# LHC Phenomenology 

## Gilad Perez

Weizmann Inst.

Invisibles School 2015



## Outline (totally subjective)

## Lecture I:

- Some motivation.
- Calculating LHC cross sections (Xsection).
- Parton distribution functions, parton luminosities.


## Lecture II:

- Example, top-pair Xsection calculation.
- Kinematics \& resonance search.


## Outline

## Lecture III:

- Resonance production vs. EFT production.
- Intro to jet phys.


## Lecture IV:

- Jets cont'.
- Jet substructure phys., boosted massive jets. (if time permits)


## Lecture I:

## Some motivation (SM problems, naturalness);

## How to calculate Xsections @ the LHC; <br> Parton distribution functions (PDFs) parton luminosities.

Link to notes: https://www.dropbox.com/s/znmb3xod9en41hi/LHC Gilad Perez Lectures \%20new.pdf?dl=0
Mathematica notebook+PDF files that are public, if you are interested in doing the ex.: https://www.dropbox.com/s/xnr0449ehjndri1/Example invisibles LHC.nb?dl=0 https://www.dropbox.com/s/q1mdtbt5qyoj229/Lall14.txt?dl=0 https://www.dropbox.com/s/7j6xelcg7k38m8r/Lall100.txt?dl=0 Credit: my student, Yotam Soreq. For advanced tools, see Fabio Maltoni's lectures.

## Why the LHC? What are the problems of the Standard Model* (SM), before the LHC started?

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| WW/unitarity, <br> masses | fine tuning, <br> naturalness | neutrino masses | flavor puzzle |
|  |  | dark matter | (strong CP) |
|  |  | baryogenesis | unification, <br> charge <br> quantisation |

[^0]
## Why the LHC? What are the problems of the Standard Model* (SM), before the LHC started?

| data driven, <br> clear scale | conceptual, <br> vague scale | data driven, <br> no clear <br> reachable scale | conceptual |
| :---: | :---: | :---: | :---: |
| WW/unitarity, <br> masses | fine tuning, <br> naturalness | neutrino masses | flavor puzzle |
|  |  | dark matter | (strong CP) |
|  |  | baryogenesis | unification, <br> charge <br> quantisation |

## Why the LHC? (2 subjective reasons)

- Higgs \& unitarity, suggests physics < TeV. Given the Higgs, the fine tuning problem requires new physics at a scale, generically, within the reach of the LHC .
[Fermion masses: another unitarity problem, relevant to LHC H-phys. (no time to discuss)]


## The SM Higgsless Unitarity Problem

$$
\mathcal{L}_{\mathrm{eff}}=M_{W}^{2} W_{\mu}^{+} W^{-\mu}+\frac{1}{2} M_{Z}^{2}
$$

The amplitude for scattering of longitudinal W's and Z's grows with the energy and eventually violates the unitarity bound:
$\mathrm{Ex}: \quad A\left(W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-}\right)=\frac{g_{2}^{2}}{4 M_{W}^{2}}(s+t)$

$s=\left(p_{1}+p_{2}\right)^{2}=\left(p_{3}+p_{4}\right)^{2}$
$t=\left(p_{1}-p_{3}\right)^{2}=\left(p_{2}-p_{4}\right)^{2}$
$u=\left(p_{1}-p_{4}\right)^{2}=\left(p_{2}-p_{3}\right)^{2}$


Mandelstam variables
Unitarity is restored by adding diagrams with intermediate Higgs in them as long as $m_{h}<800 \mathrm{GeV}$.



## The Higgs \& the fine tuning/naturalness problem

't Hooft definition of technical naturalness:
a parameter is natural if when it's set to 0 there's an enhanced symmetry.
Additive renormaliztion (unnatural parameters): $\quad d \lambda / \operatorname{dln} \mu \propto \lambda g(\mu)+f(\mu)$ Multiplicative renormalization (natural parameters): $\quad d \lambda / \operatorname{dn} \mu \propto \lambda g(\mu)$

The Higgs mass parameter is subject to additive renormalisation. Thus, it is sensitive to microscopic new physics dynamics.

Naturalness might give a hint: Higgs mass is additive, sensitive to microscopic scales. Within the SM it translates to UV sensitivity: $\frac{d m_{H}^{2}}{d \ln \mu}=\frac{3 m_{H}^{2}}{8 \pi^{2}}\left(2 \lambda+y_{t}^{2}-\frac{3 g_{2}^{2}}{4}-\frac{3 g_{1}^{2}}{20}\right)$.

Beyond the SM: any scale that couples to the Higgs (or even to tops, gauge ...) will induce a large shift to the Higgs mass, $\delta m_{H}^{2} \approx \frac{\alpha}{4 \pi} M^{2}$. Farina, Pappadopulo \& strumia (13)

## Tunning vs. fine tuning/naturalness problem

Flavor puzzle: the parameters' are small and hierarchical.
Is the flavor sector fine tuned? $m_{w} / m_{t} \sim 10^{-5}$.

Massless fermions theory: $\quad \mathcal{L}_{\text {fermions }} \in \bar{\psi}_{L} \partial_{\mu} \gamma_{\mu} \psi_{L}+\bar{\psi}_{R} \partial_{\mu} \gamma_{\mu} \psi_{R}$

Two separate $\mathrm{U}(1)$ 's:

$$
\psi_{L, R} \rightarrow e^{\theta_{L, R}} \psi_{L, R}
$$

Mass term breaks it to a single $\mathrm{U}(1): \quad \psi_{L} m \psi_{R}$


Only invariant under transformation with $\theta_{L}=\theta_{R}=\theta$

## Flavor is natural, what's left for the LHC?

Flavor parameters are natural, subject to tuning \& then radiatively stable, no UV sensitivity.

Within the SM the only exception is the Higgs mass. (\& the QCD angle \& the cosmological constant)

$$
\sqrt{\pi}
$$

Motivates: study the Higgs \& electroweak sym' breaking + naturalness.


Can be done at the LHC, a concrete task.

## LHC physics

## Why LHC?



## Need more E!

## Sync' radiation,

problem for circular e-collider:

$$
\left.\frac{d W}{d t}\right|_{e} \approx\left(\frac{e}{r}\right)^{2}\left(\frac{E}{m_{e}}\right)^{4} \sim 10^{4} \mathrm{GeV} \mathrm{~s}^{-1} \Rightarrow \times 10^{12} e \sim \text { MWs radiation! }
$$

$10^{13}$ improvement when e <=> proton


## Nothing's free - QCD dust

- Expect $m_{t}=130-200 \mathrm{GeV}$, who needs 2 TeV ?
- Proton anti-proton are composite:
- Typical E's much smaller: $E_{\text {event }}^{2}=x_{1} x_{2} E_{p \bar{p}}^{2}$

- We don't know what is ECM .
- We don't know which particles interacted.
- And ...


## Calculating Xsections at the LHC: Parton Distribution Functions (PDFs)

## (assuming no p-rapidity or pt cuts)

$$
\frac{d \sigma(p p \rightarrow f)}{d \hat{s}}=\sum_{i j} \hat{\sigma}_{i j}(\hat{s}) \int_{0}^{1} \int_{0}^{1} d x_{i} d x_{j} f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right) \delta\left(\hat{s}-x_{i} x_{j} s\right)
$$

$\hat{\sigma}(\hat{s})$ Corresponds to the Born/hard/local/short distance Xsection that we would like to calculate/measure.

