronization”, or fragmentation, of some parton k. The process of hadronization should,

following our discussion of Section 1, occur over time scales that are independent of the hard-

scattering scale, and of the fragmentation of other partons, scattered in other directions. Hadron

C is thus expected to be produced in a universal fashion from parton k, and to inherit a

fraction 0 ≤ z ≤ 1 of that parton’s momentum. The (incoherent) probability for this evolution

is summarized in a “fragmentation function” dC/k(z, µ2), which describes the distribution of

hadrons in the fragments of a parton, and is analogous to the parton distribution φi/h, but

with the roles of hadron and parton reversed. In perturbation theory, d must be renormalized,

and thus it depends on the factorization scale µ. The corresponding factorization formula for

single-particle inclusive cross sections is
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=
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Calculating Xsections at the LHC:                     
Parton Distribution Functions (PDFs)

Let’s explore this formally
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Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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where z = Q2/ξξ′s. Given phenomenological parton distributions in some scheme, the factor-

ization formula gives an absolute prediction for the Drell-Yan cross section, which has been

successfully applied to a wide range of experiments. The corrections in H are not always small,

however, and as we shall see, we sometimes need information about contributions at arbitrarily

high power.
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particle inclusive cross sections, which count hadrons at fixed momenta, but are otherwise

inclusive in the hadronic final state,

h(p) + h′(p′) → C(pC) + X . (124)

If the hadron (C) is observed, for instance, at large transverse momentum, we know that a

hard scattering has taken place, and may hope that incoherence and hence factorization is

relevant [46, 47]. In this case, the parton model suggests that the hadron C arises from the

“hadronization”, or fragmentation, of some parton k. The process of hadronization should,

following our discussion of Section 1, occur over time scales that are independent of the hard-

scattering scale, and of the fragmentation of other partons, scattered in other directions. Hadron

C is thus expected to be produced in a universal fashion from parton k, and to inherit a

fraction 0 ≤ z ≤ 1 of that parton’s momentum. The (incoherent) probability for this evolution

is summarized in a “fragmentation function” dC/k(z, µ2), which describes the distribution of

hadrons in the fragments of a parton, and is analogous to the parton distribution φi/h, but

with the roles of hadron and parton reversed. In perturbation theory, d must be renormalized,
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Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 

1 &CD AND E+E- ANNIHILATION 

.2 - 

0 I I I I I I / I I 
0 .2 .4 .6 .8 1 

21 
Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 

Physically only pairs of PDF are important
(assuming no p-rapidity or pt cuts)
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�̂(ŝ) Corresponds to the Born/hard/local/short distance Xsection that we 
would like to calculate/measure. 

For instance gg ! t¯t

ŝ = (pt + pt̄)
2 = (pg + pg0)2

18



Summary lecture I: 
Some motivation (SM problems, naturalness); 

How to calculate Xsections @ the LHC;

Parton distribution functions (PDFs) parton 
luminosities.  

19

Mathematica notebook+PDF files that are public, if you are interested in doing the ex.:
https://www.dropbox.com/s/xnr0449ehjndri1/Example_invisibles_LHC.nb?dl=0
https://www.dropbox.com/s/q1mdtbt5qyoj229/Lall14.txt?dl=0
https://www.dropbox.com/s/7j6xelcg7k38m8r/Lall100.txt?dl=0
Homework: 
1. is the electron mass a technical natural parameter? the up mass? neutrino Majorana 
masses? what happened if I will add to the SM a bare fermion mass? (say for the electron)
2. have a file with PDFs and parton luminosities where you can draw the above plots …

https://www.dropbox.com/s/xnr0449ehjndri1/Example_invisibles_LHC.nb?dl=0
https://www.dropbox.com/s/q1mdtbt5qyoj229/Lall14.txt?dl=0
https://www.dropbox.com/s/7j6xelcg7k38m8r/Lall100.txt?dl=0


Beginning of 2nd Lecture

20

• Parton Luminosities (cont’).

• Example, top-pair Xsection calculation.

• Kinematics.
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Let’s explore this formally
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Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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At higher orders, gluon-quark scattering may also contribute,

dσhh′→Q2(s, Q2)

dQ2
=

∑

i,j=f,f̄,G

∫ 1

0
dξdξ′ φi/h(ξ, µ

2)Hij

(

Q2

ξξ′s
,
Q2

µ2
, αs(µ

2)

)

φj/h′(ξ′, µ2) . (122)

As in DIS, the hard-scattering function is a power series in αs(µ2). H depends on the scheme

chosen for the parton distributions. As an example, for Hff̄ , we have, to one loop in DIS scheme

[41],

Hff̄ =
dσ(Born)

ff̄

dQ2

(

δ(1 − z) +
αs

π

{

CF [(1 + z2)(

[

ln(1 − z)

1 − z

]

+

+ 3
[

1

1 − z

]

+

−6 − 4z − ln z) +

(

4π2

3
+ 1

)

δ(1 − z)]
}

)

, (123)

where z = Q2/ξξ′s. Given phenomenological parton distributions in some scheme, the factor-

ization formula gives an absolute prediction for the Drell-Yan cross section, which has been

successfully applied to a wide range of experiments. The corrections in H are not always small,

however, and as we shall see, we sometimes need information about contributions at arbitrarily

high power.

Another application of parton model ideas, extended to perturbative QCD, involves single-

particle inclusive cross sections, which count hadrons at fixed momenta, but are otherwise

inclusive in the hadronic final state,

h(p) + h′(p′) → C(pC) + X . (124)

If the hadron (C) is observed, for instance, at large transverse momentum, we know that a

hard scattering has taken place, and may hope that incoherence and hence factorization is

relevant [46, 47]. In this case, the parton model suggests that the hadron C arises from the

“hadronization”, or fragmentation, of some parton k. The process of hadronization should,

following our discussion of Section 1, occur over time scales that are independent of the hard-

scattering scale, and of the fragmentation of other partons, scattered in other directions. Hadron

C is thus expected to be produced in a universal fashion from parton k, and to inherit a

fraction 0 ≤ z ≤ 1 of that parton’s momentum. The (incoherent) probability for this evolution

is summarized in a “fragmentation function” dC/k(z, µ2), which describes the distribution of

hadrons in the fragments of a parton, and is analogous to the parton distribution φi/h, but

with the roles of hadron and parton reversed. In perturbation theory, d must be renormalized,

and thus it depends on the factorization scale µ. The corresponding factorization formula for

single-particle inclusive cross sections is

ωC
dσhh′→C(pC)(p, p′, pc)

d3pC
=

∑

i,j,k=f,f,G

∫ 1

0
dξdξ′

dz

z2
Hijk
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µ2

ξξ′s
,
pC · ξp
zµ2

,
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zµ2
, αs(µ
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)

×φi/h(ξ, µ
2)φj/h′(ξ′, µ2) dC/k(z, µ

2) . (125)
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Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 

Physically only pairs of PDF are important
(assuming no p-rapidity or pt cuts)
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Let’s explore this formally
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The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 
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where Liz is the dilogarithm function, 
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Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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At higher orders, gluon-quark scattering may also contribute,
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As in DIS, the hard-scattering function is a power series in αs(µ2). H depends on the scheme

chosen for the parton distributions. As an example, for Hff̄ , we have, to one loop in DIS scheme
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where z = Q2/ξξ′s. Given phenomenological parton distributions in some scheme, the factor-

ization formula gives an absolute prediction for the Drell-Yan cross section, which has been

successfully applied to a wide range of experiments. The corrections in H are not always small,

however, and as we shall see, we sometimes need information about contributions at arbitrarily

high power.

Another application of parton model ideas, extended to perturbative QCD, involves single-

particle inclusive cross sections, which count hadrons at fixed momenta, but are otherwise

inclusive in the hadronic final state,

h(p) + h′(p′) → C(pC) + X . (124)

If the hadron (C) is observed, for instance, at large transverse momentum, we know that a

hard scattering has taken place, and may hope that incoherence and hence factorization is

relevant [46, 47]. In this case, the parton model suggests that the hadron C arises from the

“hadronization”, or fragmentation, of some parton k. The process of hadronization should,

following our discussion of Section 1, occur over time scales that are independent of the hard-

scattering scale, and of the fragmentation of other partons, scattered in other directions. Hadron

C is thus expected to be produced in a universal fashion from parton k, and to inherit a

fraction 0 ≤ z ≤ 1 of that parton’s momentum. The (incoherent) probability for this evolution

is summarized in a “fragmentation function” dC/k(z, µ2), which describes the distribution of

hadrons in the fragments of a parton, and is analogous to the parton distribution φi/h, but

with the roles of hadron and parton reversed. In perturbation theory, d must be renormalized,

and thus it depends on the factorization scale µ. The corresponding factorization formula for

single-particle inclusive cross sections is
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Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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At higher orders, gluon-quark scattering may also contribute,

dσhh′→Q2(s, Q2)

dQ2
=

∑

i,j=f,f̄,G

∫ 1

0
dξdξ′ φi/h(ξ, µ

2)Hij

(

Q2

ξξ′s
,
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, αs(µ

2)

)

φj/h′(ξ′, µ2) . (122)

As in DIS, the hard-scattering function is a power series in αs(µ2). H depends on the scheme

chosen for the parton distributions. As an example, for Hff̄ , we have, to one loop in DIS scheme

[41],

Hff̄ =
dσ(Born)

ff̄

dQ2

(

δ(1 − z) +
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(
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δ(1 − z)]
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, (123)

where z = Q2/ξξ′s. Given phenomenological parton distributions in some scheme, the factor-

ization formula gives an absolute prediction for the Drell-Yan cross section, which has been

successfully applied to a wide range of experiments. The corrections in H are not always small,

however, and as we shall see, we sometimes need information about contributions at arbitrarily

high power.

Another application of parton model ideas, extended to perturbative QCD, involves single-

particle inclusive cross sections, which count hadrons at fixed momenta, but are otherwise

inclusive in the hadronic final state,

h(p) + h′(p′) → C(pC) + X . (124)

If the hadron (C) is observed, for instance, at large transverse momentum, we know that a

hard scattering has taken place, and may hope that incoherence and hence factorization is

relevant [46, 47]. In this case, the parton model suggests that the hadron C arises from the

“hadronization”, or fragmentation, of some parton k. The process of hadronization should,

following our discussion of Section 1, occur over time scales that are independent of the hard-

scattering scale, and of the fragmentation of other partons, scattered in other directions. Hadron

C is thus expected to be produced in a universal fashion from parton k, and to inherit a

fraction 0 ≤ z ≤ 1 of that parton’s momentum. The (incoherent) probability for this evolution

is summarized in a “fragmentation function” dC/k(z, µ2), which describes the distribution of

hadrons in the fragments of a parton, and is analogous to the parton distribution φi/h, but

with the roles of hadron and parton reversed. In perturbation theory, d must be renormalized,

and thus it depends on the factorization scale µ. The corresponding factorization formula for

single-particle inclusive cross sections is
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Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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Parton luminosity & cross section scaling 
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At higher orders, gluon-quark scattering may also contribute,
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As in DIS, the hard-scattering function is a power series in αs(µ2). H depends on the scheme

chosen for the parton distributions. As an example, for Hff̄ , we have, to one loop in DIS scheme

[41],
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where z = Q2/ξξ′s. Given phenomenological parton distributions in some scheme, the factor-

ization formula gives an absolute prediction for the Drell-Yan cross section, which has been

successfully applied to a wide range of experiments. The corrections in H are not always small,

however, and as we shall see, we sometimes need information about contributions at arbitrarily

high power.
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particle inclusive cross sections, which count hadrons at fixed momenta, but are otherwise

inclusive in the hadronic final state,

h(p) + h′(p′) → C(pC) + X . (124)

If the hadron (C) is observed, for instance, at large transverse momentum, we know that a

hard scattering has taken place, and may hope that incoherence and hence factorization is

relevant [46, 47]. In this case, the parton model suggests that the hadron C arises from the

“hadronization”, or fragmentation, of some parton k. The process of hadronization should,

following our discussion of Section 1, occur over time scales that are independent of the hard-

scattering scale, and of the fragmentation of other partons, scattered in other directions. Hadron

C is thus expected to be produced in a universal fashion from parton k, and to inherit a

fraction 0 ≤ z ≤ 1 of that parton’s momentum. The (incoherent) probability for this evolution

is summarized in a “fragmentation function” dC/k(z, µ2), which describes the distribution of

hadrons in the fragments of a parton, and is analogous to the parton distribution φi/h, but

with the roles of hadron and parton reversed. In perturbation theory, d must be renormalized,

and thus it depends on the factorization scale µ. The corresponding factorization formula for

single-particle inclusive cross sections is

ωC
dσhh′→C(pC)(p, p′, pc)

d3pC
=

∑

i,j,k=f,f,G

∫ 1

0
dξdξ′

dz

z2
Hijk

(

µ2

ξξ′s
,
pC · ξp
zµ2

,
pC · ξ′p′

zµ2
, αs(µ

2)

)

×φi/h(ξ, µ
2)φj/h′(ξ′, µ2) dC/k(z, µ

2) . (125)

45

1 &CD AND E+E- ANNIHILATION 

.2 - 

0 I I I I I I / I I 
0 .2 .4 .6 .8 1 

21 
Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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dσ(Born)

ff̄

dQ2

(

δ(1 − z) +
αs

π

{

CF [(1 + z2)(

[

ln(1 − z)

1 − z

]

+

+ 3
[

1

1 − z

]

+

−6 − 4z − ln z) +

(

4π2

3
+ 1

)

δ(1 − z)]
}

)

, (123)

where z = Q2/ξξ′s. Given phenomenological parton distributions in some scheme, the factor-

ization formula gives an absolute prediction for the Drell-Yan cross section, which has been

successfully applied to a wide range of experiments. The corrections in H are not always small,

however, and as we shall see, we sometimes need information about contributions at arbitrarily

high power.

