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2 EFT at tree level

To construct a relativistic e↵ective field theory valid up to some scale ⇤, we will take for our
action made out of all light fields (those corresponding to particles with masses or energies
much less that ⇤) including all possible local operators consistent with the underlying
symmetries that we think govern the world. All UV physics that we are not including
explicitly is encoded in the coe�cients of these operators, in the same way we saw in the
previous section that a contact interaction (�-function potential) was able to reproduce the
scattering length for scattering o↵ a square well if its coe�cient was chosen appropriately
(we “matched” it to the UV physics). However, in the previous examples we just tried
matching the scattering lengths; we could have tried to also reproduce O(k2�2) e↵ects, and
so on, but to do so would have required introducing more and more singular contributions to
the potential in the e↵ective theory, such as r2�(r), r4�(r), and so on. Going to all orders
in k2 would require an infinite number of such terms, and the same is true for a relativistic
EFT. Such a theory is not “renormalizable” in the historical sense: there is typically no
finite set of coupling constants that can be renormalized with a finite pieces of experimental
data to render the theory finite. Instead there are an infinite number of counterterms need
to make the theory finite, and therefore an infinite number of experimental data needed to
fix the finite parts of the counterterms. Such a theory would be unless there existed some
sort of expansion that let us deal with only a finite set of operators at each order in that
expansion.

Wilson provided such an expansion. The first thing to accept is that the EFT has an
intrinsic, finite UV cuto↵ ⇤. This scale is typically the mass of the lightest particles omitted
from the theory. For example, in the Fermi theory of the weak interactions, ⇤ = M

W

.
With a cuto↵ in place, all radiative corrections in the theory are finite, even if they are
proportional to powers or logarithms of ⇤. The useful expansion then is a momentum
expansion, in powers of k/⇤, where k is the external momentum in some physical process
of interest, such as a particle decay, two particle scattering, two particle annihilation, etc.
This momentum expansion is the key tool that makes EFTs useful. To understand how
this works, we need to develop the concept of operator dimension. In this lecture we will
only consider the EFT at tree level.

2.1 Scaling in a relativistic EFT

As a prototypical example of an EFT, consider the Lagrangian (in four dimensional Eu-
clidean spacetime, after a Wick rotation to imaginary time) for relativistic scalar field with
a �! �� symmetry:

L
E

=
1

2
(@�)2 +

1

2
m2�2 +

�

4!
�4 +

X

n

✓
c
n

⇤2n

�4+2n +
d
n

⇤2n

(@�)2�2+2n + . . .

◆
(56)

We are setting ~ = c = 1 so that momenta have dimension of mass, and spacetime coordi-
nates have dimension of inverse mass. I indicate this as

[p] = 1 , [x] = [t] = �1 , [@
x

] = [@
t

] = 1 . (57)
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Since the action is dimensionless, then from the kinetic term for � we see that � has
dimension of mass:

[�] = 1 . (58)

That means that the operator �6 is dimension 6, and the contribution to the action
R
d4x�6

has dimension 2, and so its coupling constant must have dimension �2. The operator
�2(@2�)2 is dimension 8 and must have a coe�cient which is dimension �4. In eq. (56) I
have introduced the cuto↵ scale ⇤ explicitly into the Lagrangian in such a way as to make
the the couplings �, c

n

and d
n

all dimensionless, with no loss of generality. I will assume
here that � ⌧ 1, c

n

⌧ 1 and d
n

⌧ 1 so that a perturbative expansions in these couplings
is reasonable.

You might ask why we do things this way — why not rescale the �6 operator to have
coe�cient 1 instead of the kinetic term, and declare � to have dimension 2/3? The reason
why is because the kinetic term is more important and determines the size of quantum
fluctuations for a relativistic excitation. To see this, consider the path integral

Z
D� e�SE , S

E

=

Z
d4xL

E

. (59)

Now consider a particular field configuration contributing to this path integral that looks
like the “wavelet” pictured in Fig. 4, with wavenumber |k

µ

| ⇠ k, localized to a spacetime
volume of size L4, where L ' 2⇡/k, and with amplitude �

k

. Derivatives acting on such a
configuration give powers of k, while spacetime integration gives a factor of L4 ' (4⇡/k)4.
With this configuration, the Euclidean action is given by
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(60)

where in the second line I have rescaled the amplitude by k,

b�
k

⌘ �
k

/k . (61)

Now for the path integral, consider ordinary integration over the amplitude b�
k

for this
particular mode:

Z
db�

k

e�SE . (62)

The integral is dominated by those values of b�
k

for which S
E

. 1, because otherwise
exp(�S

E

) is very small. Which are the important terms in S
E

in this region? First,
assume that the particle is relativistic, m ⌧ k ⌧ ⇤. Then, since m2/k2 and the couplings
�, c

n

, d
n

are small, as one increases the amplitude b�
k

from zero, the first term in S
E

to
become become O(1) is the kinetic term, (2⇡)4b� 2

k

, which occurs for �
k

= kb�
k

⇠ k/(2⇡)2. It
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2Π!k Φk

Figure 4: sample configuration contributing to the path integral for the scalar field theory in eq.
(56). Its amplitude is �

k

and has wave number ⇠ k and spatial extent ⇠ 2⇡/k.

is because the kinetic term controls the fluctuations of the scalar field that we “canonically
normalize” the field such that the kinetic term is 1

2

(@�)2, and perturb in the coe�cients of
the other operators in the theory 4.