For instance $g g \rightarrow t \bar{t}$
$\hat{s}=\left(p_{t}+p_{\bar{t}}\right)^{2}=\left(p_{g}+p_{g^{\prime}}\right)^{2}$


## PDFs (What are they?)

PDFs are non-perturbative objects.
Probability of finding a constituent $f$ with a longitudinal momentum fraction of $x \Rightarrow f_{f}(x) d x$


## PDFs at the LHC



Gluons dominate at low $x$.
To set the scale, $x=0.14$ at LHC is $0.14 * 7 T e V=1 T e V$
=> The LHC is a gluon collider !!!

## Calculating Xsections at the LHC: Parton Distribution Functions (PDFs)

## (assuming no p-rapidity or pt cuts)

$$
\frac{d \sigma(p p \rightarrow f)}{d \hat{s}}=\sum_{i j} \hat{\sigma}_{i j}(\hat{s}) \int_{0}^{1} \int_{0}^{1} d x_{i} d x_{j} f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right) \delta\left(\hat{s}-x_{i} x_{j} s\right)
$$

$\hat{\sigma}(\hat{s})$ Corresponds to the Born/hard/local/short distance Xsection that we would like to calculate/measure.

For instance $g g \rightarrow t \bar{t}$
$\hat{s}=\left(p_{t}+p_{\bar{t}}\right)^{2}=\left(p_{g}+p_{g^{\prime}}\right)^{2}$


## Summary lecture I:

## Some motivation (SM problems, naturalness);

## How to calculate Xsections @ the LHC;

Parton distribution functions (PDFs) parton luminosities.

Mathematica notebook+PDF files that are public, if you are interested in doing the ex.: https://www.dropbox.com/s/xnr0449ehjndri1/Example invisibles LHC.nb?dl=0
https://www.dropbox.com/s/q1mdtbt5qyoj229/Lall14.txt?dl=0
https://www.dropbox.com/s/7j6xelcg7k38m8r/Lall100.txt?dl=0
Homework:

1. is the electron mass a technical natural parameter? the up mass? neutrino Majorana masses? what happened if I will add to the SM a bare fermion mass? (say for the electron) 2. have a file with PDFs and parton luminosities where you can draw the above plots ...

## Beginning of 2nd Lecture

- Parton Luminosities (cont').
- Example, top-pair Xsection calculation.
- Kinematics.


## Physically only pairs of PDF are important

(assuming no p-rapidity or pt cuts)

$$
\begin{aligned}
& \frac{d \sigma(p p \rightarrow f)}{d \hat{s}}=\sum_{i j} \hat{\sigma}_{i j}(\hat{s}) \int_{0}^{1} \int_{0}^{1} d x_{i} d x_{j} f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right) \delta\left(\hat{s}-x_{i} x_{j} s\right) \\
& =\sum_{i j} \frac{\hat{\sigma}_{i j}(\hat{s})}{\hat{s}} \int_{0}^{1} \int_{0}^{1} d x_{i} d x_{j} f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right) \delta\left(1-x_{i} x_{j} \frac{s}{\hat{S}}\right) \\
& \tau=\frac{\hat{s}}{s} \\
& \frac{d \sigma(p p \rightarrow f)}{d \tau}=\sum_{i j} \frac{\hat{\sigma}_{i j}(\hat{s})}{\tau} \int_{0}^{1} \int_{0}^{1} d x_{i} d x_{j} f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right) \delta\left(1-\frac{x_{i} x_{j}}{\tau}\right) \\
& \frac{d \sigma(p p \rightarrow f)}{d \tau}=\sum_{i j} \hat{\sigma}_{i j}(\hat{s}) \cdot \int_{\tau}^{1} d x_{i} \frac{1}{x_{i}} f_{i}\left(x_{i}\right) f_{j}\left(\frac{\tau}{x_{i}}\right)
\end{aligned}
$$

## Parton-parton luminosities

$$
\frac{d L_{i j}}{d \tau}=\frac{1}{1+\delta_{i j}} \int_{\tau}^{1} \frac{d x}{x}\left[f_{i}(x) f_{j}\left(\frac{\tau}{x}\right)+f_{i}\left(\frac{\tau}{x}\right) f_{j}(x)\right]
$$

- Function of dimensionless quantity:
- Scaling => independent of CM energy of proton proton collisions.
- However, $\hat{\sigma}_{i j}(\hat{s}) \equiv \hat{\sigma}_{i j}\left(\hat{E}^{2}\right)$ depends on E. The collider characteristics only help us understand the energy scale $E^{2}$ accessible given an $S$ for proton-proton collisions.


## Parton luminosity \& cross section scaling

Let us use some simple rescaling to get some intuition for the behaviour:

$$
\sigma(p p \rightarrow t \bar{t})=\int_{\tau_{\min }}^{1} d \tau \times \hat{\sigma}(\hat{s}=s \tau) \times\left.\frac{d \mathcal{L}}{d \tau}\right|_{\tau=\frac{\hat{s}}{s}}
$$

$$
=\int_{\tau_{\min }}^{1} \frac{\text { Why? Why? }}{} \frac{d \tau}{\tau} \times[\hat{s} \hat{\sigma}(\hat{s})] \times\left.\frac{\tau d \mathcal{L}}{\hat{s} d \tau}\right|_{\tau=\frac{\hat{s}}{s}}
$$

## Parton luminosity \& cross section scaling

Let us use some simple rescaling to get some intuition for the behaviour:

$$
\sigma(p p \rightarrow t \bar{t})=\int_{\tau_{\min }}^{1} d \tau \times \hat{\sigma}(\hat{s}=s \tau) \times\left.\frac{d \mathcal{L}}{d \tau}\right|_{\tau=\frac{\hat{s}}{s}}
$$

$$
=\int_{\tau_{\min }}^{1} \frac{d \tau}{\tau} \times[\hat{s} \hat{\sigma}(\hat{s})] \times\left.\frac{\tau d \mathcal{L}}{\hat{s} d \tau}\right|_{\tau=\frac{\hat{s}}{s}}
$$

order one dimensionless:
$\tau$ tends to naive dim' analysis
be small (NDA): O(0.1-0.01)

## Luminosity functions, adding Xsection scale



## Zooming-in on the $<1 \mathrm{TeV}$ region

Protons are "empty": $\mathrm{GeV}^{-1} \sim 0.4 \mathrm{mb}$


## Cross sections at 1.96 TeV versus 14 TeV Tevatron vs LHC

|  | Cross section |  | Ratio |
| :--- | :--- | :--- | :--- |
| $Z \rightarrow \mu \mu$ | 260 pb | 1750 pb | 6.7 |
| WW | 10 pb | 100 pb | 10 |
| $\mathrm{H}_{160 \mathrm{GeV}}$ | 0.2 pb | 25 pb | 125 |
| mSugra $_{\text {LM1 }}$ | 0.0006 pb | 50 pb | 80,000 |

At $10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{LHC}$ might accumulate $10 \mathrm{pb}^{-1}$ in one day!

## Collider Reach

Assuming similar scaling for background \& signal => same number of events:

$$
N_{\text {old }}=N_{\text {new }} \Leftrightarrow \frac{1}{\left(\frac{m_{\text {old }}^{2}}{s_{\text {old }}}\right)^{2,3}} \times \frac{1}{m_{\text {old }}^{2}} \times \mathcal{L}_{\text {old }}=\frac{1}{\left(\frac{m_{\text {new }}^{2}}{s_{\text {new }}}\right)^{2,3}} \times \frac{1}{m_{\text {new }}^{2}} \times \mathcal{L}_{\text {new }}
$$



$$
m_{\text {new }} \sim m_{\text {old }} \times\left(\frac{\mathcal{L}_{\text {new }}}{\mathcal{L}_{\text {old }}}\right)^{\frac{1}{6,8}} \times\left(\frac{\sqrt{s_{\text {new }}}}{\sqrt{s_{\text {old }}}}\right)^{\frac{2,3}{3,4}}
$$

$40 \%$ improvement, for the jump to $13 / 14$ TeV for same Lumi and another $60 \%$ for 300 inv fb ; consequently, overall roughly increase of 2-2.5 in reach.
But, many searches will enter the boosted regime => qualitative change of physics!