Another application of parton model ideas, extended to perturbative QCD, involves single-

particle inclusive cross sections, which count hadrons at fixed momenta, but are otherwise

inclusive in the hadronic final state,

h(p) + h′(p′) → C(pC) + X . (124)

If the hadron (C) is observed, for instance, at large transverse momentum, we know that a

hard scattering has taken place, and may hope that incoherence and hence factorization is

relevant [46, 47]. In this case, the parton model suggests that the hadron C arises from the

“hadronization”, or fragmentation, of some parton k. The process of hadronization should,

following our discussion of Section 1, occur over time scales that are independent of the hard-

scattering scale, and of the fragmentation of other partons, scattered in other directions. Hadron

C is thus expected to be produced in a universal fashion from parton k, and to inherit a

fraction 0 ≤ z ≤ 1 of that parton’s momentum. The (incoherent) probability for this evolution

is summarized in a “fragmentation function” dC/k(z, µ2), which describes the distribution of

hadrons in the fragments of a parton, and is analogous to the parton distribution φi/h, but

with the roles of hadron and parton reversed. In perturbation theory, d must be renormalized,

and thus it depends on the factorization scale µ. The corresponding factorization formula for

single-particle inclusive cross sections is
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Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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At higher orders, gluon-quark scattering may also contribute,
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As in DIS, the hard-scattering function is a power series in αs(µ2). H depends on the scheme

chosen for the parton distributions. As an example, for Hff̄ , we have, to one loop in DIS scheme

[41],

Hff̄ =
dσ(Born)
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where z = Q2/ξξ′s. Given phenomenological parton distributions in some scheme, the factor-

ization formula gives an absolute prediction for the Drell-Yan cross section, which has been

successfully applied to a wide range of experiments. The corrections in H are not always small,

however, and as we shall see, we sometimes need information about contributions at arbitrarily

high power.

Another application of parton model ideas, extended to perturbative QCD, involves single-

particle inclusive cross sections, which count hadrons at fixed momenta, but are otherwise

inclusive in the hadronic final state,

h(p) + h′(p′) → C(pC) + X . (124)

If the hadron (C) is observed, for instance, at large transverse momentum, we know that a

hard scattering has taken place, and may hope that incoherence and hence factorization is

relevant [46, 47]. In this case, the parton model suggests that the hadron C arises from the

“hadronization”, or fragmentation, of some parton k. The process of hadronization should,

following our discussion of Section 1, occur over time scales that are independent of the hard-

scattering scale, and of the fragmentation of other partons, scattered in other directions. Hadron

C is thus expected to be produced in a universal fashion from parton k, and to inherit a

fraction 0 ≤ z ≤ 1 of that parton’s momentum. The (incoherent) probability for this evolution

is summarized in a “fragmentation function” dC/k(z, µ2), which describes the distribution of

hadrons in the fragments of a parton, and is analogous to the parton distribution φi/h, but

with the roles of hadron and parton reversed. In perturbation theory, d must be renormalized,

and thus it depends on the factorization scale µ. The corresponding factorization formula for

single-particle inclusive cross sections is
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=
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Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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ization formula gives an absolute prediction for the Drell-Yan cross section, which has been

successfully applied to a wide range of experiments. The corrections in H are not always small,

however, and as we shall see, we sometimes need information about contributions at arbitrarily

high power.
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particle inclusive cross sections, which count hadrons at fixed momenta, but are otherwise

inclusive in the hadronic final state,
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hard scattering has taken place, and may hope that incoherence and hence factorization is
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“hadronization”, or fragmentation, of some parton k. The process of hadronization should,

following our discussion of Section 1, occur over time scales that are independent of the hard-

scattering scale, and of the fragmentation of other partons, scattered in other directions. Hadron

C is thus expected to be produced in a universal fashion from parton k, and to inherit a

fraction 0 ≤ z ≤ 1 of that parton’s momentum. The (incoherent) probability for this evolution

is summarized in a “fragmentation function” dC/k(z, µ2), which describes the distribution of

hadrons in the fragments of a parton, and is analogous to the parton distribution φi/h, but

with the roles of hadron and parton reversed. In perturbation theory, d must be renormalized,

and thus it depends on the factorization scale µ. The corresponding factorization formula for
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Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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At 1032cm-2s-1 CMS might accumulate 10pb-1 in one day!

… and SUSY might not exist in nature.
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Collider Reach

Assuming similar scaling for background & signal => same number of events:

40% improvement, for the jump to 13/14 TeV for same Lumi and another 60% for 300 inv fb;
 consequently, overall roughly increase of 2-2.5 in reach.

But, many searches will enter the boosted regime => qualitative change of physics!
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The gluon luminosity function at LHC14
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The luminosity functions are rapidly falling

MSTW-PDF running factorisation scale as Q2
= ŝ = ⌧s = ⌧ ⇥ 14
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�̂tt̄(ŝ = ⌧s)

⌧

dLgg

d⌧
⌧min = (2mt/14TeV)2

4.1



32

Generically, cross section falls even faster!

MSTW-PDF running factorisation scale as Q2
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Generically, cross section falls even faster!

MSTW-PDF running factorisation scale as Q2
= ŝ = ⌧s = ⌧ ⇥ 14
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Back to estimating LHC cross section

What are the implications for this rapid fall?

Massive particles (h,W,Z,t, squarks, KK gluon …) are produced near 
threshold.

Any dimensional cut (in the transverse direction),                                           
mxx, pT, missing ET, HT , implies that the signal and background           
distributions would peak right where the cut is located.

Maybe we can use this fact for a quick & rough estimation of the top pair 
Xsection? 
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Rough estimation for the LHC cross section step 1:

Replacing the integral with differential

Let’s replace the integral with differential:
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Rough NDA estimation for the cross section step 1.1:           
Replacing the Born Xsection with its NDA value
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�̂gg!tt̄ =
⇡↵2

s�
48ŝ
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Rough estimation for the LHC cross section step 1:!

Replacing the integral with differential

Let’s replace the integral with differential:!
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Rough estimation for the LHC cross section step 1:!

Replacing the integral with differential
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And the results are:

In[186]:= GeV2pb = 0.389 10^9 pb; 
mt = 173.1; 
βt[shat_] := Sqrt[1 - 4 mt^2/shat] 
αs = 0.11; 
σggtt[τ_] := (π αs^2 βt[τ s14])/( 
  48 τ s14) (31 βt[τ s14]^2 + (33/βt[τ s14] - 18 βt[τ s14] + βt[τ s14]^3) Log[(1 + βt[τ s14])/(1 - βt[τ s14])] - 59) 
In[191]:= NIntegrate[dLdtaugg14Num[τp] σggtt[τp], {τp, (2 mt)^2/s14, 1}] GeV2pb  
Out[191]= 398.687 pb  
In[232]:= dLdtaugg14Num[4/3 (2 mt)^2/s14] σggtt[4/3 (2 mt)^2/s14] 4/3 (2 mt)^2/ 
  s14 GeV2pb  
Out[232]= 354.212 pb  
In[233]:= dLdtaugg14Num[4/3 (2 mt)^2/s14] ( αs^2/(4/3 (2 mt)^2)) 4/3 (2 mt)^2/s14 GeV2pb  
Out[233]= 940.538 pb

Precise

LO
: �p(g)p(g)!tt̄
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= 354.212 pb
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= 940.538 pb
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Rough NDA estimation for the cross section step 1.1:           
Replacing the Born Xsection with its NDA value

NDA for 2->2 Xsection (far from threshold):  !
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Rough estimation for the LHC cross section step 1:!

Replacing the integral with differential

Let’s replace the integral with differential:!
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 Xsection @ LHC14, compare with state of the art:

Precise

LO
: �p(g)p(g)!tt̄

=

R 1

⌧min
d⌧ �̂tt̄(ŝ=⌧s)

⌧
dLgg

d⌧ = 398.687 pb

Approx’ luminosities: �⌧ �̂tt̄(⌧s)
⌧

dLgg

d⌧ |⌧! 4
3 ⌧min

= 354.212 pb

”NDA”: �⌧
↵2
s

⌧s
⌧

dLgg

d⌧ |⌧! 4
3 ⌧min

= 940.538 pb

Theory: Xsection (Tevatron, LHC) now known to NNLO (+NNLL resum’)

Bärnreuther, Czakon & Mitov; Czakon & Mitov x2 (12); 
Czakon, Fiedler & Mitov (13).

tt̄

Best prediction at NNLO+NNLL 

Mitov, CERN, 4/13
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Consider for example LHC top pair production
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Rough NDA estimation for the cross section step 1.1:           
Replacing the Born Xsection with its NDA value

NDA for 2->2 Xsection (far from threshold):  !

!
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ŝ

�p(g)p(g)!tt̄ =
R 1
⌧min

d⌧ �̂tt̄(ŝ=⌧s)
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Rough estimation for the LHC cross section step 1:!

Replacing the integral with differential
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LHC, longitudinal vs. transverse 

Relativistic invariant phase-space element:
dτ = d3p/E = dpxdpydpz/E
Define pp collision axis along z-axis:  
From pµ = (E, px, py, pz) – which are invariant under boosts along z?
the two longitudinal components: E and pz are NOT invariant the two transverse 
components: px and py (and dpx, dpy) ARE invariant

Need all variables invariant for boost along z-axis:
For convenience, define pµ with only 1 component not Lorentz 
invariant Choose pT, m, φ as the “transverse” (invariant) coordinates
where pT ≡ psin(θ) and φ is the azimuthal angle  
As 4th coordinate define “rapidity”: y = 1/2 ln [(E+pZ)/(E-pZ)]



41

Rapidity

Form a boost of velocity β along z axis
pz ⇒ γ(pz + βE)

E  ⇒ γ(E+ βpz)

Transform rapidity ⇒

Boosts along the beam axis change y by a constant, yb :
(pT,y,φ,m) ⇒ (pT,y+yb,φ,m)  with y ⇒ y + yb ,  yb ≡ ln γ(1+β)           
rapidity is simply additive

Boosts Along beam-axis

5
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Measure

Boosts along the beam axis change y by a constant, yb :
 y -> y+yb   => rapidity is simply additive.

Can change coordinate from:

dx1dx2 to dyd⌧ , with identity Jacobian.

LHC: q1 = 1⁄2√s (x1,0,0,x1) q2 = 1⁄2√s (x2,0,0,-x2)

Rapidity of system q1+q2 is: y = 1⁄2 ln[(E+pz)/(E-pz)] = 1⁄2 ln(x1/x2)
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The relation between y, β and θ can be seen using pZ = pcosθ and p = βE:
     1     (E+pZ)     1      (1+βcosθ)   
y = —·ln ————— = —·ln ———————  
     2     (E-pZ)     2      (1-βcosθ)

This expression can almost associate the position in the detector (θ) with the 
rapidity y, apart from the β terms.
However, at the LHC (and Tevatron, HERA), ≳90% of the particles in the 
detector are pions with β≈1. Therefore we can introduce the “pseudorapidity” 
defined as η = y(θ) for β=1:

     1      (1+cosθ)       cos(θ/2)              θ
η = —·ln —————— = ln —————— = -ln (tan — )  
     2      (1-cosθ)       sin(θ/2)              2

“Pseudo” and “Real” rapidity

cos2θ/2 = ½·(1+cosθ)
sin2θ/2  = ½·(1-cosθ)

The pseudorapidity η is a good approximation 
of the true relativistic rapidity y when a 
particle is “relativistic”.
It is a handy variable to approximate the 
rapidity y if the mass and the momentum of a 
particle are not known.

14



Summary lecture II: 
How to calculate Xsections @ the LHC;

Parton luminosities;

Some kinematics  
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Homework: 
1. How much gain in mass-reach will be achieved moving from 300/fb to HL 3000/fb?
2. Repeat for a 100TeV machine. What searches would benefit more from a HL upgrade?
3. How many tops where produced at the Tevatron? What was the dominant production 
mechanism?
4. Top-partners (appears in Little/Composite Higgs models), are heavy vector-like quarks;
what is the bound on their masses such that, so far, < 10 events have been produced at the 
LHC run I?



Lecture III: 
(Higgs) Resonance production @ LHC; 

The EFT region;

Intro to Jets

45



Resonance based searches
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Resonance based searches
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Because of the large QCD uncertainties, it is much 
easier to search for bumps over continuous 
distribution, then to look for small depletions … 



Consider a particle H with a width and mass: 



Resonances distribution described via Bright-Wigner


formula 

3.4 The gluon–gluon fusion mechanism

3.4.1 The production cross section at LO

Higgs production in the gluon–gluon fusion mechanism is mediated by triangular loops of

heavy quarks. In the SM, only the top quark and, to a lesser extent, the bottom quark

will contribute to the amplitude. The decreasing Hgg form factor with rising loop mass is

counterbalanced by the linear growth of the Higgs coupling with the quark mass. In this

section we discuss the analytical features of the process. The relevant phenomenological

aspects at the LHC [242,315,352–357] and the Tevatron [358–360] will be presented in §3.7.

To lowest order, the partonic cross section can be expressed by the gluonic width of the

Higgs boson discussed in §2.3.3,

σ̂LO(gg → H) = σH
0 M2

H δ(ŝ − M2
H) =

π2

8MH
ΓLO(H → gg) δ(ŝ− M2

H) (3.55)

where ŝ is the gg invariant energy squared. Substituting in this LO approximation the

Breit–Wigner form of the Higgs boson width, in place of the zero–width δ distribution

δ(ŝ − M2
H) →

1

π

ŝΓH/MH

(ŝ − M2
H)2 + (ŝΓH/MH)2

(3.56)

recalling the lowest–order two–gluon decay width of the Higgs boson, one finds for the cross

section [185]

σH
0 =

Gµα2
s(µ

2
R)

288
√

2π

∣∣∣∣∣
3

4

∑

q

AH
1/2(τQ)

∣∣∣∣∣

2

(3.57)

The form factor AH
1/2(τQ) with τQ = M2

H/4m2
Q is given in eq. (2.46) and is normalized such

that for mQ ≫ MH , it reaches 4
3 while it approaches zero in the chiral limit mQ → 0.

The proton–proton cross section at LO in the narrow–width approximation reads

σLO(pp → H) = σH
0 τH

dLgg

dτH
with

dLgg

dτ
=

∫ 1

τ

dx

x
g(x, µ2

F )g(τ/x, µ2
F ) (3.58)

where the Drell–Yan variable is defined as usual by τH = M2
H/s with s being the invari-

ant collider energy squared. The expression of the luminosity τHdLgg/dτH is only mildly

divergent for τH → 0.

The total hadronic cross sections at LO are shown in Fig. 3.18 as a function of the

Higgs boson mass for the LHC and the Tevatron energies. We have chosen mt = 178 GeV,

mb = 4.88 GeV and αs(MZ) = 0.13 as inputs and used the CTEQ parametrization for the

parton densities. For the Tevatron, the cross section is monotonically decreasing with the

Higgs boson mass, starting slightly below 1 pb for MH ∼ 100 GeV and reaching σ ∼ 0.01 pb

for MH ∼ 300 GeV. At the LHC, the cross section is two orders of magnitude larger, being
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�H and mH .



Resonance based searches
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Let us suppose that the particle is narrow: 



�H ⌧ mH .

(in many cases also, the LHC-exp’ resolution is poor …)
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H δ(ŝ − M2
H) =

π2

8MH
ΓLO(H → gg) δ(ŝ− M2
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where ŝ is the gg invariant energy squared. Substituting in this LO approximation the

Breit–Wigner form of the Higgs boson width, in place of the zero–width δ distribution
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Resonance based estimation & scaling
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�(pp ! H) ⇡
R
d⌧ dL

d⌧ �̂(H ! gg) ⇡
R
d⌧ dL

d⌧
⇡2

8MH
�(H ! gg)�(ŝ�M2

H)

=
R
d⌧ dL

d⌧
⇡2

8MHs�(H ! gg)�(⌧ �M2
H/s) = dL

d⌧

��
⌧=

M2
H
s

⇥ ⇡2�(H!gg)
8MHs

The difference from the non-resonance scaling:


1/mass as opposed to 1/mass2.


Final results are similar. 


For bounds => background dominated =>


scaling unchanged.  



Resonance based estimation, the Higgs
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�(pp ! H) ⇡
R
d⌧ dL

d⌧ �̂(H ! gg) ⇡
R
d⌧ dL

d⌧
⇡2

8MH
�(H ! gg)�(ŝ�M2

H)

=
R
d⌧ dL

d⌧
⇡2

8MHs�(H ! gg)�(⌧ �M2
H/s) = dL

d⌧

��
⌧=

M2
H
s

⇥ ⇡2�(H!gg)
8MHs

The example is Higgs. It is super narrow


its width is roughly 4 MeV. 

Why is the Higgs so narrow? calculate its width? 
assume that the bottom’s yield 50% of it for simplicity;
with: �scalar =

X

i

g2fim
2
H/8⇡

�
�H/MH ⇠ 10�5

�



Higgs on-shell cross section (0th order)
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Ex.: calculate the above for 14 and 100 TeV.
(I got ~ 30pb using my code, correct answer is 50pb, large NLO/kfactor correction)

�(pp ! H) =
dL
d⌧

����
⌧=

M2
H
s

⇥ ⇡2�(H ! gg)

8MHs

, �h!gg = �h ⇥BR(h ! gg) ~ 0.3 MeV
4MeV       9%



Higgs on-shell cross section, EFT+NDA
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rate is given by

�(h ! gg) =
GF↵

2
sm

3
h

36
p
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This rate is dominated by the top loop and the bottom loop is around 5% correction
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where we use mb ⇡ 2.8GeV at the Higgs mass. The other quarks contributions are chiral
suppressed and can be neglected.

5 The gluon fusion production

The partonic level cross section can be evaluated from the partial width �(h ! gg)
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with ⌧ = ŝ/s, g(x) is the gluon luminosity function. Note that the k-factor for this process is
large more than 2.

A The top loop

The top triangle loop amplitude in h ! �� process (the modification for h(p) ! g(k1)g(k2) is
trivial) is given by
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We can indeed check that this form ~ 9% of the Higgs decays:

Simplified h ! gg and h ! ��

Israel Israeli1

1University of Life, HaPishpeshim Market, Ja↵a

June 7, 2015

1 Introduction

In this short note we look on h ! ��, h ! gg and on gg ! h . The main reference is [1]:
Sections 2.3.1 and 3.4.

Both processes h ! �� and h ! gg are loop induces and share some common stu↵. By
dimensional analysis we can understand that these loops are finite as follows. In terms of the
full SM gauge group invariant, the amplitudes can be written as

Mh!�� =
↵

4⇡v2
f�
LpH

†HF µ⌫Fµ⌫ , Mh!gg =
↵s

4⇡v2
f g
LpH

†HGµ⌫ aGa
µ⌫ . (1)

Since the above operators are dimension six there is no corresponding counter term and the loops
are finite. Moreover, the only scale that we use to suppressed is the EW scale - v ' 246GeV.
The gauge couplings originates from the couplings to two gauge fields and f

�/g
Lp are the loop

functions. From this NDA analysis the ratio of branching ratio can be approximate as

BR(h ! ��)

BR(h ! gg)
⇠ ↵2

↵2
s

⇠ 10�2 , (2)

where the correct results for mh = 125GeV is 2.28 ⇥ 10�3/8.57 ⇥ 10�2 ⇡ 0.027 [2] because
the loop factors are non trivial here, see below. In addition we can estimate the Higgs mass
dependence of the rates from NDA as follows. The amplitude scales as 1/v, therefore the rate
scales as 1/v2, and in order to get the right dimension for the rate (mass dim.) we compensate
by m3

h, such that � / m3
h/v

2 .
In Appenxdix A we give the general lines how to calculate the top loop.

2 Loop Functions

The loop function [1]1 for fermions and scalars are

AH
1/2(⌧) = 2⌧ [1 + (1� ⌧)f(⌧)] , (3)

AH
1 (⌧) = �2� 3⌧ + 3⌧(⌧ � 2)f(⌧) , (4)

where
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� i⇡
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p
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. (5)

1Here we define ⌧ as 1/⌧ of [1]

1

The amplitude scales as 1/v, therefore the rate scales as 1/v2, 

in order to get the right dimension for the rate (mass dim.) 

we compensate by m3h, such that Γ ∝ m3h/v2 . 

↵2
sm

3
h
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Often heavy & narrow resonances tends to “broaden” 
because of competition with off-shell production 
that are strongly supported by the rapidly falling 
PDFs.



eventually, it is not useful anymore to search for them 
but to look at their virtual contributions.
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Figure 3: Results for (a) 1+1 and (b) 1+2 event selections and background estimates. The yellow
(light) histograms are the non-top multijet (NTMJ) estimates from data, as described in the
text, and the red (dark) histograms are the MC estimates from SM tt production. The black
points are the data. The hatched gray boxes combine the statistical and systematic uncertainties
on the total background. For comparison, expectations for some Z0 hypotheses are shown
for the assumption of 1% resonance width, with cross sections taken from the expected limits
discussed in Sec. 5.1.
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Let us take as an example a narrow Z’               top-pair narrow resonance  
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FIG. 2. Dielectron (top) and dimuon (bottom) invariant
mass (mℓℓ) distributions after event selection, with two se-
lected Z′

SSM signals overlaid, compared to the stacked sum
of all expected backgrounds, and the ratios of data to back-
ground expectation. The bin width is constant in logmℓℓ.
The green band in the ratio plot shows the systematic uncer-
tainties described in Sec. IX.

correlations across bins, as well as the correlations be-
tween signal and background, are taken into account.

XII. MODEL INTERPRETATION AND
RESULTS

As no evidence for a signal is observed, limits are set in
the context of the physics models introduced in Sec. II.
For all but the Minimal Z ′ Models, limits are set on σB
versus the resonance mass. The predicted σB is used
to derive limits on the resonance mass for each model.
Table VI lists the predicted σB values for a few reso-
nance masses and model parameters. In the case of the
Minimal Z ′ Models, limits are set on the effective cou-
plings as a function of the resonance mass to incorporate
interference effects of the Z ′ signal with the Drell–Yan
background.
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 ll→ SSMZ’
 = 8 TeVs

-1 L dt = 20.3 fb∫ee: 

-1 L dt = 20.5 fb∫: µµ

FIG. 3. Median expected (dashed line) and observed (solid
red line) 95% CL upper limits on cross-section times branch-
ing ratio (σB) in the combined dilepton channel, along with
predicted σB for Z′

SSM production. The inner and outer
bands show the range in which the limit is expected to lie
in 68% and 95% of pseudo-experiments, respectively. The
thickness of the Z′

SSM theory curve represents the theoretical
uncertainty from the PDF error set and αS , as well as the
choice of PDF.

A. Limits on narrow spin-1 Z
′

SSM, E6 Z
′ and Z

∗

bosons

For the Z ′
SSM, E6-motivated Z ′ and Z∗ bosons, the

model specifies the boson’s coupling strength to SM
fermions and therefore the intrinsic width. The param-
eter of interest in the likelihood analysis is therefore σB
as a function of the new boson’s mass.
Figure 3 presents the expected and observed exclusion

limits on σB at 95% CL for the combined dielectron and
dimuon channels for the Z ′

SSM search. The observed limit
is within the ±2σ band of expected limits for all MZ′ .

TABLE VI. Values of σB for the different models. The model
parameter M corresponds to the mass of the Z′, Z′

χ, Z
′
ψ, Z

∗

and G∗ boson. For the QBH models, M = Mth corresponds
to the threshold mass, while for the MWT model M = MR1

.
The value M = 3 TeV is not applicable for the MWT model,
as the range of the limits is up to 2.25 TeV.

σB [fb]
Model M = 1 TeV M = 2 TeV M = 3 TeV
Z′

SSM 170 3.4 0.21
Z′
χ 93 1.5 0.062

Z′
ψ 47 0.87 0.032

Z∗ 300 4.0 0.076
G∗, k/M Pl=0.1 190 1.8 0.044
RS QBH 56 0.40 0.0065
ADD QBH 11000 96 1.8
MWT, g̃ = 2 31 0.17 n/a

Search for high-mass dilepton resonances with the ATLAS detector, 1405.4123v2 . 
”
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Let us take as an example a narrow Z’.
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and G∗ boson. For the QBH models, M = Mth corresponds
to the threshold mass, while for the MWT model M = MR1

.
The value M = 3 TeV is not applicable for the MWT model,
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line) 95% CL upper limits on cross-section times branching
ratio (σB) for Z′

SSM production for the exclusive dimuon and
dielectron channels, and for both channels combined. The
width of the Z′

SSM theory band represents the theoretical un-
certainty from the PDF error set, the choice of PDF as well
as αS .

Figure 3 also contains the Z ′
SSM theory band for σB. Its

width represents the theoretical uncertainty, taking into
account the following sources: the PDF error set, the
choice of PDF, and αS . The value of MZ′ at which the
theory curve and the observed (expected) 95% CL limits
on σB intersect is interpreted as the observed (expected)
mass limit for the Z ′

SSMboson, and corresponds to 2.90
(2.87) TeV.

A comparison of the combined limits on σB and those
for the exclusive dielectron and dimuon channel is given
in Figure 4. This demonstrates the contribution of each
channel to the combined limit. As expected from Fig. 1,
the larger values for A×ϵ in addition to the better resolu-
tion in the dielectron channel results in a stronger limit
than in the dimuon channel. The observed (expected)
Z ′
SSM mass limit is 2.79 (2.76) TeV in the dielectron chan-

nel, and 2.53 (2.53) TeV in the dimuon channel.

Figure 5 shows the observed σB exclusion limits at
95% CL for the Z ′

SSM, Z ′
χ, Z

′
ψ and Z∗ signal searches.

Here only observed limits are shown, as they are always
very similar to the expected limits (see Fig. 4). The the-
oretical σB of the boson for the Z ′

SSM, two E6-motivated
Models and Z∗ are also displayed. The 95% CL limits on
σB are used to set mass limits for each of the considered
models. Mass limits obtained for the Z ′

SSM, E6-motivated
Z ′ and Z∗ bosons are displayed in Table VII.

As demonstrated in Fig. 5, for lower values of MZ′ the
limit is driven primarily by the width of the signal and
gets stronger with decreasing width. At large MZ′ , the
σB limit for a given Z ′ model worsens with increasing
mass. This weakening of the limit is due to the pres-
ence of the parton-luminosity tail in the mℓℓ line shape.
The magnitude of this degradation is proportional to the
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FIG. 5. Observed upper cross-section times branching ra-
tio (σB) limits at 95% CL for Z′

SSM, E6-motivated Z′ and Z∗

bosons using the combined dilepton channel. In addition, the-
oretical cross-sections on σB are shown for the same models.
The stars indicate the lower mass limits for each considered
model. The width of the Z′

SSM band represents the theoret-
ical uncertainty from the PDF error set, the choice of PDF
as well as αS. The width of the Z′

SSM band applies to the
E6-motivated Z′ curves as well.

size of the low-mass tail of the signal due to much higher
background levels at low mℓℓ compared to high mℓℓ. All
Z ′ models exhibit a parton-luminosity tail, the size of
which increases with increasing natural width of the Z ′

resonance. The tail is most pronounced for Z ′
SSM, and

least for Z ′
ψ, in line with the different widths given in

Table VII. Even though the width of the Z∗ is similar to
the width of the Z ′

SSM, the tensor form of the coupling of
the Z∗ to fermions strongly suppresses parton luminosity
effects. Limits on σB for the Z∗ interpretation therefore
do not worsen with increasing invariant mass. Quantita-
tively, the observed Z ′

SSM mass limit would increase from
2.90 TeV to 2.95 TeV and 3.08 TeV, if the Z ′

χ and Z ′
ψ bo-

son signal templates, with smaller widths, were used. If
the Z∗ boson template with negligible parton-luminosity
tail but similar width were used instead of the Z ′

SSM tem-
plate, the observed limit would increase to 3.20 TeV.