## Consider for example LHC top pair production

$$
\begin{gathered}
\sigma^{p(g) p(g) \rightarrow t \bar{t}}=\int_{\tau_{\min }}^{1} d \tau \hat{\sigma}^{t \bar{t}}(\hat{s}=\tau s) \frac{d \mathcal{L}_{g g}}{d \tau} \quad \tau_{\min }=\left(2 m_{t} / 14 \mathrm{TeV}\right)^{2} \\
\frac{d \mathcal{L}_{g g}}{d \tau}=\int_{\tau}^{1} \frac{d x}{x} f_{g}(x) f_{g}(\tau / x) \\
\beta=\sqrt{1-4 m_{t}^{2} / \hat{s}} \\
\hat{\sigma}_{g g \rightarrow t \bar{t}}=\frac{\pi \alpha_{s}^{2} \beta}{48 \hat{s}}\left(31 \beta+\left(\frac{33}{\beta}-18 \beta+\beta^{3}\right) \ln \left[\frac{1+\beta}{1-\beta}\right]-59\right)
\end{gathered}
$$

## The gluon luminosity function at LHCl 4

MSTW-PDF running factorisation scale as $Q^{2}=\hat{s}=\tau s=\tau \times 14^{2} \mathrm{TeV}^{2}$


Typical $\tau$ for $t \bar{t}$ proudction at LHC14: $\left(2 m_{t} / 14 \mathrm{TeV}\right)^{2} \sim 6 \times 10^{-4}$.

## The luminosity functions are rapidly falling

MSTW-PDF running factorisation scale as $Q^{2}=\hat{s}=\tau s=\tau \times 14^{2} \mathrm{TeV}^{2}$


## Generically, cross section falls even faster!

MSTW-PDF running factorisation scale as $Q^{2}=\hat{s}=\tau s=\tau \times 14^{2} \mathrm{TeV}^{2}$


Typical $\tau$ for $t \bar{t}$ proudction at LHC14: $\left(2 m_{t} / 14 \mathrm{TeV}\right)^{2} \sim 6 \times 10^{-4}$.

## Generically, cross section falls even faster!

MSTW-PDF running factorisation scale as $Q^{2}=\hat{s}=\tau s=\tau \times 14^{2} \mathrm{TeV}^{2}$

$$
\hat{\sigma}^{t t}(\tau) \frac{d \mathcal{L}_{g g}}{d \tau}
$$



Typical $\tau$ for $t \bar{t}$ proudction at LHC14: $\left(2 m_{t} / 14 \mathrm{TeV}\right)^{2} \sim 6 \times 10^{-4}$.

## Back to estimating LHC cross section

What are the implications for this rapid fall?


Massive particles ( $h, W, Z, t$, squarks, KK gluon ...) are produced near threshold.

Any dimensional cut (in the transverse direction),
$m_{x x}, p_{T}$, missing $E_{T}, H_{T}$, implies that the signal and background distributions would peak right where the cut is located.

Maybe we can use this fact for a quick \& rough estimation of the top pair Xsection?

Rough estimation for the LHC cross section step I:

## Replacing the integral with differential



Let's replace the integral with differential:

$$
\begin{aligned}
& \sigma^{p(g) p(g) \rightarrow t \bar{t}}=\left.\int_{\tau_{\min }}^{1} d \tau \hat{\sigma}^{t \bar{t}}(\hat{s}=\tau s) \frac{d \mathcal{L}_{g g}}{d \tau} \sim \Delta \tau \hat{\sigma}^{t \bar{t}}(\tau s) \frac{d \mathcal{L}_{g g}}{d \tau}\right|_{\tau \rightarrow \frac{4}{3} \tau_{\min }} \\
& \Delta \tau \sim \frac{4}{3} \tau_{\min }
\end{aligned}
$$

Rough NDA estimation for the cross section step I.I: Replacing the Born Xsection with its NDA value

NDA for 2->2 Xsection (far from threshold): $\hat{\sigma}(\hat{s}) \rightarrow \frac{1}{\hat{s}}$

$$
\begin{aligned}
& \sigma^{p(g) p(g) \rightarrow t \bar{t}}=\int_{\tau_{\min }}^{1} d \tau \quad \hat{\sigma}^{t \bar{t}}(\tau s) \frac{d \mathcal{L}_{g g}}{d \tau} \\
& \left.\sim \Delta \tau \hat{\sigma}^{t \bar{t}}(\tau s) \frac{d \mathcal{L}_{g g}}{d \tau}\right|_{\tau \rightarrow \frac{4}{3} \tau_{\min }} \\
& \left.\sim \Delta \tau \frac{\alpha_{s}^{2}}{\tau s} \frac{d \mathcal{L}_{g g}}{d \tau}\right|_{\tau \rightarrow \frac{4}{3} \tau_{\min }}
\end{aligned}
$$

## And the results are:

Precise ${ }^{\mathrm{LO}}: \sigma^{p(g) p(g) \rightarrow t \bar{t}}=\int_{\tau_{\text {min }}}^{1} d \tau \cdot \hat{\sigma}^{t \bar{t}}(\tau s) \cdot \frac{d \mathcal{L}_{g g}}{d \tau}=398.687 \mathrm{pb}$ Approx' luminosities: $\left.\Delta \tau \hat{\sigma}^{t \bar{t}}(\tau s) \frac{d \mathcal{L}_{g g}}{d \tau}\right|_{\tau \rightarrow \frac{4}{3} \tau_{\text {min }}}=354.212 \mathrm{pb}$
$" N D A ":\left.\Delta \tau \frac{\alpha_{s}^{2}}{\tau s} \frac{d \mathcal{L}_{g g}}{d \tau}\right|_{\tau \rightarrow \frac{4}{3} \tau_{\text {min }}}=940.538 \mathrm{pb}$

```
In[186]:= GeV2pb = 0.389 10^9 pb;
mt = 173.1;
\betat[shat_] := Sqrt[1-4 mt^2/shat]
\alphas=0.11;
\sigmaggtt[T_] := (\pi \alphas^2 \betat[T s14])/(
    48 т s14) (31 \betat[т s14]^2 + (33/\betat[т s14] - 18 \betat[т s14] + \betat[т s14]^3) Log[(1 + \betat[T s14])/(1 - \betat[T s14])] - 59)
In[191]:= NIntegrate[dLdtaugg14Num[Tp] \sigmaggtt[Tp], {Tp, (2 mt)^2/s14, 1}] GeV2pb
Out[191]= 398.687 pb
In[232]:= dLdtaugg14Num[4/3 (2 mt)^2/s14] \sigmaggtt[4/3 (2 mt)^2/s14] 4/3 (2 mt)^2/
    s14 GeV2pb
Out[232]= 354.212 pb
In[233]:= dLdtaugg14Num[4/3 (2 mt)^2/s14] ( \alphas^2/(4/3 (2 mt)^2)) 4/3 (2 mt)^2/s14 GeV2pb
Out[233]= 940.538 pb
```