TABLE VII. Observed and expected lower mass limits for Z′

and Z∗ bosons, using the corresponding signal template for a
given model.

Model Width Observed Limit Expected Limit
[%] [TeV] [TeV]

Z′
SSM 3.0 2.90 2.87
Z′
χ 1.2 2.62 2.60

Z′
ψ 0.5 2.51 2.46

Z∗ 3.4 2.85 2.82

“For dielectron masses above 200 GeV, 

the mass resolution is below 2% over the entire η range. 
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EFT lectures (Kaplan):
This happens all the time — but in field theory it is complicated!!!

→
small

momentum

W and Z exchange
weak interactions

→
loop

momentum

CP Violation
second order

weak interactions

→
loop

momentum

light by light
scattering

How can this MATCHING possibly work??? Convergent versus divergent
diagrams? Counterterms? IR divergences???

16

Z’ e

e

u

u

e

e

u

u
, guūgeē

2M2
Z0

ū�µu⇥ ē�µe

Neglecting interference, NDA, how should the cross section go like?  
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EFT lectures (Kaplan):
This happens all the time — but in field theory it is complicated!!!

→
small

momentum

W and Z exchange
weak interactions

→
loop

momentum

CP Violation
second order

weak interactions

→
loop

momentum

light by light
scattering

How can this MATCHING possibly work??? Convergent versus divergent
diagrams? Counterterms? IR divergences???

16

Z’ e

e

u

u

e

e

u

u
, guūgeē

2M2
Z0

ū�µu⇥ ē�µe

Non interfering, NDA:  �̂LO ⇡ |guūgeē|2
Ê2

4M4
Z0

EFT contributions rising with center of mass energy2 !
What is the corresponding scaling in the interference case?
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�̂LO ⇡ |guūgeē|2
Ê2

4M4
Z0

EFT contributions rising with center of mass energy2 !
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10 4 Systematic uncertainties
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Figure 3: Results for (a) 1+1 and (b) 1+2 event selections and background estimates. The yellow
(light) histograms are the non-top multijet (NTMJ) estimates from data, as described in the
text, and the red (dark) histograms are the MC estimates from SM tt production. The black
points are the data. The hatched gray boxes combine the statistical and systematic uncertainties
on the total background. For comparison, expectations for some Z0 hypotheses are shown
for the assumption of 1% resonance width, with cross sections taken from the expected limits
discussed in Sec. 5.1.

�̂LO ⇡ |guūgeē|2
Ê2

4M4
Z0

EFT, rising with COM energy2, leads to IR-resonance broadening.
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Tops and jets
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Tops decay almost instantly.

Thus at the LHC we identify tops via their decay products:

Unfortunately, isolated gluons/quarks are not gauge invariant
objects, they are not observables, in real events we “see” jets.  



But what are jets??
Intuitive definition: spray of particles moving in the same 
direction.

More precise: Objects that describe differential energy 
flow that are sensitive to microscopic (perturbative) 
dynamics & insensitive to long distance (non-perturbative) 
physics.

However, before going differentially, begin \w inclusive case. 
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Lecture III summary: 
(Higgs) Resonance production @ LHC; 

The EFT region;

Intro to Jets (ratio of had’/lepton in lepton 
collider, at NLO)

64

Homework: 
Why is the Higgs narrow? 
Calculate the Higgs width from the decay to bottoms, then using the amplitude given, verify that the gluon final state BR is ~9%.
Using the PDF calculate the Higgs production Xsec’ using the narrow width approx.
What is the corresponding (to EFT w 4fermions) scaling in the interference case?
Show that: s(1� x1) = m2g



Lecture IV: 
Jets, cont’;

Definitions, Sterman-Weinberg, Jade;

The kt variety;

Boosted-massive-jets, jet substructure

65



Intro’: e+e� ! quarks

Far below the Z pole:

1 &CD AND E+E- ANNIHILATION 27 

where 

Xl(S) = K 
s(s - Ml) 

(s - kg)2 + I$bf; 

x2(5-) = kc2 
(s - At;)2 + rgf; 

K = yEas; 

Here GF is the Fermi constant, a is the electromagnetic coupling, Mr and Ts are 
the mass and total decay width of the Z boson respectively. The vector and axial 
couplings of the fermions to the Z are 

vf = Is/ - 2Q, sin2 Bw, af = 13f , WI 

with 131 = +i for f = Y, u, . and I3/ = -4 for f = e, d, The x2 term comes 
from the square of the Z-exchange amplitude and the x1 term from the photon-Z 
interference. At centre-of-mass scattering energies (,,6) far below the Z peak, the 
ratio s/i@ is small and so 1 > x1 > ~2. This means that the weak effects - 
manifest in the terms involving the vector and axial couplings - are small and can 
be neglected. Eq. (95) then reduces to 

da -= 
dcos0 %(1+ cos2,). 

Integrating over 0 gives the total cross section, 

(98) 

On the Z pole, ,I% = Ms, the ~2 term in (95) dominates and the corresponding 
(peak) cross section is 

00 = 12gK2 (UT + v,‘)($ + vj) 

We next introduce the ratio R of the the total e+e- hadronic cross section to the 
muon pair production cross section. As we have seen, the former is obtained at leading 
order simply by counting the possible qQ final states. Thus, at energies far below the 
Z pole, we have 

R = o(e+e- + hadrons) 
u(e+e- -t p+p-) 

=Cq4ef++qd =3CQ2, 
u(e+e- -* p+p-) ~ q (101) 

On the Z pole, the corresponding quantity is the ratio of the partial decay widths of 
the Z to hadrons and to muon pairs: 

c w + 4 Rz = rzz?+h$;:y = r(‘z ~ ~+~-) = 3~~(o; + v;) 
u; + v; . (102) 
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R = Nc

X

q

Q2
q

R =

�(ee ! hadrons

�(ee ! µµ)

)



1 &CD AND E+E- ANNIHILATION 

the proton and neutron as constituents yielding 

t = [(1)2 - (0)2] = 1 (5) 

So the measured decay rate is suigestive of the existence of three colours of fractionally 
charged quarks, but not conclusive. 

Y 
P e- P 

Y’ 
ITo 

/ 

-4L h il e’ g 
Y 

(4 (bl 

Figure 1: (a) no decay. (b) e+e- annihilation to quarks 

Another test of the number of charged fundamental constituents is provided by 
the ratio of the e+e- hadronic total cross-section to the cross section for the produc- 
tion of a point-like object such as a muon pair. The virtual photon emitted by the 
annihilating electron and positron will excite all electrically charged constituent-anti- 
constituent pairs from the vacuum. Thus the contribution from the U, d and s quarks 
each of which occurs in three colours is 

.=3[ @+ (-;)2+ (-9’1 =2 (‘5) 

The experimental data are shown in Fig. 2. Below charm threshold they are in 
approximate agreement with Eq. (6). 

The existence of approximately point-like constituents inside a hadron was demon- 
strated by the classic electron deep inelastic scattering experiments performed at 
SLAC. The surprising result was that the measured structure functions did not fall 
off as the inelasticity of the reaction increased. Rather the structure functions had 
the property of scaling which was indicative of point-like structure inside the target 
nucleons. This gave rise to the ‘parton’ model, where the constituents of hadrons 
were identified with partons. The partons are now known to be the coloured quarks 
and gluons. 

The final step in this chain of argument was provided by the discovery of asymp- 
totic freedom. Before the discovery of asymptotic freedom the outstanding question 
was why quarks appeared to be free particles when probed by a deep inelastic photon. 
Since quarks vrere not observed as free entities they evidently had strong interactions 
which bound them together to form hadrons. The discovery of asymptotic freedom 
predicted that the coupling of quarks and gluons could be large at large distances 

For the 3 light quarks:

Intro’: e+e� ! quarks
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(I I It I 

1 ++++++t+++++t+t++++t++++++ 

R 

I 
2 1 0 

Figure 2: Compilation of values of R 

so as to confine quarks; at the same time the coupling was predicted to be small at 
short distances so that quarks behaved as free particles at asymptotic,energies. How- 
ever the approach to asymptotia is very slow - it is only logarithmic. At any finite 
energy there are calculable corrections to the free quark result which are unambigu- 
ous predictions of the theory. These lectures examine those predictions at collider 
energies. 

1.2.2 QCD Lagrangian 

We begin with a brief description of the QCD Lagrangian and the Feynman rules 
which can be derived from it. This is a practical guide which does little more than 
introduce notation and certainly does not do justice to the elegant structure of quan- 
tum field theory. For more details, the reader is referred to the standard texts [5,6,7]. 
Introductions to perturbative QCD can be found in refs.[8,9,10,11,12]. 

Just as in Quantum Electrodynamics, the perturbative calculation of any process 
requires the use of Feynman rules describing the interactions of quarks and gluons. 
The Feynman rules required for a perturbative analysis of QCD can be derived from 
an effective Lagrangian density which is given by 

’ = -iF,A,Fi’ + C qc~.(‘P - m)abqb + Lgauge-fixing + &host. 
fla”ours 

(7) 

This Lagrangian density describes the interaction of spin-h quarks of maSS m and 

Adding c, c + b yield R = 10/3, 11/3

Results seem always higher!
67

Why?



Contribution from higher orders ...

Intro’:                         @ NLOe+e� ! quarks
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a) 

Figure 9: Feynman diagrams for the O(crs) corrections to the total hadronic cross 
section in e+e- annihilation. 

where the sums are over spins and colours. Integrating out the Euler angles gives a 
matrix element which depends only on zi and zs, and the contribution to the total 
cross section is 

un@ = uo 3xQ; /dx,dxz + (1 -$$“tx2, 
P 

where the integration region is: 0 < .ri,xs 5 1, 11 + 2s 2 1. Unfortunately, we 
see that the integrals are divergent at xi = 1. Since 1 - xi = zsE,(l - coses,)/fi 
and 1 - xs = z,E,(l - cos6’,,)/&, where Eg is the gluon energy and Big the angles 
between the gluon and the quarks, we see that the singularities come from regions 
of phase space where the gluon is collinear with the quark or antiquark, .9;, + 0, or 
where the gluon is soft, Eg + 0. These singularities are not of course physical; they 
simply indicate a breakdown of the perturbative approach. ‘Quarks and gluons are 
never on-mass-shell particles, as this calculations assumes. When we encounter gluon 
energies and quark-gluon invariant masses which are of the same order as hadronic 
mass scales ( N 1 GeV or less) then we cannot ignore the effects of confinement. In the 
meantime, we can regard the singular behaviour on the boundaries of the phase-space 
plot at xi = 1 as indicating physics beyond perturbation theory. 

The key point is that we have not yet demonstrated that these ‘dangerous’ regions 
actually make an important contribution to the total cross section. The way to 
proceed is to introduce a temporary ‘regularization procedure’ for making the integrals 
finite, both for the real and virtual gluon diagrams, and then to see whether we can 
remove the regulator at the end of the calculation and obtain a finite result. Several 

e+ + e� ! q + q̄ + g q1

q2

x1,2 = 2Eq,q̄/
p
s

Question: are the x’s Lorentz invariant?

Show that: s(1� x1) = m2g
2
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CF = 4/3 

e+ + e� ! q + q̄ + g q1

q2

�0 =
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Q2
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x1,2 = 2Eq,q̄/
p
s

�

qq̄g = Nc�0
CF↵s
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X

q

Q

2
q

Z
dx1dx2

x

2
1 + x

2
2

(1� x1)(1� x2)

where the integration region is for:
0  x1,2  1 , x1 + x2 > 1
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Integrals are divergent at xi = 1, what is special about it?

�

qq̄g = Nc�0
CF↵s

2⇡

X

q

Q

2
q

Z
dx1dx2

x

2
1 + x

2
2

(1� x1)(1� x2)

1� x1 = x2
Egp
s

(1� cos ✓2g)

The gluon is either soft, Eg ! 0 ;

or collinear ✓2g ! 0 .



e+e� ! quarks:  Soft & collinear singularities of QCD

These singularities are not physical due to the IR hadronic 
scale of QCD. However, the corresponding IR dynamics 

cannot be described in perturbation theory.

71
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remove the regulator at the end of the calculation and obtain a finite result. Several 

q1

q2

Both collinear and soft “gluon-states” are indistinguishable … 



e+e� ! quarks :  regularization of the total Xsection

The above singularities can be regularised, say by Dim. 
Reg.: 
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methods are suitable. We can give the gluon a small mass, or take the final state quark 
and antiquark off-mass-shell by a small amount (which one might argue had some 
physical relevance). With either of these procedures, the singularities are avoided, 
being manifest instead as logarithms of the regulating mass scale. 

A mathematically more elegant regularization procedure is to use dimensional 
regularization, with the number of space-time dimensions now d > 4. Here the 
method is being extended to real gluon emission in addition to loop diagrams. Going 
to d dimensions affects both the phase space and the traces of the Dirac matrices in 
the qqg cross section calculation. As a result, Eq. (106) becomes 

U@‘(E) = 00 “TQ; H(E) jdx,dxZ 2 x~l+-x~,~~~~~--x~~~~~~) (107) 

with E = $(4 - d), and 

3( 1 - 6)2 
H(E) = (3 - 2e)P(2 - 2E) = l+ O(E) 

With the three-body phase space integrals recast in d dimensions, the soft and 
collinear singularities are regulated, appearing instead as poles at d = 4. Performing 
the integrals in Eq. (107) gives 

ugqg(,) = u. 3c Q; F H(c) [$ +; +; + O(c)] (109) 
‘I 

The virtual gluon contribution can be calculated in a similar fashion, with dimen- 
sional regularization again used to control the infra-red divergences in the loops. The 
result is 

&g)(c) = o. 3x Q; 2 H(E) [-$ - 5 - 8 + O(e)] (110) 
P 

When the two contributions Eqs. (109) and (110) are added together, the poles exactly 
cancel and the result is finite in the limit E + 0: 

R = 3xQ; (l+?+O(o;)). 
P 

Note that the next-to-leading order correction is positive, and with a value for as of 
about 0.15, can accommodate the experimental measurement at fi = 34 GeV. In 
contrast, the corresponding correction is negative for a scalar gluon. 

The cancellation of the soft and collinear singularities between the real and virtual 
gluon diagrams is not accidental. Indeed, there are theorems - the Bloch, Nordsieck 
[23] and Kinoshita, Lee, Nauenberg [24] theorems - which state that suitably de- 
fined inclusive quantities will be free of singularities in the massless limit. The total 
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methods are suitable. We can give the gluon a small mass, or take the final state quark 
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a) 

Figure 9: Feynman diagrams for the O(crs) corrections to the total hadronic cross 
section in e+e- annihilation. 

where the sums are over spins and colours. Integrating out the Euler angles gives a 
matrix element which depends only on zi and zs, and the contribution to the total 
cross section is 

un@ = uo 3xQ; /dx,dxz + (1 -$$“tx2, 
P 

where the integration region is: 0 < .ri,xs 5 1, 11 + 2s 2 1. Unfortunately, we 
see that the integrals are divergent at xi = 1. Since 1 - xi = zsE,(l - coses,)/fi 
and 1 - xs = z,E,(l - cos6’,,)/&, where Eg is the gluon energy and Big the angles 
between the gluon and the quarks, we see that the singularities come from regions 
of phase space where the gluon is collinear with the quark or antiquark, .9;, + 0, or 
where the gluon is soft, Eg + 0. These singularities are not of course physical; they 
simply indicate a breakdown of the perturbative approach. ‘Quarks and gluons are 
never on-mass-shell particles, as this calculations assumes. When we encounter gluon 
energies and quark-gluon invariant masses which are of the same order as hadronic 
mass scales ( N 1 GeV or less) then we cannot ignore the effects of confinement. In the 
meantime, we can regard the singular behaviour on the boundaries of the phase-space 
plot at xi = 1 as indicating physics beyond perturbation theory. 

The key point is that we have not yet demonstrated that these ‘dangerous’ regions 
actually make an important contribution to the total cross section. The way to 
proceed is to introduce a temporary ‘regularization procedure’ for making the integrals 
finite, both for the real and virtual gluon diagrams, and then to see whether we can 
remove the regulator at the end of the calculation and obtain a finite result. Several 
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Jets

The previous success, regarding the total rate, didn’t tell us anything 
about the distribution of energy flow & how to linked it with the 

partonic Xsec':

LO -
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where 

Xl(S) = K 
s(s - Ml) 

(s - kg)2 + I$bf; 

x2(5-) = kc2 
(s - At;)2 + rgf; 

K = yEas; 

Here GF is the Fermi constant, a is the electromagnetic coupling, Mr and Ts are 
the mass and total decay width of the Z boson respectively. The vector and axial 
couplings of the fermions to the Z are 

vf = Is/ - 2Q, sin2 Bw, af = 13f , WI 

with 131 = +i for f = Y, u, . and I3/ = -4 for f = e, d, The x2 term comes 
from the square of the Z-exchange amplitude and the x1 term from the photon-Z 
interference. At centre-of-mass scattering energies (,,6) far below the Z peak, the 
ratio s/i@ is small and so 1 > x1 > ~2. This means that the weak effects - 
manifest in the terms involving the vector and axial couplings - are small and can 
be neglected. Eq. (95) then reduces to 

da -= 
dcos0 %(1+ cos2,). 

Integrating over 0 gives the total cross section, 

(98) 

On the Z pole, ,I% = Ms, the ~2 term in (95) dominates and the corresponding 
(peak) cross section is 

00 = 12gK2 (UT + v,‘)($ + vj) 

We next introduce the ratio R of the the total e+e- hadronic cross section to the 
muon pair production cross section. As we have seen, the former is obtained at leading 
order simply by counting the possible qQ final states. Thus, at energies far below the 
Z pole, we have 

R = o(e+e- + hadrons) 
u(e+e- -t p+p-) 

=Cq4ef++qd =3CQ2, 
u(e+e- -* p+p-) ~ q (101) 

On the Z pole, the corresponding quantity is the ratio of the partial decay widths of 
the Z to hadrons and to muon pairs: 

c w + 4 Rz = rzz?+h$;:y = r(‘z ~ ~+~-) = 3~~(o; + v;) 
u; + v; . (102) 
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to the emission of a gluon off the quark lines, each emission ‘costing’ a power of 
os c(: 1. However, this simple picture, although essentially correct, masks a much 
more complicated situation, which involves both perturbative and non-perturbative 
aspects of the theory. We will now attempt to construct a theory of jets based on the 
lowest orders in perturbation theory. 

We begin by considering the next-to-leading process efe- -t qqg. From the 
previous section (Eq. (106)), we have 

1 d% = &OS x: + x; - 
u dx,dxz 2r (1 - 5,)( 1 - 12) (119) 

Recall that this cross section becomes (infinitely) large when one or both of the ri 
approach 1, which corresponds to the gluon being collinear with one of the quarks, 
or soft (i.e. its energy is small compared to fi) respectively. If we again assume 
that quarks and gluons fragment collinearly into hadrons, then this preference for 
the gluon to be soft or collinear means that the two-jet-like structure of the lowest 
order is maintained at O(as). If, on the other hand, the gluon is required to be 
well-separated in phase space from the quarks - a configuration corresponding to a 
‘three-jet event’ - then the singular regions of the matrix element are avoided and 
the cross section is suppressed relative to lowest order by one power of os. In fact, 
this qualitative result holds to all orders of perturbation theory. The amplitudes for 
multiple gluon emission contain the same type of singularities as those which appear 
at first order, which leads to a final state which is predominantly ‘two-jet-like’, with 
a smaller probability (determined by as) for three or more distinguishable jets. 

To make all this more quantitative, we need to introduce the concept of a jet 
measure, i.e. a procedure for classifying a final state of hadrons (experimentally) or 
quarks and gluons (theoretically) according to the number of jets it contains. To be 
useful, a jet measure should give cross sections which, like the total cross section, are 
free of soft and collinear singularities when calculated in perturbation theory, and 
should also be relatively insensitive to the non-perturbative fragmentation of quarks 
and gluons into hadrons. 

One of the first attempts to define jet cross sections in perturbation theory was by 
Sterman and Weinberg (291. In their picture, a final state is classified as two-jet-like if 
all but a fraction e of the total available energy is contained in a pair of cones of half- 
angle 6. The two-jet cross section is then obtained by integrating the matrix elements 
for the various quark and gluon final states over the appropriate region of phase space 
determined by s and 6. At lowest order, the two-jet and total cross sections obviously 
coincide, for any values of the parameters. At O(as), the two-jet cross section is 
obtained by integrating the right-hand-side of Eq. (119) over the appropriate range 
of zi and zs. Fig. 11 shows the boundaries (solid lines) for the specific choice of 
parameters E = 0.3 and 6 = 30”. The two-jet region is the narrow band between these 
boundaries and the edges of the triangle. Note that.the 6 constraint corresponds to 
then curved portions of the boundary, while the E constraint gives the straight line 
segments at the corners. 

NLO -?? ??

We expect the fragmented hadrons to roughly follow the 
parton direction, as seen in data from the 50s in cosmic ray 

& then latter on consistently in many exp’.
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Jets

Then the soft/collinear gluons events would still have 
energy flow of 2 outgoing partons - “2 jets” topology.

On the other hand a well separated Xtra gluon emission is 
suppressed & look like an Xtra energy flow source - “3 jets” 
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Cone Jets, IRC safety (Sterman-Weinberg, 77)

Need to find a definition of these object, calculable in 
perturbation theory & yield finite rates (IRCollinear safe).

perturbation theory, we must thus check that we can go to the zero-mass limit. Once we can
identify a quantity with a finite zero-mass limit, and have traded zero mass back for high energy,
we have a situation that is perfect for QCD. We will be able to use (12) to pick the coupling
at the scale of the energy, and asymptotic freedom will ensure that as the energy scale grows,
the relevant coupling will decrease. Perturbative predictions will then improve with increasing
energy.

The classic analyses of Kinoshita and of Lee and Nauenberg [24] showed that total transition
rates remain finite in fully massless theories because the zero-mass limit does not violate unitarity
in perturbation theory. Infrared safe cross sections are generalizations of this analysis to less
inclusive observables. For QED, this can be done with an energy resolution; for QCD in the
zero-mass limit, this is not sufficient. For e+e− annihilation, however, we can identify infrared
safe quantities by introducing an additional resolution. The motivation is completely analogous to
the QED case. In the limit of zero quark mass, a quark of momentum p, p2 = 0 can emit an gluon
of momentum xp, 0 < x < 1, (xp)2 = 0 and remain on-shell, since the remaining momentum
(1 − x)p is still lightlike with positive energy. The resulting quark and gluon, however, are
exactly collinear in direction, and it is by no means clear how to resolve them, especially since
the emission, or its inverse, can take place at any time, even within a hypothetical detector. The
same would be true for a massless electron and collinear photon.

If we draw an analogy to the energy resolution of QED, we are naturally led to seek observables
with angular as well as energy resolutions for high energy QCD (or massless QED), as represented
in Fig. 7, where the cones show an angular range into which large energy flows, while the small
ball in the remaining directions represents an energy resolution. Without going into detail yet,

δ

εQ

Figure 7: Cone jets for e+e− annihilation.

such cross sections are infrared safe, and depend only on the overall energy Q, the angular
resolution δ, and the energy resolution ϵQ, with ϵ a small but finite number. Because they are
physical quantities, the perturbative expansions for the corresponding cross sections satisfy Eq.
(12), and we can write

σjet (Q/µ, δ, ϵ, αs(µ)) = σjet (1, δ, ϵ, αs(Q))
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Rather than calculating the two-jet cross section directly, integrating the qqg 
matrix element (in d dimensions) over this region and adding the contribution from 
the virtual gluon diagrams, it is easier to use the fact that at this order o = os + as. 
The two-jet cross section can therefore be obtained by subtracting the three-jet cross 
section from the total cross section already obtained in Section 1.9. The advantage of 
this is that the calculation of us can be performed in 4 dimensions, since the matrix 
element singularities are outside the three-jet region at this order. Defining the two- 
and three-jet fractions3 by ji = ui/u (i = 2,3) we obtain4 

j2 = 1-8CFz{log; [Iog(&l)-:+3e] 

+~-~-e+~‘s+o(6slogc) , 
I 

f3 = 1 - fz . (120) 

Notice that when the parameters E and 6 are small, the O(cys) correction becomes 
logarithmically large. This is simply the vestige of the soft and collinear singularities. 
There are techniques for resumming terms involving as log6 to all orders in pertur- 
bation theory; when 6 is small this should improve on the first order result. On the 
other hand, as the parameters become large, the three-jet region in Fig. 11 shrinks 
and the three-jet fraction decreases, as expected. 

At higher orders in perturbation theory, we can have events with more than three 
jets. For example, the O(a$) qqqcj and qqgg production processes can give rise to 
two, three or four jet events, depending on the separation in phase space and en- 
ergy of the outgoing partons. It turns out that from an experimental and theoretical 
point of view, the Sterman-Weinberg jet definition based on cones is not well-suited 
to analysing multijet final states. One of the reasons is that fixed-angle cones give 
an inefficient ‘tiling’ of the phase-space 47r solid angle. For this reason, various alter- 
natives have been proposed, the most important of which is the ‘minimum invariant 
mass’ or JADE algorithm [30], which we shall now describe. 

Consider qcjg production at O(crs). A three-jet event is defined as one in which 
the minimum invariant msss of the parton pairs is larger than some fixed fraction y 
(sometimes called ycU,) of the overall centre-of-mass energy: 

min (pi +pj)* = min 2EiEj(l - COS0ij) > ys, i,j = q,q,s I (121) 

for msssless partons in the e+e- centre-of-mass frame. It is easily shown that this 
region of phase space avoids the soft and collinear singularities of the matrix element. 
In fact in terms of the energy fractions, Eq. (121) is equivalent to 

o<z1,1*<1-y. 21 + x2 > 1+ y. (122) 

‘The notation Ri is also used for jet fractions in the literature. 
‘We show here only those terms which are important when 6 is small. The full expression is 

rather unwieldy. 
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to the emission of a gluon off the quark lines, each emission ‘costing’ a power of 
os c(: 1. However, this simple picture, although essentially correct, masks a much 
more complicated situation, which involves both perturbative and non-perturbative 
aspects of the theory. We will now attempt to construct a theory of jets based on the 
lowest orders in perturbation theory. 