## $t \bar{t}$ Xsection @ LHCI4, compare with state of the art:

Precise ${ }^{\mathrm{LO}}: \sigma^{p(g) p(g) \rightarrow t \bar{t}}=\int_{\tau_{\text {min }}}^{1} d \tau \quad \hat{\sigma}^{t \bar{t}}(\tau s) \frac{d \mathcal{L}_{g g}}{d \tau}=398.687 \mathrm{pb}$
Approx' luminosities: $\left.\Delta \tau \hat{\sigma}^{t \bar{t}}(\tau s) \frac{d \mathcal{L}_{g g}}{d \tau}\right|_{\tau \rightarrow \frac{4}{3} \tau_{\text {min }}}=354.212 \mathrm{pb}$
$" N D A ":\left.\Delta \tau \frac{\alpha_{s}^{2}}{\tau s} \frac{d \mathcal{L}_{g g}}{d \tau}\right|_{\tau \rightarrow \frac{4}{3} \tau_{\text {min }}}=940.538 \mathrm{pb}$

Theory: Xsection (Tevatron, LHC) now known to NNLO (+NnLL resum')

| Collider | $\sigma_{\text {tot }}[\mathrm{pb}]$ | scales $[\mathrm{pb}]$ | pdf $[\mathrm{pb}]$ |
| :---: | :---: | :---: | :---: |
| Tevatron | 7.164 | $+0.110(1.5 \%)$ | $+0.169(2.4 \%)$ |
| $-0.200(2.8 \%)$ | $-0.122(1.7 \%)$ |  |  |
| LHC 7 TeV | 172.0 | $+4.4(2.6 \%)$ | $+4.7(2.7 \%)$ |
| LHC 8 TeV | 245.8 | $-5.8(3.4 \%)$ | $-4.8(2.8 \%)$ |
| LHC 14 TeV | 953.6 | $-8.4(3.5 \%)$ | $+6.2(2.5 \%)$ |
| $22.7(2.4 \%)$ | $-6.4(2.6 \%)$ |  |  |

## Some kinematics

## LHC, longitudinal vs. transverse

## Relativistic invariant phase-space element:

$\mathrm{d} \tau=\mathrm{d}^{3} \mathrm{p} / \mathrm{E}=\mathrm{dp}_{\mathrm{x}} \mathrm{dp}_{\mathrm{y}} \mathrm{dp}_{\mathrm{z}} / \mathrm{E}$
Define pp collision axis along $z$-axis:
From $\mathrm{p}^{\mu}=\left(\mathrm{E}, \mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}, \mathrm{p}_{\mathrm{z}}\right)-$ which are invariant under boosts along z ?
the two longitudinal components: $E$ and $p_{z}$ are NOT invariant the two transverse components: $p_{x}$ and $p_{y}$ (and $d p_{x}, d p_{y}$ ) ARE invariant
Need all variables invariant for boost along z-axis:
For convenience, define $\mathbf{p}^{\mu}$ with only 1 component not Lorentz invariant Choose $\mathrm{p}_{\mathrm{T}}, \mathrm{m}, \phi$ as the "transverse" (invariant) coordinates where $p_{T} \equiv p \sin (\theta)$ and $\phi$ is the azimuthal angle As $4^{\text {th }}$ coordinate define "rapidity": $\mathrm{y}=1 / 2 \ln [(\mathrm{E}+\mathrm{pz}) /(\mathrm{E}-\mathrm{pz})]$

## Rapidity

Form a boost of velocity $\beta$ along $z$ axis

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{z}} \Rightarrow \gamma\left(\mathrm{p}_{\mathrm{z}}+\beta \mathrm{E}\right) \\
& \mathrm{E} \Rightarrow \gamma\left(\mathrm{E}+\beta \mathrm{p}_{\mathrm{z}}\right)
\end{aligned}
$$

Transform rapidity $\Rightarrow$

$$
\begin{aligned}
y & =\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}} \Rightarrow \frac{1}{2} \ln \frac{\gamma\left(E+\beta p_{z}\right)+\gamma\left(p_{z}+\beta E\right)}{\gamma\left(E+\beta p_{z}\right)-\gamma\left(p_{z}+\beta E\right)} \\
& =\frac{1}{2} \ln \frac{\left(E+p_{z}\right)(1+\beta)}{\left(E-p_{z}\right)(1-\beta)}=y+\ln \gamma(1+\beta) \\
y & \Rightarrow y+y_{b}
\end{aligned}
$$

Boosts along the beam axis change $y$ by a constant, $y_{b}$ :
$\left(p_{T}, \mathrm{y}, \phi, \mathrm{m}\right) \Rightarrow\left(\mathrm{p}_{\mathrm{T}}, \mathrm{y}+\mathrm{y}_{\mathrm{b}}, \phi, \mathrm{m}\right)$ with $\mathrm{y} \Rightarrow \mathrm{y}+\mathrm{y}_{\mathrm{b}}, \mathrm{y}_{\mathrm{b}} \equiv \ln \gamma(1+\beta)$
rapidity is simply additive

## Measure

Boosts along the beam axis change y by a constant, $\mathrm{y}_{b}$ : $\mathrm{y}->\mathrm{y}+y_{b}=>$ rapidity is simply additive.

Can change coordinate from:
$d x_{1} d x_{2}$ to $d y d \tau$, with identity Jacobian.

LHC: $\mathrm{q}_{1}=1 / 2 \sqrt{\mathrm{~s}}\left(x_{1}, 0,0, x_{1}\right) \mathrm{q}_{2}=1 / 2 \sqrt{\mathrm{~s}}\left(x_{2}, 0,0,-x_{2}\right)$
Rapidity of system $\mathrm{q}_{1}+\mathrm{q}_{2}$ is: $\mathrm{y}=1 / 2 \ln \left[\left(\mathrm{E}+\mathrm{p}_{\mathrm{z}}\right) /\left(\mathrm{E}-\mathrm{p}_{\mathrm{z}}\right)\right]=1 / 2 \ln \left(x_{1} / x_{2}\right)$

## "Pseudo" and "Real" rapidity

The relation between $y, \beta$ and $\theta$ can be seen using $p z=p \cos \theta$ and $p=\beta E$ :

$$
y=\frac{1}{2} \cdot \ln \frac{\left(E+p_{z}\right)}{\left(E-p_{z}\right)}=\frac{1}{2} \cdot \ln \frac{(1+\beta \cos \theta)}{(1-\beta \cos \theta)}
$$

This expression can almost associate the position in the detector $(\theta)$ with the rapidity $y$, apart from the $\beta$ terms.
However, at the LHC (and Tevatron, HERA), $\geqslant 90 \%$ of the particles in the detector are pions with $\beta \approx 1$. Therefore we can introduce the "pseudorapidity" defined as $\eta=y(\theta)$ for $\beta=1$ :

$$
\eta=\frac{1}{2} \cdot \ln \frac{(1+\cos \theta)}{(1-\cos \theta)}=\ln \frac{\cos (\theta / 2)}{\sin (\theta / 2)}=-\ln \left(\tan \frac{\theta}{2}\right) \quad \begin{aligned}
& \cos ^{2} \theta / 2=1 / 2 \cdot(1+\cos \theta) \\
& \sin ^{2} \theta / 2=1 / 2 \cdot(1-\cos \theta)
\end{aligned}
$$

The pseudorapidity $\eta$ is a good approximation of the true relativistic rapidity $y$ when a particle is "relativistic".
It is a handy variable to approximate the rapidity $y$ if the mass and the momentum of a particle are not known.


## Summary lecture II:

## How to calculate Xsections @ the LHC;

## Parton luminosities;

## Some kinematics

## Homework:

1. How much gain in mass-reach will be achieved moving from $300 / \mathrm{fb}$ to $\mathrm{HL} 3000 / \mathrm{fb}$ ?
2. Repeat for a 100 TeV machine. What searches would benefit more from a HL upgrade?
3. How many tops where produced at the Tevatron? What was the dominant production mechanism?
4. Top-partners (appears in Little/Composite Higgs models), are heavy vector-like quarks; what is the bound on their masses such that, so far, < 10 events have been produced at the LHC run I?

## Lecture III:

(Higgs) Resonance production @ LHC;
The EFT region;
Intro to Jets

## Resonance based searches

## Resonance based searches

Because of the large QCD uncertainties, it is much easier to search for bumps over continuous distribution, then to look for small depletions ...

Consider a particle $H$ with a width and mass:

$$
\Gamma_{H} \text { and } m_{H}
$$

Resonances distribution described via Bright-Wigner formula

$$
\frac{1}{\pi} \frac{\hat{s} \Gamma_{H} / M_{H}}{\left(\hat{s}-M_{H}^{2}\right)^{2}+\left(\hat{s} \Gamma_{H} / M_{H}\right)^{2}}
$$

## Resonance based searches

Let us suppose that the particle is narrow:

$$
\Gamma_{H} \ll m_{H}
$$

(in many cases also, the LHC-exp' resolution is poor ...)

$$
\begin{aligned}
\frac{\ddots}{\pi} \frac{\hat{s}_{H} / M_{H}}{\left(\hat{s}-M_{H}^{2}\right)^{2}+\left(\hat{s} \Gamma_{H} / M_{H}\right)^{2}} & \longrightarrow \delta\left(\hat{s}-M_{H}^{2}\right) \\
\hat{\sigma}_{\mathrm{Lo}}(g g \rightarrow H) & =\frac{\pi^{2}}{8 M_{H}} \Gamma_{\mathrm{Lo}}(H \rightarrow g g) \delta\left(\hat{s}-M_{H}^{2}\right)
\end{aligned}
$$

## Resonance based estimation \& scaling

$$
\begin{aligned}
\sigma(p p \rightarrow H) & \approx \int d \tau \frac{d \mathcal{L}}{d \tau} \hat{\sigma}(H \rightarrow g g) \approx \int d \tau \frac{d \mathcal{L}}{d \tau} \frac{\pi^{2}}{8 M_{H}} \Gamma(H \rightarrow g g) \delta\left(\hat{s}-M_{H}^{2}\right) \\
& =\int d \tau \frac{d \mathcal{L}}{d \tau} \frac{\pi^{2}}{8 M_{H} s} \Gamma(H \rightarrow g g) \delta\left(\tau-M_{H}^{2} / s\right)=\left.\frac{d \mathcal{L}}{d \tau}\right|_{\tau=\frac{M_{H}^{2}}{s} \times \frac{\pi^{2} \Gamma(H \rightarrow g g)}{8 M_{H} s}}
\end{aligned}
$$

The difference from the non-resonance scaling: $1 /$ mass as opposed to $1 /$ mass $^{2}$.

Final results are similar.
For bounds => background dominated => scaling unchanged.

$$
\begin{gathered}
N_{\text {old }}=N_{\text {new }} \Leftrightarrow \frac{1}{\left(\frac{m_{2 \text { ald }}^{2}}{s_{\text {old }}}\right)^{2,3}} \times \frac{1}{m_{\text {old }}^{2}} \times \mathcal{C}_{\text {old }}=\frac{1}{\left(\frac{m_{2}^{2}}{s_{\text {oeew }}}\right)^{2,3}} \times \frac{1}{m_{\text {new }}^{2}} \times \mathcal{L}_{\text {new }} \\
\quad m_{\text {new }} \sim m_{\text {old }} \times\left(\frac{\mathcal{L}_{\text {new }}}{\mathcal{L}_{\text {old }}}\right)^{\frac{1}{6,8}} \times\left(\frac{\sqrt{s_{\text {new }}}}{\sqrt{s_{\text {old }}}}\right)^{\frac{2,3}{3,4}}
\end{gathered}
$$

## Resonance based estimation, the Higgs

$$
\begin{aligned}
\sigma(p p \rightarrow H) & \approx \int d \tau \frac{d \mathcal{L}}{d \tau} \hat{\sigma}(H \rightarrow g g) \approx \int d \tau \frac{d \mathcal{L}}{d \tau} \frac{\pi^{2}}{8 M_{H}} \Gamma(H \rightarrow g g) \delta\left(\hat{s}-M_{H}^{2}\right) \\
& =\int d \tau \frac{d \mathcal{L}}{d \tau} \frac{\pi^{2}}{8 M_{H} s} \Gamma(H \rightarrow g g) \delta\left(\tau-M_{H}^{2} / s\right)=\left.\frac{d \mathcal{L}}{d \tau}\right|_{\tau=\frac{M_{H}^{2}}{s}} \times \frac{\pi^{2} \Gamma(H \rightarrow g g)}{8 M_{H} s}
\end{aligned}
$$

The example is Higgs. It is super narrow its width is roughly $4 \mathrm{MeV} .\left(\Gamma_{H} / M_{H} \sim 10^{-5}\right)$

Why is the Higgs so narrow? calculate its width? assume that the bottom's yield $50 \%$ of it for simplicity; with:

$$
\Gamma_{\text {scalar }}=\sum_{i} g_{f_{i}}^{2} m_{H}^{2} / 8 \pi
$$

## Higgs on-shell cross section (oth order)

$$
\begin{gathered}
\sigma(p p \rightarrow H)=\left.\frac{d \mathcal{L}}{d \tau}\right|_{\tau=\frac{M_{H}^{2}}{s}} \times \frac{\pi^{2} \Gamma(H \rightarrow g g)}{8 M_{H} s} \\
4 \mathrm{MeV} \quad 9 \%
\end{gathered}
$$

Ex.: calculate the above for 14 and 100 TeV .
(I got $\sim 30 \mathrm{pb}$ using my code, correct answer is 50 pb , large NLO/kfactor correction)

## Higgs on-shell cross section, EFT+NDA

$$
\begin{gathered}
\Gamma(h \rightarrow g g)=\frac{G_{F} \alpha_{s}^{2} m_{h}^{3}}{36 \sqrt{2} \pi^{3}}\left|\sum_{q} \kappa_{q} A_{1 / 2}^{H}\left(\tau_{q}\right)\right|^{2} \\
\sum_{q} \kappa_{q} A_{1 / 2}^{H}\left(\tau_{q}\right) \approx 1.38 \kappa_{t}-(0.044-0.048 i) \kappa_{\Delta} \approx(4 / 3) \kappa_{t} \\
\text { We can indeed check that this form } \sim 9 \% \text { of the Higgs decays: }
\end{gathered} \frac{\alpha_{s}^{2} m_{h}^{3}}{72 \pi^{3} v}
$$



The amplitude scales as $1 / \mathrm{v}$, therefore the rate scales as $1 / \mathrm{v}^{2}$, in order to get the right dimension for the rate (mass dim.) we compensate by $\mathrm{m}^{3} \mathrm{~h}$, such that $\Gamma \propto \mathrm{m}^{3}{ }_{\mathrm{h}} / \mathrm{v}^{2}$.

# Resonance vs. EFT @ hadronic collisions 

## Resonance vs. EFT @ hadronic collisions

Often heavy \& narrow resonances tends to "broaden" because of competition with off-shell production that are strongly supported by the rapidly falling PDFs.
eventually, it is not useful anymore to search for them but to look at their virtual contributions.

## Resonance vs.EFT @ hadronic collisions

Let us take as an example a narrow $Z^{\prime}$

top-pair narrow resonance


Search for high-mass dilepton resonances with the ATLAS detector, 1405.4123v2 .

## Resonance vs.EFT @ hadronic collisions

Let us take as an example a narrow $Z^{\prime}$.


For dielectron masses above 200 GeV , the mass resolution is below $2 \%$ over the entire $\eta$ range.

| Model | Width <br> $[\%]$ |
| :--- | :---: |
| $Z^{\prime}$ | 3.0 |

Search for high-mass dilepton resonances with the ATLAS detector, 1405.4123v2 .