We begin by considering the next-to-leading process efe- -t qqg. From the 
previous section (Eq. (106)), we have 

1 d% = &OS x: + x; - 
u dx,dxz 2r (1 - 5,)( 1 - 12) (119) 

Recall that this cross section becomes (infinitely) large when one or both of the ri 
approach 1, which corresponds to the gluon being collinear with one of the quarks, 
or soft (i.e. its energy is small compared to fi) respectively. If we again assume 
that quarks and gluons fragment collinearly into hadrons, then this preference for 
the gluon to be soft or collinear means that the two-jet-like structure of the lowest 
order is maintained at O(as). If, on the other hand, the gluon is required to be 
well-separated in phase space from the quarks - a configuration corresponding to a 
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Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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Rather than calculating the two-jet cross section directly, integrating the qqg 
matrix element (in d dimensions) over this region and adding the contribution from 
the virtual gluon diagrams, it is easier to use the fact that at this order o = os + as. 
The two-jet cross section can therefore be obtained by subtracting the three-jet cross 
section from the total cross section already obtained in Section 1.9. The advantage of 
this is that the calculation of us can be performed in 4 dimensions, since the matrix 
element singularities are outside the three-jet region at this order. Defining the two- 
and three-jet fractions3 by ji = ui/u (i = 2,3) we obtain4 

j2 = 1-8CFz{log; [Iog(&l)-:+3e] 

+~-~-e+~‘s+o(6slogc) , 
I 

f3 = 1 - fz . (120) 

Notice that when the parameters E and 6 are small, the O(cys) correction becomes 
logarithmically large. This is simply the vestige of the soft and collinear singularities. 
There are techniques for resumming terms involving as log6 to all orders in pertur- 
bation theory; when 6 is small this should improve on the first order result. On the 
other hand, as the parameters become large, the three-jet region in Fig. 11 shrinks 
and the three-jet fraction decreases, as expected. 

At higher orders in perturbation theory, we can have events with more than three 
jets. For example, the O(a$) qqqcj and qqgg production processes can give rise to 
two, three or four jet events, depending on the separation in phase space and en- 
ergy of the outgoing partons. It turns out that from an experimental and theoretical 
point of view, the Sterman-Weinberg jet definition based on cones is not well-suited 
to analysing multijet final states. One of the reasons is that fixed-angle cones give 
an inefficient ‘tiling’ of the phase-space 47r solid angle. For this reason, various alter- 
natives have been proposed, the most important of which is the ‘minimum invariant 
mass’ or JADE algorithm [30], which we shall now describe. 

Consider qcjg production at O(crs). A three-jet event is defined as one in which 
the minimum invariant msss of the parton pairs is larger than some fixed fraction y 
(sometimes called ycU,) of the overall centre-of-mass energy: 

min (pi +pj)* = min 2EiEj(l - COS0ij) > ys, i,j = q,q,s I (121) 

for msssless partons in the e+e- centre-of-mass frame. It is easily shown that this 
region of phase space avoids the soft and collinear singularities of the matrix element. 
In fact in terms of the energy fractions, Eq. (121) is equivalent to 

o<z1,1*<1-y. 21 + x2 > 1+ y. (122) 

‘The notation Ri is also used for jet fractions in the literature. 
‘We show here only those terms which are important when 6 is small. The full expression is 

rather unwieldy. 

1 QCD AND E+E- ANNIHILATION 35 

Rather than calculating the two-jet cross section directly, integrating the qqg 
matrix element (in d dimensions) over this region and adding the contribution from 
the virtual gluon diagrams, it is easier to use the fact that at this order o = os + as. 
The two-jet cross section can therefore be obtained by subtracting the three-jet cross 
section from the total cross section already obtained in Section 1.9. The advantage of 
this is that the calculation of us can be performed in 4 dimensions, since the matrix 
element singularities are outside the three-jet region at this order. Defining the two- 
and three-jet fractions3 by ji = ui/u (i = 2,3) we obtain4 

j2 = 1-8CFz{log; [Iog(&l)-:+3e] 

+~-~-e+~‘s+o(6slogc) , 
I 

f3 = 1 - fz . (120) 

Notice that when the parameters E and 6 are small, the O(cys) correction becomes 
logarithmically large. This is simply the vestige of the soft and collinear singularities. 
There are techniques for resumming terms involving as log6 to all orders in pertur- 
bation theory; when 6 is small this should improve on the first order result. On the 
other hand, as the parameters become large, the three-jet region in Fig. 11 shrinks 
and the three-jet fraction decreases, as expected. 

At higher orders in perturbation theory, we can have events with more than three 
jets. For example, the O(a$) qqqcj and qqgg production processes can give rise to 
two, three or four jet events, depending on the separation in phase space and en- 
ergy of the outgoing partons. It turns out that from an experimental and theoretical 
point of view, the Sterman-Weinberg jet definition based on cones is not well-suited 
to analysing multijet final states. One of the reasons is that fixed-angle cones give 
an inefficient ‘tiling’ of the phase-space 47r solid angle. For this reason, various alter- 
natives have been proposed, the most important of which is the ‘minimum invariant 
mass’ or JADE algorithm [30], which we shall now describe. 

Consider qcjg production at O(crs). A three-jet event is defined as one in which 
the minimum invariant msss of the parton pairs is larger than some fixed fraction y 
(sometimes called ycU,) of the overall centre-of-mass energy: 

min (pi +pj)* = min 2EiEj(l - COS0ij) > ys, i,j = q,q,s I (121) 

for msssless partons in the e+e- centre-of-mass frame. It is easily shown that this 
region of phase space avoids the soft and collinear singularities of the matrix element. 
In fact in terms of the energy fractions, Eq. (121) is equivalent to 

o<z1,1*<1-y. 21 + x2 > 1+ y. (122) 

‘The notation Ri is also used for jet fractions in the literature. 
‘We show here only those terms which are important when 6 is small. The full expression is 

rather unwieldy. 

1 QCD AND E+E- ANNIHILATION 35 

Rather than calculating the two-jet cross section directly, integrating the qqg 
matrix element (in d dimensions) over this region and adding the contribution from 
the virtual gluon diagrams, it is easier to use the fact that at this order o = os + as. 
The two-jet cross section can therefore be obtained by subtracting the three-jet cross 
section from the total cross section already obtained in Section 1.9. The advantage of 
this is that the calculation of us can be performed in 4 dimensions, since the matrix 
element singularities are outside the three-jet region at this order. Defining the two- 
and three-jet fractions3 by ji = ui/u (i = 2,3) we obtain4 

j2 = 1-8CFz{log; [Iog(&l)-:+3e] 

+~-~-e+~‘s+o(6slogc) , 
I 

f3 = 1 - fz . (120) 

Notice that when the parameters E and 6 are small, the O(cys) correction becomes 
logarithmically large. This is simply the vestige of the soft and collinear singularities. 
There are techniques for resumming terms involving as log6 to all orders in pertur- 
bation theory; when 6 is small this should improve on the first order result. On the 
other hand, as the parameters become large, the three-jet region in Fig. 11 shrinks 
and the three-jet fraction decreases, as expected. 

At higher orders in perturbation theory, we can have events with more than three 
jets. For example, the O(a$) qqqcj and qqgg production processes can give rise to 
two, three or four jet events, depending on the separation in phase space and en- 
ergy of the outgoing partons. It turns out that from an experimental and theoretical 
point of view, the Sterman-Weinberg jet definition based on cones is not well-suited 
to analysing multijet final states. One of the reasons is that fixed-angle cones give 
an inefficient ‘tiling’ of the phase-space 47r solid angle. For this reason, various alter- 
natives have been proposed, the most important of which is the ‘minimum invariant 
mass’ or JADE algorithm [30], which we shall now describe. 

Consider qcjg production at O(crs). A three-jet event is defined as one in which 
the minimum invariant msss of the parton pairs is larger than some fixed fraction y 
(sometimes called ycU,) of the overall centre-of-mass energy: 

min (pi +pj)* = min 2EiEj(l - COS0ij) > ys, i,j = q,q,s I (121) 

for msssless partons in the e+e- centre-of-mass frame. It is easily shown that this 
region of phase space avoids the soft and collinear singularities of the matrix element. 
In fact in terms of the energy fractions, Eq. (121) is equivalent to 

o<z1,1*<1-y. 21 + x2 > 1+ y. (122) 

‘The notation Ri is also used for jet fractions in the literature. 
‘We show here only those terms which are important when 6 is small. The full expression is 

rather unwieldy. 

1 QCD AND E+E- ANNIHILATION 35 

Rather than calculating the two-jet cross section directly, integrating the qqg 
matrix element (in d dimensions) over this region and adding the contribution from 
the virtual gluon diagrams, it is easier to use the fact that at this order o = os + as. 
The two-jet cross section can therefore be obtained by subtracting the three-jet cross 
section from the total cross section already obtained in Section 1.9. The advantage of 
this is that the calculation of us can be performed in 4 dimensions, since the matrix 
element singularities are outside the three-jet region at this order. Defining the two- 
and three-jet fractions3 by ji = ui/u (i = 2,3) we obtain4 

j2 = 1-8CFz{log; [Iog(&l)-:+3e] 

+~-~-e+~‘s+o(6slogc) , 
I 

f3 = 1 - fz . (120) 

Notice that when the parameters E and 6 are small, the O(cys) correction becomes 
logarithmically large. This is simply the vestige of the soft and collinear singularities. 
There are techniques for resumming terms involving as log6 to all orders in pertur- 
bation theory; when 6 is small this should improve on the first order result. On the 
other hand, as the parameters become large, the three-jet region in Fig. 11 shrinks 
and the three-jet fraction decreases, as expected. 

At higher orders in perturbation theory, we can have events with more than three 
jets. For example, the O(a$) qqqcj and qqgg production processes can give rise to 
two, three or four jet events, depending on the separation in phase space and en- 
ergy of the outgoing partons. It turns out that from an experimental and theoretical 
point of view, the Sterman-Weinberg jet definition based on cones is not well-suited 
to analysing multijet final states. One of the reasons is that fixed-angle cones give 
an inefficient ‘tiling’ of the phase-space 47r solid angle. For this reason, various alter- 
natives have been proposed, the most important of which is the ‘minimum invariant 
mass’ or JADE algorithm [30], which we shall now describe. 

Consider qcjg production at O(crs). A three-jet event is defined as one in which 
the minimum invariant msss of the parton pairs is larger than some fixed fraction y 
(sometimes called ycU,) of the overall centre-of-mass energy: 

min (pi +pj)* = min 2EiEj(l - COS0ij) > ys, i,j = q,q,s I (121) 

for msssless partons in the e+e- centre-of-mass frame. It is easily shown that this 
region of phase space avoids the soft and collinear singularities of the matrix element. 
In fact in terms of the energy fractions, Eq. (121) is equivalent to 

o<z1,1*<1-y. 21 + x2 > 1+ y. (122) 

‘The notation Ri is also used for jet fractions in the literature. 
‘We show here only those terms which are important when 6 is small. The full expression is 

rather unwieldy. 

1 QCD AND E+E- ANNIHILATION 35 

Rather than calculating the two-jet cross section directly, integrating the qqg 
matrix element (in d dimensions) over this region and adding the contribution from 
the virtual gluon diagrams, it is easier to use the fact that at this order o = os + as. 
The two-jet cross section can therefore be obtained by subtracting the three-jet cross 
section from the total cross section already obtained in Section 1.9. The advantage of 
this is that the calculation of us can be performed in 4 dimensions, since the matrix 
element singularities are outside the three-jet region at this order. Defining the two- 
and three-jet fractions3 by ji = ui/u (i = 2,3) we obtain4 

j2 = 1-8CFz{log; [Iog(&l)-:+3e] 

+~-~-e+~‘s+o(6slogc) , 
I 

f3 = 1 - fz . (120) 

Notice that when the parameters E and 6 are small, the O(cys) correction becomes 
logarithmically large. This is simply the vestige of the soft and collinear singularities. 
There are techniques for resumming terms involving as log6 to all orders in pertur- 
bation theory; when 6 is small this should improve on the first order result. On the 
other hand, as the parameters become large, the three-jet region in Fig. 11 shrinks 
and the three-jet fraction decreases, as expected. 

At higher orders in perturbation theory, we can have events with more than three 
jets. For example, the O(a$) qqqcj and qqgg production processes can give rise to 
two, three or four jet events, depending on the separation in phase space and en- 
ergy of the outgoing partons. It turns out that from an experimental and theoretical 
point of view, the Sterman-Weinberg jet definition based on cones is not well-suited 
to analysing multijet final states. One of the reasons is that fixed-angle cones give 
an inefficient ‘tiling’ of the phase-space 47r solid angle. For this reason, various alter- 
natives have been proposed, the most important of which is the ‘minimum invariant 
mass’ or JADE algorithm [30], which we shall now describe. 

Consider qcjg production at O(crs). A three-jet event is defined as one in which 
the minimum invariant msss of the parton pairs is larger than some fixed fraction y 
(sometimes called ycU,) of the overall centre-of-mass energy: 

min (pi +pj)* = min 2EiEj(l - COS0ij) > ys, i,j = q,q,s I (121) 

for msssless partons in the e+e- centre-of-mass frame. It is easily shown that this 
region of phase space avoids the soft and collinear singularities of the matrix element. 
In fact in terms of the energy fractions, Eq. (121) is equivalent to 

o<z1,1*<1-y. 21 + x2 > 1+ y. (122) 

‘The notation Ri is also used for jet fractions in the literature. 
‘We show here only those terms which are important when 6 is small. The full expression is 

rather unwieldy. 

Cone Jets, IRC safety 
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2-jet vs 3-jet Xsections

These are IRC safe, observables as well as derivatives, such
as angular dist’ etc ...
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So what are jets?
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When ✏, � ⌧ 1 O(↵s) ) log enhanced.

Residues of the singularities, improved when resumed.
(usefulness limited)

Number of jets is not a physical parameter!

Intuitive partons & jets link holds only at LO.

Higher order in pert. th. ) � 4 jets.



Cones in hadron colliders

Sterman-Weinberg cones give inefficient ‘tiling’ of the phase-space 4pi 
solid angle. 

Similarly for hadronic machine one needs to use different E threshold 
and not COM. 

And, also non trivial to implement in practice, “where to place the 
cone?” And, “how to deal with overlaps?”. Thus, alternatives were 
constructed. 

One needs to find way to cluster partons (energy) in an IR safe manner. 