## Resonance vs.EFT @ hadronic collisions

EFT lectures (Kaplan):


Neglecting interference, NDA, how should the cross section go like?

## Resonance vs.EFT @ hadronic collisions

EFT lectures (Kaplan):


Non interfering, NDA: $\quad \hat{\sigma}_{L O} \approx\left|g_{u \bar{u}} g_{e \bar{e}}\right|^{2} \frac{\hat{E}^{2}}{4 M_{Z^{\prime}}^{4}}$
EFT contributions rising with center of mass energy ${ }^{2}$ ! What is the corresponding scaling in the interference case?

## Resonance vs.EFT @ hadronic collisions

$$
\hat{\sigma}_{L O} \approx\left|g_{u \bar{u}} g_{e \bar{e}}\right|^{2} \frac{\hat{E}^{2}}{4 M_{Z^{\prime}}^{4}}
$$

EFT contributions rising with center of mass energy ${ }^{2}$ !


Resonance vs.EFT @ hadronic collisions

$$
\hat{\sigma}_{L O} \approx\left|g_{u \bar{u}} g_{e \bar{e}}\right|^{2} \frac{\hat{E}^{2}}{4 M_{Z^{\prime}}^{4}}
$$

EFT, rising with COM energy ${ }^{2}$, leads to IR-resonance broadening.

$$
M_{Z^{\prime}}=1 \mathrm{TeV}
$$



## Few words about jets

## Tops and jets

## Tops decay almost instantly.

Thus at the LHC we identify tops via their decay products:


Unfortunately, isolated gluons/quarks are not gauge invariant objects, they are not observables, in real events we "see" jets.

## But what are jets??

Intuitive definition: spray of particles moving in the same direction.

More precise: Objects that describe differential energy flow that are sensitive to microscopic (perturbative) dynamics \& insensitive to long distance (non-perturbative) physics.

However, before going differentially, begin $\backslash w$ inclusive case.

## Lecture III summary:

## (Higgs) Resonance production @ LHC;

## The EFT region;

Intro to Jets (ratio of had'/lepton in lepton collider, at NLO)

Homework:
Why is the Higgs narrow?
Calculate the Higgs width from the decay to bottoms, then using the amplitude given, verify that the gluon final state BR is $\sim 9 \%$.
Using the PDF calculate the Higgs production Xsec' using the narrow width approx.
What is the corresponding (to EFT w 4fermions) scaling in the interference case?
Show that: $s\left(1-x_{1}\right)=m_{2 g}$

## Lecture IV:

Jets, cont';
Definitions, Sterman-Weinberg, Jade;
The $k_{t}$ variety;
Boosted-massive-jets, jet substructure

## Intro': $e^{+} e^{-} \rightarrow$ quarks

$$
R=\frac{\sigma(e e \rightarrow \text { hadrons })}{\sigma(e e \rightarrow \mu \mu)}
$$

Far below the $Z$ pole: $\quad R=N_{c} \sum_{q} Q_{q}^{2}$

On the $Z$ pole, the corresponding quantity is the ratio of the partial decay widths of the $Z$ to hadrons and to muon pairs:

$$
R_{Z}=\frac{\Gamma(Z \rightarrow \text { hadrons })}{\Gamma\left(Z \rightarrow \mu^{+} \mu^{-}\right)}=\frac{\sum_{q} \Gamma(Z \rightarrow q \bar{q})}{\Gamma\left(Z \rightarrow \mu^{+} \mu^{-}\right)}=\frac{3 \sum_{q}\left(a_{q}^{2}+v_{q}^{2}\right)}{a_{\mu}^{2}+v_{\mu}^{2}} .
$$

## Intro': $e^{+} e^{-} \rightarrow$ quarks

For the 3 light quarks: $\quad R=3\left[\left(\frac{2}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}\right]=2$
Adding $c, c+b$ yield $R=10 / 3,11 / 3$


Contribution from higher orders ...

$$
e^{+}+e^{-} \rightarrow q+\bar{q}+g
$$



$$
x_{1,2}=2 E_{q, \bar{q}} / \sqrt{s}
$$

## Question: are the $x$ 's Lorentz invariant?

$$
\text { Show that: } s\left(1-x_{1}\right)=m_{2 g}^{2}
$$

## Intro': $e^{+} e^{-} \rightarrow$ quarks @ NLO

Contribution from higher orders ...

$$
\begin{aligned}
& e^{+}+e^{-} \rightarrow q+\bar{q}+g \\
& \sigma^{q \bar{q} g}=N_{c} \sigma_{0} \frac{C_{F} \alpha_{s}}{2 \pi} \sum_{q} Q_{q}^{2} \int d x_{1} d x_{2} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}
\end{aligned}
$$


where the integration region is for:

$$
\sigma_{0}=\frac{4 \pi \alpha^{2}}{3 s} Q_{f}^{2}
$$

$$
0 \leq x_{1,2} \leq 1, \quad x_{1}+x_{2}>1
$$

$$
C F=4 / 3
$$

$$
x_{1,2}=2 E_{q, \bar{q}} / \sqrt{s}
$$

## Intro': $e^{+} e^{-} \rightarrow$ quarks @ NLO

$$
\sigma^{q \bar{q} g}=N_{c} \sigma_{0} \frac{C_{F} \alpha_{s}}{2 \pi} \sum_{q} Q_{q}^{2} \int d x_{1} d x_{2} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}
$$

Integrals are divergent at $x_{i}=1$, what is special about it?

$$
1-x_{1}=x_{2} \frac{E_{g}}{\sqrt{s}}\left(1-\cos \theta_{2 g}\right)
$$

The gluon is either soft, $E_{g} \rightarrow 0$; or collinear $\theta_{2 g} \rightarrow 0$.

# $e^{+} e^{-} \rightarrow$ quarks: Soft \& collinear singularities of QCD 

Both collinear and soft "gluon-states" are indistinguishable ...


These singularities are not physical due to the IR hadronic scale of QCD. However, the corresponding IR dynamics cannot be described in perturbation theory.
$e^{+} e^{-} \rightarrow$ quarks : regularization of the total Xsection

The above singularities can be regularised, say by Dim. Reg.:

$$
\begin{gathered}
\sigma^{q \bar{q} g}(\epsilon)=\sigma_{0} 3 \sum_{q} Q_{q}^{2} H(\epsilon) \int d x_{1} d x_{2} \frac{2 \alpha_{S}}{3 \pi} \frac{x_{1}^{2}+x_{2}^{2}-\epsilon\left(2-x_{1}-x_{2}\right)}{\left(1-x_{1}\right)^{1+\epsilon}\left(1-x_{2}\right)^{1+\epsilon}} \\
\text { with } \epsilon=\frac{1}{2}(4-d), \text { and } H(\epsilon)=\frac{3(1-\epsilon)^{2}}{(3-2 \epsilon) \Gamma(2-2 \epsilon)}=1+O(\epsilon) \\
\sigma^{q \bar{q} g} \simeq N_{c} \sigma_{0} \frac{C_{F} \alpha_{s}}{2 \pi} \sum Q_{q}^{2}\left(\frac{2}{\epsilon^{2}}+\frac{3}{\epsilon}+\frac{19}{2}\right)
\end{gathered}
$$

But we still have a divergent answer for the cross section what is missing?

# $e^{+} e^{-} \rightarrow$ quarks : adding the virtual contributions 



Virtual contributions can be computed in a similar fashion, again using Dim. Reg. to regularise the IR-divergencies:

$$
\begin{gathered}
\sigma^{q \bar{q}(g)} \simeq N_{c} \sigma_{0} \frac{C_{F} \alpha_{s}}{2 \pi} \sum_{\square} Q_{q}^{2}\left(-\frac{2}{\epsilon^{2}}-\frac{3}{\epsilon}-8\right) \\
\Omega \\
R^{\mathrm{NLO}}=N_{c} \sum_{q} Q_{q}^{2}\left(1+\frac{\alpha_{s}}{\pi}\right)
\end{gathered}
$$

This 5\% increase leads to much better agreement with data.