Also practical issues: seeds and overlaps …
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rather unwieldy. 

Sequential recombination jet algorithms
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Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 
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Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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Figure 12: The values offs and fz from Eq. (123) 

The generalization to multi-jet fractions is straightforward, using the following 
algorithm. Starting from an n-parton final state, identify the pair with the minimum 
invariant mass squared. If this is greater then ys then the number of jets is n. If 
not, combine the minimum pair into a single ‘cluster’. Then repeat for the (n - I)- 
parton/cluster final state, and so on until all partons/clusters have a relative invariant 
mass squared greater than ys. The number of clusters remaining is then the number 
of jets in the final state. According to this definition, an n-parton final state can give 
any number of jets between R (all partons well-separated) and 2 (for example, two 
hard quarks accompanied by soft and collinear gluons). 

Since a soft or collinear gluon emitted from a quark line does not change the 
multiplicity of jets, the cancellation of the corresponding singularities that was evident 
in the total cross section calculation can still take place, and the jet fractions defined 
this way are ‘infra-red safe’, i.e. free of such singularities to all orders in perturbation 
theory. We shall discuss other examples of infra-red safe jet variables below. 

Now in general we have5 

fn+d&Y) = (F)” g c”:(w+) ($$)j. n>o, 
‘We follow the convention in the literature to expand the perturbation series for the total cross 

section and jet cross sections in powers of (us/r) and (0,9/2s) respectively. 

The above valid for y<1/3, the Fig. shows the two and three jet ratios. Soft and collinear 

singularities again reappear as large logarithms in the limit where y is small.



1. For each pair of particles i, j work out the distance

yij =
2EiEj(1− cos θij)

Q2
(3)

where Q is the total energy in the event,7 Ei is the energy of particle i and θij the
angle between particles i and j. For massless particles, yij is the just the (normalised)
squared invariant mass of the pair.

2. Find the minimum ymin of all the yij.

3. If ymin is below some jet resolution threshold ycut, then recombine i and j into a single
new particle (or “pseudojet”) and repeat from step 1.

4. Otherwise, declare all remaining particles to be jets and terminate the iteration.

The number of jets that one obtains depends on the value of ycut, and as one reduces ycut,
softer and/or more collinear emissions get resolved into jets in their own right. Thus here
the number of jets is controlled by a single parameter rather than the two parameters
(energy and angle) of cone algorithms.

Quite often in e+e− analyses one examines the value of ycut that marks the transition
between (say) an event being labelled as having n and n + 1 jets, yn(n+1). Thus if y23 is
small, the event is two-jet like, while if it large then the event clearly has 3 (or more) jets.

The JADE algorithm is infrared and collinear safe, because any soft particle will get
recombined right at the start of the clustering, as do collinear particles. It was widely used
up to the beginning of the 1990s (and still somewhat beyond then), however the presence
of EiEj in the distance measure means that two very soft particles moving in opposite
directions often get recombined into a single particle in the early stages of the clustering,
which runs counter to the intuitive idea that one has of a jet being restricted in its angular
reach. As well as being physically disturbing, this leads to very non-trivial structure
(non-exponentiated double logarithms) in higher-order calculations of the distribution of
y23 [61, 62, 63] (later, this was also discussed in terms of a violation of something called
recursive infrared and collinear safety [64]).

2.2.2 The kt algorithm in e+e−

The e+e− kt algorithm [27] is identical to the JADE algorithm except as concerns the
distance measure, which is

yij =
2min(E2

i , E
2
j )(1− cos θij)

Q2
. (4)

In the collinear limit, θij ≪ 1, the numerator just reduces to (min(Ei, Ej)θij)2 which is
nothing but the squared transverse momentum of i relative to j (if i is the softer particle)

7In experimental uses, it is often the total visible energy in the event.
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kt-meausure: yij  <=> inverse splitting probability 
for parton k to go into i and j, when i or j is 
soft and collinear,

— this is the origin of the name kt-algorithm.8 The use of the minimal energy ensures
that the distance between two soft, back-to-back particles is larger than that between a
soft particle and a hard one that’s nearby in angle.

Another way of thinking about eq. (4) is that the distance measure is essentially pro-
portional to the squared inverse of the splitting probability for one parton k to go into two,
i and j, in the limit where either i or j is soft and they are collinear to each other,

dPk→ij

dEidθij
∼ αs

min(Ei, Ej)θij
(5)

There is a certain arbitrariness in this statement, because of the freedom to change variables
in the measure on the left-hand side of eq. (5). However the presence of a power of just the
minimum of the energy in the denominator (rather than some function of both energies as
in the JADE distance measure) is robust.

The kt algorithm’s closer relation to the structure of QCD divergences made it possible
to carry out all-order resummed calculations of the distribution of yn(n+1) [27, 65, 66] and of
the mean number of jets as a function of ycut [67]. This helped encourage its widespread use
at LEP. The relation to QCD divergences also means that the clustering sequence retains
useful approximate information about the sequence of QCD splittings that occurred during
the showering that led to the jet. This is of interest both in certain theoretical studies
(for example CKKW matching of parton-showers and matrix elements [13]) and also for
identifying the origin of a given jet (for example quark versus gluon discrimination [68]).

2.2.3 The kt algorithm with incoming hadrons

In experiments with incoming hadrons two issues arise. Firstly (as mentioned already for
cone algorithms) the total energy is no longer well defined. So instead of the dimensionless
distance yij, one might choose to use a dimensionful distance

dij = 2min(E2
i , E

2
j )(1− cos θij) , (6)

together with a dimensionful jet-resolution parameter dcut (alternatively, one might main-
tain a dimensionless measure by choosing some convention for the normalisation scale).
Secondly, the divergences in the QCD branching probability are not just between pairs of
outgoing particles, but also between an outgoing particle and the incoming beam direction.

The first attempt at formulating a kt algorithm in such cases was [69]. It introduced
the idea of an additional particle-beam distance.

diB = 2E2
i (1− cos θiB) , (7)

8As mentioned above, the distance measured used in the earlier LUCLUS algorithm [54], yij =

2 |p⃗i|
2|p⃗j |

2

(|p⃗i|+|p⃗j|)2Q2 (1 − cos θij) (in the version given in [53]), was also a relative transverse-momentum type

variable.
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which, for small θiB, is just the squared transverse momentum of particle i with respect
to the beam. The algorithm then remains the same as in e+e−, except that if a diB is the
smallest, then the particle is recombined with the beam, to form part of the “beam-jet”.
If there are two beams, then one just introduces a measure for each beam.

In pp collisions it is standard to use variables that are invariant under longitudinal
boosts, however the dij and diB given above only satisfy this property approximately.
Thus ref. [28] introduced versions of the distance measures that were exactly longitudinally
invariant

dij = min(p2ti, p
2
tj)∆R2

ij , ∆R2
ij = (yi − yj)

2 + (φi − φj)
2 , (8a)

diB = p2ti , (8b)

(this variant does not distinguish between the two beam jets).9 It is straightforward to
verify that in the relevant collinear limits, these measures just reduce to relative transverse
momenta, like those in eqs. (6,7). Furthermore, since (yi − yj), the φi and pti are all
invariant under longitudinal boosts, the dij and diB are too. Nowadays the procedure
of section 2.2.1, with the distance measures of eqs. (8), is referred to as the exclusive kt
algorithm, in that every particle is assigned either to a beam-jet or to a final-state jet.

Inclusive kt algorithm. At about the same time that ref. [28] appeared, a separate
formulation was proposed in [29], which has almost the same distance measures as eq. (8),

dij = min(p2ti, p
2
tj)

∆R2
ij

R2
, ∆R2

ij = (yi − yj)
2 + (φi − φj)

2 , (9a)

diB = p2ti , (9b)

where the difference lies in the presence of a new parameter R (also called D) in the dij,
whose role is similar to R in a cone algorithm (see below). The other difference in this
version of the algorithm is in how the dij get used:

1. Work out all the dij and diB according to eq. (8).

2. Find the minimum of the dij and diB.

3. If it is a dij , recombine i and j into a single new particle and return to step 1.

4. Otherwise, if it is a diB, declare i to be a [final-state] jet, and remove it from the list
of particles. Return to step 1.

5. Stop when no particles remain.

9Ref. [28] also proposes a variant where ∆R2
ij ≡ 2(cosh(yi − yj) − cos(φi − φj)), more closely related

to the precise structure of the QCD matrix elements; however, to the author’s knowledge, it has not seen
extensive use.
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Splitting function: energy distribution of 
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One can generalise the kt   :2.2.5 The anti-kt algorithm

One can generalise the kt and Cambridge/Aachen distance measures as [33]:

dij = min(p2pti , p
2p
tj )

∆R2
ij

R2
, ∆R2

ij = (yi − yj)
2 + (φi − φj)

2 , (10a)

diB = p2pti , (10b)

where p is a parameter that is 1 for the kt algorithm, and 0 for C/A. It was observed in [33]
that if one takes p = −1, dubbed the “anti-kt” algorithm, then this favours clusterings that
involve hard particles rather than clusterings that involve soft particles (kt algorithm) or
energy-independent clusterings (C/A). This ultimately means that the jets grow outwards
around hard “seeds”. However since the algorithm still involves a combination of energy
and angle in its distance measure, this is a collinear-safe growth (a collinear branching
automatically gets clustered right at the beginning of the sequence).12 The result is an
IRC safe algorithm that gives circular hard jets, making it an attractive replacement for
certain cone-type algorithms (notably IC-PR algorithms).

One should be aware that, unlike for the kt and C/A algorithms, the substructure clas-
sification that derives from the clustering-sequence inside an anti-kt jet cannot be usefully
related to QCD branching (essentially the anti-kt recombination sequence will gradually
expand through a soft subjet, rather than first constructing the soft subjet and then re-
combining it with the hard subjet).

2.2.6 Other sequential recombination ideas

The flexibility inherent in the sequential recombination procedure means that a number of
variants have been considered in both past and recent work. Some of the main ones are
listed below.

Flavour-kt algorithms. If one is interested in maintaining a meaningful flavour for jets
(for example in purely partonic studies, or when discussing heavy-flavour jets), then one
may use a distance measure that takes into account the different divergences for quark and
gluon branching, as in [81, 82]. The essential idea is to replace eq. (4) with

y(F )
ij =

2(1− cos θij)

Q2
×
{

max(E2
i , E

2
j ) , softer of i, j is flavoured,

min(E2
i , E

2
j ) , softer of i, j is flavourless,

(11)

where gluonic (or non-heavy-quark) objects are considered flavourless. This reflects the
fact that there is no divergence for producing a lone soft quark, and correctly ensures that
soft quarks are recombined with soft antiquarks. In normal algorithms, in contrast, a soft
quark and anti-quark may end up in different jets, polluting the flavour of each one. Full

12If one takes p → −∞ then energy is privileged at the expense of angle and the algorithm then becomes
collinear unsafe, and somewhat like an IC-PR algorithm.

24

p = �1, 0 for anti-kt and Cambridge/Aachen (C/A).

anti-kt & Cambridge/Aachen jets



Intermediate summary

Jets (spikes of energy flow) in QCD at high energies are 
due to asymptotic freedom & its non-abelian nature.

Jet algorithms obtain finite (IRC safe) & perturbative 
differential description. 

Distributions (jets numb. etc.) are prescription-dep., within 
an algorithm => short distance physics is transparent.

Allow us to make contact \w microscopic partonic 
calculation, with quarks/gluons final states.
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Massive boosted jets
Jets substructure
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(Briefly …)
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How big is the opening angle?

Importance of jet mass, QCD story I

♦ Jet mass definition:

m2
J = (

P
i2R Pi)2, Pi2 = 0 , for EJ � mJ � ⇤QCD .

t-angular info’ encoded in decay products

• When other quarks produced:    

• Tops decay before hadronize:    

♦QCD: soft collinear singularities => narrow jets are “light”. 
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q

b) q

q
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q

!, K, p, ...

d)

Fig. 5: Emission pattern from a qq̄ event, with first a single gluon (a), then multiple emissions of gluons both
from the qq̄ pair and from the previously emitted gluons (b), followed by some process, ‘hadronization’, that
causes hadrons to be produced from the gluons, giving an event (c), that structurally resembles a real event (d)
(e+e− → Z →hadrons at LEP in the OPAL detector)

which, numerically, corresponds to ⟨Ng⟩ ≃ 2. This is neither small numerically, nor parametrically
(∼ 1/αs). Does this render perturbation completely useless for anything other than total cross sections?

We can follow two possible avenues to help answer this question. One approach is to calculate
the next order, and see what structure it has. Alternatively we can ask whether there are final-state
observables that have a better-behaved perturbative series than ‘the mean number of gluons’.

2.3.1 Gluon (and hadron) multiplicity
Once one gluon has been emitted, it can itself emit further gluons. To understand what the gluon multi-
plicity might look like to higher orders, it’s useful to write down the general pattern of emission of a soft
gluon both from a quark and from a gluon, which is essentially independent of the process that produced
the ‘emitter’:

p

k
≃

2αsCF

π

dE

E

dθ

θ
, (26a)

p

k
" ≃

2αsCA

π

dE

E

dθ

θ
. (26b)

These expressions are valid when the emitted gluon is much lower in energy than the emitter, k ≪ p,
and when the emission angle θ is much smaller than the angle between the emitter and any other parton
in the event (this is known as the condition of angular ordering [21]). The structure of emission of a soft
gluon is almost identical from a quark and from a gluon, except for the substitution of the CF = 4/3
colour factor in the quark case with the CA = 3 colour factor in the gluon case.