## So what?

## Jets

The previous success, regarding the total rate, didn't tell us anything about the distribution of energy flow \& how to linked it with the partonic Xsec':

LO - $\frac{d \sigma}{d \cos \theta} \theta \frac{\pi \alpha^{2} Q_{f}^{2}}{2 s}\left(1+\cos ^{2} \theta\right) ? ?$

$$
\text { NLO - } \frac{1}{\sigma} \sigma d_{1} \sigma d x_{2}=c_{F} \frac{\alpha_{S}}{2 \pi} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)} ? ?
$$

We expect the fragmented hadrons to roughly follow the parton direction, as seen in data from the 50s in cosmic ray \& then latter on consistently in many exp'.

## Jets

Then the soft/collinear gluons events would still have energy flow of 2 outgoing partons - " 2 jets" topology.

On the other hand a well separated Xtra gluon emission is suppressed \& look like an Xtra energy flow source - "3 jets"

## Cone Jets, IRC safety (Sterman-Weinberg, 77)

Need to find a definition of these object, calculable in perturbation theory \& yield finite rates (IRCollinear safe).

Sterman-Weinberg a final state is classified as a 2-jet-like if All but a fraction $\epsilon$ of the total energy is contained in a pair of cones of half-angle $\delta$.


## Cone Jets, IRC safety (Sterman-Weinberg, 77)

2 -jet cross section: int. matrix elements over phase-space given by $\epsilon \& \delta$.

Lowest order $\Rightarrow$ leading order picture.
At $\mathrm{O}\left(\alpha_{s}\right), 2$-jet Xsec ' is obtained by appropriate integration.

## Cone Jets, IRC safety



Boundaries between the two- and three-jet regions in the ( $x_{1}, x_{2}$ ) plane for (a) Sterman-Weinberg jets with $(\epsilon, \delta)=\left(0.3,30^{\circ}\right)$ (solid lines), and (b) JADE algorithm jets with $y=0.1$ (dashed lines). 79

## 2-jet vs 3-jet Xsections

At this order: $\sigma=\sigma_{2}+\sigma_{3}$,
Let's define $f_{2,3}=\sigma_{2,3} / \sigma$,
$f_{2} \simeq 1-8 C_{F} \frac{\alpha_{s}}{2 \pi}\left[\ln \delta(\ln 2 \epsilon-1)+\frac{3}{4}+\frac{\pi^{2}}{12}-\frac{7}{12}\right]$

$$
f_{3}-1-f_{2}
$$

These are IRC safe, observables as well as derivatives, such as angular dist' etc ...

## So what are jets?

When $\epsilon, \delta \ll 1 \mathrm{O}\left(\alpha_{s}\right) \Rightarrow \log$ enhanced.

Residues of the singularities, improved when resumed. (usefulness limited)

Number of jets is not a physical parameter!

Intuitive partons \& jets link holds only at LO.

Higher order in pert. th. $\Rightarrow \geq 4$ jets.

## Cones in hadron colliders

Sterman-Weinberg cones give inefficient 'tiling' of the phase-space 4pi solid angle.

Similarly for hadronic machine one needs to use different $E$ threshold and not COM.

And, also non trivial to implement in practice, "where to place the cone?" And, "how to deal with overlaps?". Thus, alternatives were constructed.

One needs to find way to cluster partons (energy) in an IR safe manner.
Also practical issues: seeds and overlaps ...

## Sequential recombination jet algorithms

## Jade (Jade Collab’ 88)

$$
\begin{aligned}
\min \left(p_{i}+p_{j}\right)^{2}= & \min 2 E_{i} E_{j}\left(1-\cos \theta_{i j}\right)>y s, \quad i, j=q, \bar{q}, g \\
0< & x_{1}, x_{2}<1-y, \quad x_{1}+x_{2}>1+y . \\
f_{3}= & C_{F} \frac{\alpha_{S}}{2 \pi}\left[(3-6 y) \log \left(\frac{y}{1-2 y}\right)+2 \log ^{2}\left(\frac{y}{1-y}\right)\right. \\
& \left.+\frac{5}{2}-6 y-\frac{9}{2} y^{2}+4 \operatorname{Li}_{2}\left(\frac{y}{1-y}\right)-\frac{\pi^{2}}{3}\right] . \\
f_{2}= & 1-f_{3},
\end{aligned}
$$

where $\mathrm{Li}_{2}$ is the dilogarithm function,

$$
\mathrm{Li}_{2}(x)=-\int_{0}^{x} d y \frac{\log y}{1-y}
$$

## Sequential recombination jet algorithms

## Jade: (Jade Collab' 88)

$\min \left(m_{i j}^{2}\right)=2 E_{i} E_{j}\left(1-\cos \theta_{i j}\right)>y \times s$
$0 \geq x_{1,2}<1-y, \quad x_{1}+x_{2}=1+y$

$$
\begin{aligned}
f_{3}= & C_{F} \frac{\alpha_{S}}{2 \pi}\left[(3-6 y) \log \left(\frac{y}{1-2 y}\right)+2 \log ^{2}\left(\frac{y}{1-y}\right)\right. \\
& \left.+\frac{5}{2}-6 y-\frac{9}{2} y^{2}+4 \operatorname{Li}_{2}\left(\frac{y}{1-y}\right)-\frac{\pi^{2}}{3}\right] . \\
f_{2}= & 1-f_{3}
\end{aligned}
$$

where $\mathrm{Li}_{2}$ is the dilogarithm function,

$$
\mathrm{Li}_{2}(x)=-\int_{0}^{x} d y \frac{\log y}{1-y}
$$

## Jade



The above valid for $y<1 / 3$, the Fig. shows the two and three jet ratios. Soft and collinear singularities again reappear as large logarithms in the limit where $y$ is small.

## The $k_{t}$ algorithm in $e^{+} e^{-}$

The $e^{+} e^{-}, k_{t}$ algorithm is similar to the JADE algorithm except as concerns the distance measure, which is

$$
\begin{aligned}
& y_{i j}=\frac{2 \min \left(E_{i}^{2}, E_{j}^{2}\right)\left(1-\cos \theta_{i j}\right)}{Q^{2}} \\
& Q^{2} \text { is the square of total } E \sim s
\end{aligned}
$$

In the collinear limit, $\theta_{\mathrm{ij}} \ll 1$, numerator $\sim\left(\min \left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right) \theta_{\mathrm{ij}}\right)^{2} \Rightarrow>$
the squared transverse momentum of i relative to j , hence the name $k_{t}$.

## The $k_{t}$ algorithm in $e^{+} e^{-}$

$k_{t \text {-meausure: }} y_{i j}<=>$ inverse splitting probability for parton $k$ to go into $i$ and $j$, when $i$ or $j$ is soft and collinear, $\quad \frac{d P_{k \rightarrow i j}}{d E_{i} d \theta_{i j}} \sim \frac{\alpha_{s}}{\min \left(E_{i}, E_{j}\right) \theta_{i j}}$

Maltoni's talk.

## The $k_{t}$ algorithm with incoming hadrons

$$
\begin{aligned}
d_{i j} & =\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad \Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}, \\
d_{i B} & =p_{t i}^{2},
\end{aligned}
$$

1. Work out all the $d_{i j}$ and $d_{i B}$ ac
2. Find the minimum of the $d_{i j}$ and $d_{i B}$.
3. If it is a $d_{i j}$, recombine $i$ and $j$ into a single new particle and return to step 1 .
4. Otherwise, if it is a $d_{i B}$, declare $i$ to be a [final-state] jet, and remove it from the list of particles. Return to step 1.
5. Stop when no particles remain.

## anti- $k_{t} \&$ Cambridge/Aachen jets

## One can generalise the $k_{t}$ :

$$
\begin{aligned}
d_{i j} & =\min \left(p_{t i}^{2 p}, p_{t j}^{2 p}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad \Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}, \\
d_{i B} & =p_{t i}^{2 p}
\end{aligned}
$$

$$
p=-1,0 \text { for anti- } k_{t} \text { and Cambridge/Aachen (C/A). }
$$

## Intermediate summary

Jets (spikes of energy flow) in QCD at high energies are due to asymptotic freedom \& its non-abelian nature.

Jet algorithms obtain finite (IRC safe) \& perturbative differential description.

Distributions (jets numb. etc.) are prescription-dep., within an algorithm => short distance physics is transparent.

Allow us to make contact lw microscopic partonic calculation, with quarks/gluons final states.

# Massive boosted jets Jets substructure 

(Briefly ...)

## Boosted tops EW bosons: $m_{t^{\top} \gg m_{t}}$

*The challenge of searching for heavy resonance top-partners:

As $m_{t^{*}} \gg m_{t}$ outgoing tops are ultra-relativistic, their products collimate => top jets.


## Boosted tops EW bosons: $m_{t^{\dagger} \gg m_{t}}$

- The challenge of searching for heavy resonance top-partners:

As $m_{t^{*}} \gg m_{t}$ outgoing tops are ultra-relativistic, their products collimate => top jets.



## How big is the opening angle?

As $m_{t^{*}} \gg m_{t}$ outgoing tops are ultra-relativistic, their products collimate => top jets.

decay of heavy partner $t^{6}$


$$
\delta R \sim \frac{2 m_{X}}{E_{J_{X}}}
$$

What is the opening angle of a 2 TeV top?

## Understanding the inside of massive boosted jets



## Jet substructure

(i) Mass;
(ii) Angularity (filtering) \& planar flow;
(iii) Beyond shapes, template function.


## The Splitting Function (leading log, gluon emission)

In the limit where the emitted gluon is soft and collinear we find:

In QCD the probability for a parton $j$ to emit a parton $i$ with energy fraction x at angle $\theta$ is
$d \sigma \propto \alpha_{s} P_{i j}(x) d x \frac{d \theta}{\theta} \quad P_{i j}(x)$ is the Altarelli-Parisi matrix $\quad P_{i j} \sim 1 / x$.

As discussed below, above limit seems (fortunately) to be valid for a search for massive boosted jets:
$\Lambda_{\mathrm{QCD}} \ll m_{\text {peak }} \ll m_{J} \ll P_{T} R, \quad R \ll 1$

## Large mass => perturbative control ${ }_{\text {(asympoticic fredom) }}$

Use simple perturbation theory to define \& compute set of jet-shape variables.

$$
\alpha_{s}\left(m_{J}\right) \sim 1
$$



## Large mass => perturbative control ${ }_{\text {(asympoticic fredom) }}$

Use simple perturbation theory to define \& compute set of jet-shape variables.


## The big picture: Energy flow of massive narrow jets, QCD first

Interested in narrow, massive energetic
(boosted) jets: $\quad m_{\text {peak }} \ll m_{J} \ll P_{T} R, \quad R \ll 1$


## Jet substructure

Use splitting function to get some qualitative understanding:
2-body partonic IR-safe approx' for jet substructure.


Since signal is EW mass boosted particles, obvious variable to distinguish between signal \& QCD background is the jet mass.

Jet mass definition:

$$
m_{J}^{2}=\left(\sum_{i \in R} P_{i}\right)^{2},{ }_{100} i^{2}=0
$$



## Jet mass from splitting function (leading log)

$$
d \sigma \propto \alpha_{s} P_{i j}(x) d x \frac{d \theta}{\theta} \text { with } \quad P_{i j} \sim 1 / x .
$$

Given $m_{J}^{2} \approx x E_{J}^{2} \theta^{2} \Rightarrow \frac{d \sigma}{d m_{J}^{2}} \propto \alpha_{s} \frac{C_{F}}{m_{J}^{2}} \int_{\frac{m_{J}}{E_{J}}}^{R} \frac{d \theta}{\theta} \propto \alpha_{s} \frac{C_{F}}{m_{J}^{2}} \log \left(\frac{E^{2} R^{2}}{m_{J}^{2}}\right)$

$$
C_{F}=4 / 3 \text { for quarks, } C_{A}=3 \text { for gluons. }
$$

As long as $\alpha_{s}\left(m_{J}^{2}\right) \ll \alpha_{s}\left(m_{J}^{2}\right) \log \left(\frac{p_{T}^{2} R^{2}}{m_{J}^{2}}\right) \ll 1$
We can use fix order perturbation theory.

Questions: what are the relevant mass range for this approx' for jet of $E \sim 1 T e V \& R=0.4$ ?
What is the average jet mass for these parameters?

## Summary QCD jet mass



Questions: What is the shape of top jet mass distribution?

## Jet substructure beyond mass

2-body partonic approximation actually tells us more:

Kinematics is trivial, for given mass \& momenta: a single more variable, distribution extracted from splitting function.
angular distribution: $\frac{d^{2} \sigma}{d m_{J}^{2} d \theta} \propto \frac{C_{F}}{m_{J}^{2} \theta} \quad, \quad$ and $\quad \theta_{\min }=\frac{2 m_{J}}{E_{J}}$


Questions: Show that the Higgs jet angular distribution is given by $\theta^{-3}$, with the same min' angle.

## Testing with real data



Alon, Duchovni, GP \& Sinervo, for the CDF, 10199, 10234, 1106.5952 [hep-ex];

## Boosted jets' angular distribution, angularity $\tau_{-2}$

$$
\frac{d \tau}{d \theta} \rightarrow \frac{d \sigma}{d \tau_{-2}} \approx 1 / \tau_{-2}, \tau_{-2}^{\min }=\left(\frac{m_{J} J}{2 E_{J}}\right)^{3} \quad\left(\sigma_{2} \sim \sum_{\left(\sum_{=G} E, \theta_{i}\right)}\right.
$$

Almeida, Lee, GP, Sterman \& Sung (10)

Questions: Derive the above ${ }_{9}$ angularity dist' (for large angles).

## Boosted jets' angular distribution, angularity $\tau_{-2}$

$$
\frac{d \sigma}{d \theta} \rightarrow \frac{d \sigma}{d \tau_{-2}} \approx 1 / \tau_{-2}, \tau_{-2}^{\min }=\left(\frac{m_{J}}{2 E_{J}}\right)^{3} \quad\left(\tau_{-2} \sim \sum_{i \in J} E_{i} \theta_{i}^{4}\right)
$$

Almeida, Lee, GP, Sterman \& Sung (10)


Questions: Derive the above ${ }^{s}$ angularity dist' (for large angles).

## Boosted jets' angular distribution, angularity $\tau_{-2}$



Questions: Derive the above ${ }_{5 s}$ angularity dist' (for large angles).

## Summary

LHC opens a new era: colliders energy > electroweak (EW) scale.

Probing the mechanism of EW symmetry breaking.
New phenomena is kinematically allowed a shot of looking at new physics related to naturalness.

Calculation at the LHC are challenging due to nature of incoming composite particles.

Yet simple concepts as parton luminosities \& understanding kinematics \& jets allow for (semi-)quantitative control.


[^0]:    * Let's set quantum gravity aside for simplicity ${ }_{5}$.