Since quarks and gluons emit in similar ways, every gluon that is emitted from the quark can itself
emit further gluons, and so forth. Most of the emissions will either be in almost the same direction as the
original quark (due to the collinear divergence) and/or be soft. This is represented in Figs. 5(a) and (b)
(for simplicity we’ve not shown gluons splitting to qq̄ pairs, which also occurs, with just a collinear
divergence). This still only gives a description of events in terms of quarks and gluons, whereas real
events consist of hadrons. Though hadronization, the transition from quarks and gluon to hadrons is not
something that we know how to calculate from first principles, one idea that has had some success is
Local Parton Hadron Duality (LPHD) (see, e.g., Ref. [22]). It states that after accounting for all gluon
and quark production down to scales ∼ Λ, the transition from partons to hadrons is essentially local in
phase space. Thus the hadron directions and momenta will be closely related to the partons’, and the
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colour factor in the quark case with the CA = 3 colour factor in the gluon case.

Since quarks and gluons emit in similar ways, every gluon that is emitted from the quark can itself
emit further gluons, and so forth. Most of the emissions will either be in almost the same direction as the
original quark (due to the collinear divergence) and/or be soft. This is represented in Figs. 5(a) and (b)
(for simplicity we’ve not shown gluons splitting to qq̄ pairs, which also occurs, with just a collinear
divergence). This still only gives a description of events in terms of quarks and gluons, whereas real
events consist of hadrons. Though hadronization, the transition from quarks and gluon to hadrons is not
something that we know how to calculate from first principles, one idea that has had some success is
Local Parton Hadron Duality (LPHD) (see, e.g., Ref. [22]). It states that after accounting for all gluon
and quark production down to scales ∼ Λ, the transition from partons to hadrons is essentially local in
phase space. Thus the hadron directions and momenta will be closely related to the partons’, and the
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Fig. 5: Emission pattern from a qq̄ event, with first a single gluon (a), then multiple emissions of gluons both
from the qq̄ pair and from the previously emitted gluons (b), followed by some process, ‘hadronization’, that
causes hadrons to be produced from the gluons, giving an event (c), that structurally resembles a real event (d)
(e+e− → Z →hadrons at LEP in the OPAL detector)

which, numerically, corresponds to ⟨Ng⟩ ≃ 2. This is neither small numerically, nor parametrically
(∼ 1/αs). Does this render perturbation completely useless for anything other than total cross sections?

We can follow two possible avenues to help answer this question. One approach is to calculate
the next order, and see what structure it has. Alternatively we can ask whether there are final-state
observables that have a better-behaved perturbative series than ‘the mean number of gluons’.

2.3.1 Gluon (and hadron) multiplicity
Once one gluon has been emitted, it can itself emit further gluons. To understand what the gluon multi-
plicity might look like to higher orders, it’s useful to write down the general pattern of emission of a soft
gluon both from a quark and from a gluon, which is essentially independent of the process that produced
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t-angular info’ encoded in decay products

• When other quarks produced:    

• Tops decay before hadronize:    

Understanding the 

inside of massive boosted jets
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t-angular info’ encoded in decay products

• When other quarks produced:    

• Tops decay before hadronize:    

(ii) Angularity (filtering) & planar flow;

(i) Mass;

Jet substructure

(iii) Beyond shapes, template function.
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Energy dist’ massive jets, splitting function

Altarelli-Parisi Equations in Clavelli-Nilles Article

December 29, 2010

1 Introduction

In their article [1], Clavelli and Nilles calculate the cross-section for producing massive jets in e+e�

collisions: d�
dM2 , where M2

H/L can be the mass of the heavier / lighter jet. They start by calculating

only one massive jet to first order in �(s). This results from qq̄ generation and one quark emitting
a gluon. The calculation is done diagrammatically, and later (for two massive jets) using AP
equations.

2 Word for Word from [1]

In QCD the probability for a parton j to emit a parton i with energy fraction x at angle ⇥ is

�(s)

⇤
Pij(x)dx

d⇥

⇥

in this leading-logarithm approximation. Here Pij(x) is the Altarelli-Parisi matrix [2]

Pqq(x) =
4

3

1 + x2

1� x
= Pgq(1� x) (5.5a)

Pqg(x) =
1

2
[x2 + (1� x)2] (5.5b)

Pgg(x) = 6


x

1� x
+

1� x

x
+ x(1� x)

�
(5.5c)

Thus the probability for a parton j to dissociate into two partons with invariant mass M is

pj(M
2)dM2 =

�(s)

2⇤

dM2
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X

i

Z 1

M2/s
Pij(x)dx (5.6)

One finds

pq(M
2) =

8�(s)
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1

M2
(ln s/M2 � 3

4
) (5.7)

and

pg(M
2) =

6�(s)

⇤M2
(ln s/M2 � 8

9
) (5.8)
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The Splitting Function (leading log, gluon emission)

In the limit where the emitted gluon is soft and collinear we find:

As discussed below, above limit seems 
(fortunately) to be valid for a search for 

massive boosted jets:

 The big picture: Energy flow of massive 
narrow jets, QCD first

✦Interesting in studying narrow, massive 

high Pt jets: mpeak ⌧ mJ ⌧ PT R , R⌧ 1

CDF: CDF/PUB/JET/PUBLIC/10199; 1106.5952 [hep-ex].

⇤QCD ⌧
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✦ Use simple perturbation theory to define & compute set of 
jet-shape variables.
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mJ ⇠ p⇡✓ � ⇤QCD
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✦ Use simple perturbation theory to define & compute set of 
jet-shape variables.
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 The big picture: Energy flow of massive 
narrow jets, QCD first

✦ Interested in narrow, massive energetic 
(boosted) jets: 
 mpeak ⌧ mJ ⌧ PT R , R⌧ 1

CDF: CDF/PUB/JET/PUBLIC/10199; 1106.5952 [hep-ex].
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Importance of jet mass, QCD story I

♦ Jet mass definition:

m2
J = (

P
i2R Pi)2, Pi2 = 0 , for EJ � mJ � ⇤QCD .

t-angular info’ encoded in decay products

• When other quarks produced:    

• Tops decay before hadronize:    

♦QCD: soft collinear singularities => narrow jets are “light”. 

a) q

q

b) q

q

c) q

q

!, K, p, ...

d)

Fig. 5: Emission pattern from a qq̄ event, with first a single gluon (a), then multiple emissions of gluons both
from the qq̄ pair and from the previously emitted gluons (b), followed by some process, ‘hadronization’, that
causes hadrons to be produced from the gluons, giving an event (c), that structurally resembles a real event (d)
(e+e− → Z →hadrons at LEP in the OPAL detector)

which, numerically, corresponds to ⟨Ng⟩ ≃ 2. This is neither small numerically, nor parametrically
(∼ 1/αs). Does this render perturbation completely useless for anything other than total cross sections?

We can follow two possible avenues to help answer this question. One approach is to calculate
the next order, and see what structure it has. Alternatively we can ask whether there are final-state
observables that have a better-behaved perturbative series than ‘the mean number of gluons’.

2.3.1 Gluon (and hadron) multiplicity
Once one gluon has been emitted, it can itself emit further gluons. To understand what the gluon multi-
plicity might look like to higher orders, it’s useful to write down the general pattern of emission of a soft
gluon both from a quark and from a gluon, which is essentially independent of the process that produced
the ‘emitter’:

p

k
≃

2αsCF

π

dE

E

dθ

θ
, (26a)

p

k
" ≃

2αsCA

π

dE

E

dθ

θ
. (26b)

These expressions are valid when the emitted gluon is much lower in energy than the emitter, k ≪ p,
and when the emission angle θ is much smaller than the angle between the emitter and any other parton
in the event (this is known as the condition of angular ordering [21]). The structure of emission of a soft
gluon is almost identical from a quark and from a gluon, except for the substitution of the CF = 4/3
colour factor in the quark case with the CA = 3 colour factor in the gluon case.

Since quarks and gluons emit in similar ways, every gluon that is emitted from the quark can itself
emit further gluons, and so forth. Most of the emissions will either be in almost the same direction as the
original quark (due to the collinear divergence) and/or be soft. This is represented in Figs. 5(a) and (b)
(for simplicity we’ve not shown gluons splitting to qq̄ pairs, which also occurs, with just a collinear
divergence). This still only gives a description of events in terms of quarks and gluons, whereas real
events consist of hadrons. Though hadronization, the transition from quarks and gluon to hadrons is not
something that we know how to calculate from first principles, one idea that has had some success is
Local Parton Hadron Duality (LPHD) (see, e.g., Ref. [22]). It states that after accounting for all gluon
and quark production down to scales ∼ Λ, the transition from partons to hadrons is essentially local in
phase space. Thus the hadron directions and momenta will be closely related to the partons’, and the
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Since quarks and gluons emit in similar ways, every gluon that is emitted from the quark can itself
emit further gluons, and so forth. Most of the emissions will either be in almost the same direction as the
original quark (due to the collinear divergence) and/or be soft. This is represented in Figs. 5(a) and (b)
(for simplicity we’ve not shown gluons splitting to qq̄ pairs, which also occurs, with just a collinear
divergence). This still only gives a description of events in terms of quarks and gluons, whereas real
events consist of hadrons. Though hadronization, the transition from quarks and gluon to hadrons is not
something that we know how to calculate from first principles, one idea that has had some success is
Local Parton Hadron Duality (LPHD) (see, e.g., Ref. [22]). It states that after accounting for all gluon
and quark production down to scales ∼ Λ, the transition from partons to hadrons is essentially local in
phase space. Thus the hadron directions and momenta will be closely related to the partons’, and the
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from the qq̄ pair and from the previously emitted gluons (b), followed by some process, ‘hadronization’, that
causes hadrons to be produced from the gluons, giving an event (c), that structurally resembles a real event (d)
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which, numerically, corresponds to ⟨Ng⟩ ≃ 2. This is neither small numerically, nor parametrically
(∼ 1/αs). Does this render perturbation completely useless for anything other than total cross sections?

We can follow two possible avenues to help answer this question. One approach is to calculate
the next order, and see what structure it has. Alternatively we can ask whether there are final-state
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Once one gluon has been emitted, it can itself emit further gluons. To understand what the gluon multi-
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Energy dist’ massive jets, splitting function

Altarelli-Parisi Equations in Clavelli-Nilles Article

December 29, 2010

1 Introduction

In their article [1], Clavelli and Nilles calculate the cross-section for producing massive jets in e+e�

collisions: d�
dM2 , where M2

H/L can be the mass of the heavier / lighter jet. They start by calculating

only one massive jet to first order in �(s). This results from qq̄ generation and one quark emitting
a gluon. The calculation is done diagrammatically, and later (for two massive jets) using AP
equations.

2 Word for Word from [1]

In QCD the probability for a parton j to emit a parton i with energy fraction x at angle ⇥ is

�(s)

⇤
Pij(x)dx

d⇥

⇥

in this leading-logarithm approximation. Here Pij(x) is the Altarelli-Parisi matrix [2]

Pqq(x) =
4

3

1 + x2

1� x
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1

2
[x2 + (1� x)2] (5.5b)
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
x
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x
+ x(1� x)

�
(5.5c)

Thus the probability for a parton j to dissociate into two partons with invariant mass M is

pj(M
2)dM2 =

�(s)
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i

Z 1
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Pij(x)dx (5.6)

One finds
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(ln s/M2 � 3

4
) (5.7)

and
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9
) (5.8)
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Since signal is EW mass boosted particles, obvious 
variable to distinguish between signal & QCD 
background is the jet mass.
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Jet mass from splitting function (leading log)

Questions: what are the relevant mass range for this 
approx’ for jet of E~1 TeV & R=0.4 ?
What is the average jet mass for these parameters?
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We can use fix order perturbation theory.
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Summary QCD jet mass

resummation fixed order next order

Questions:  What is the shape of top jet mass distribution?
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Jet substructure beyond mass

2-body partonic approximation actually tells us more:

Splitting function: energy distribution of 
massive jets
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⇡⇡
↵s(mJ)⌧ 1

mJ ⇠ p⇡✓ � ⇤QCD

)✓

d� / dEg

Eg

d✓

✓ Altarelli-Parisi (77)

♦ Use singular structure (soft-collinear) to capture 

the leading behavior:

♦ For large mass,                                  ,  we get 3 predictions:m2
J ⇡ EgEJ ✓2 � ⇤QCD

d�
dm2

J
/ CF

m2
J

log

⇣
E2R2

m2
J

⌘

angular distribution:

mass distribution:

d2�
dm2

Jd✓
/ CF

m2
J✓

x , and ✓min = 2mJ
EJ

Almeida, Lee, GP, Stermam, Sung & Virzi (09);
Almeida, Lee, GP, Sung & Virzi (09).

Kinematics is trivial, for given mass & momenta: a single more 
variable, distribution extracted from splitting function.

Questions:  Show that the Higgs jet angular distribution is
                  given by      , with the same min’ angle.

Splitting function: energy distribution of 
massive jets
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✓ Altarelli-Parisi (77)

♦ Use singular structure (soft-collinear) to capture 

the leading behavior:

♦ For large mass,                                  ,  we get 3 predictions:m2
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Almeida, Lee, GP, Stermam, Sung & Virzi (09);
Almeida, Lee, GP, Sung & Virzi (09).
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Splitting function: energy distribution of 

massive jets
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Testing with real data
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          Boosted jets’ angular distribution, angularity 

Almeida, Lee, GP, Sterman & Sung (10)
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          Boosted jets’ angular distribution, angularity 

Almeida, Lee, GP, Sterman & Sung (10)
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          Boosted jets’ angular distribution, angularity 

Almeida, Lee, GP, Sterman & Sung (10)
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Summary 
LHC opens a new era: colliders energy > electroweak (EW) 
scale.

Probing the mechanism of EW symmetry breaking.

New phenomena is kinematically allowed a shot of looking
at new physics related to naturalness.

Calculation at the LHC are challenging due to nature of 
incoming composite particles.

Yet simple concepts as parton luminosities & understanding 
kinematics & jets allow for (semi-)quantitative control.
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