What happens as we consider di↵erent momenta k? We see from eq. (60) that as k is
reduced, the c

n

and d
n

terms, proportional to (k2/⇤2)n, get smaller. Such operators are
“irrelevant” operators in Wilson’s language, because they become unimportant in the in-
frared (low k). In contrast, the mass term becomes more important; it is called a “relevant”
operator. The kinetic term and the ��4 interaction do not change; such operators are called
“marginal”. It used to be thought that the irrelevant operators were dangerous, making the
theory nonrenormalizable, while the relevant operators were safe – “superrenormalizable”.
As we consider radiative corrections later we will see that Wilson flipped this entirely on its
head, so that irrelevant operators are now considered safe, while the existence of relevant
operators is thought to be a serious problem to be solved.

In practice, when working with a relativistic theory in d spacetime dimensions with small
dimensionless coupling constants,the operators with dimension d are the marginal ones,
those with higher dimension are irrelevant, and those with lower dimension are relevant.
The bottom line is that we can analyze the theory in a momentum expansion, working to
a particular order and ignoring irrelevant operators above a certain dimension. The ability
to do so will persist even when we include radiative corrections.

2.1.1 Fermi’s e↵ective theory of the weak interactions

To see why dimensional analysis has practical consequences, first consider Fermi’s theory
of the weak interactions. Originally this was a “bottom-up” sort of EFT — Fermi did not
have a complete UV description of the weak interactions, and so constructed the theory as
a phenomenological modification of QED to account for neutron decay. Now we have the
SM, and so we think of the Fermi theory as a “top-down” EFT: not necessary for doing
calculations since we have the SM, but very practical.

The weak interactions refer to processes mediated by the W± or Z0 bosons, whose
masses are approximately 80 GeV and 91 GeV respectively. The couplings of these gauge

4Note that this is not true if we are interested in a non-relativistic theory where k ⌧ m; in that case the mass
term dominates and the scaling behavior changes. The argument I gave could also change if some of the couplings
�, c

n

, d
n

were su�ciently large.
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bosons to quarks and leptons can be written in terms of the electromagnetic current

jµ
em

=
2

3
ū
i

�µu
i

� 2

3
d
i

�µd
i

� e
i

�µe
i

(63)

where i = 1, 2, 3 runs over families, and the left-handed SU(2) currents

jµ
a

=
X

 

 �µ
✓
1� �

5

2

◆
⌧
a

2
 , a = 1, 2, 3 , (64)

where the  , fields in the currents are either the lepton doublets
✓
⌫
e

e

◆
,

✓
⌫
µ

µ

◆
,

✓
⌫
⌧

⌧

◆
, (65)

or the quark doublets

 =

✓
u
d0

◆
,

✓
c
s0

◆
,

✓
t
b0

◆
, (66)

with the “flavor eigenstates” d0, s0 and b0 being related to the mass eigenstates d, s and b
by the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix5:

q0
i

= V
ij

q
j

. (67)

The SM coupling of the heavy gauge bosons to these currents is

L
J

=
e

sin ✓
w

�
W+

µ

Jµ

� +W�
µ

Jµ

+

�
+

e

sin ✓
w

cos ✓
w

Z
µ

�
jµ
3

� sin2 ✓
w

jµ
em

�
(68)

where

Jµ

± =
jµ
1

⌥ i jµ
2p

2
. (69)

Tree level exchange of a W boson then gives the amplitude at low momentum exchange

iA =

✓
�i

e

sin ✓
w

◆
2

Jµ

�J
⌫

+

�ig
µ⌫

q2 �M2

W

= �i
e2

sin2 ✓
w

M2

W

Jµ

�Jµ+ +O

✓
q2

M2

W

◆
. (70)

This amplitude can be reproduced to lowest order in q2/M2

W

by a low energy EFT with a
contact interaction, Fig. 5,

L
F

= � e2

sin2 ✓
w

M2

W

Jµ

�Jµ+ =
8p
2
G

F

Jµ

�Jµ+ , (71)

G
F

⌘
p
2

8

e2

sin2 ✓
w

M2

W

= 1.166⇥ 10�5 GeV2 . (72)

This charged current interaction, written in terms of leptons and nucleons instead of leptons
and quarks, was postulated by Fermi to explain neutron decay; the numerical factors look
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ψ4

W,Z

(a) (b)

Figure 5: (a) Tree level W and Z exchange between four fermions. (b) The e↵ective vertex in
the low energy e↵ective theory (Fermi interaction).

funny here because I am normalizing the currents in the way they appear in the SM,
while weak currents are historically (pre-SM) normalized di↵erently. Neutral currents were
proposed in the 60’s and discovered in the 70’s.

Since the four-fermion Fermi interaction has dimension 6, it is an irrelevant interaction,
according to our previous discussion, explaining why we say the interactions are “weak”
and neutrinos are “weakly interacting”. Consider, for example, some low energy neutrino
scattering cross section �. Since neutrinos only interact via W and Z exchange, the cross-
section � must be proportional to G2

F

which has dimension �4. But a cross section has
dimensions of area, or mass dimension �2. Since the only other scale around is the center
of mass energy

p
s, on purely dimensional grounds � must scale with energy as

�
⌫

' G2

F

s , (73)

This explains why low energy neutrinos are so hard to detect, and the weak interactions
are weak; at LHC energies, however, where the e↵ective field theory has broken down, the
weak interactions are marginal and characterized by the SU(2) coupling constant g ' 0.6,
about twice as strong as the electromagnetic coupling. It is a simple result for which one
does not need the full machinery of the SM to derive.

It looks like the neutrino cross section grows with s without bound, but remember that
this EFT is only valid up to s ' M

W

.

2.1.2 The blue sky

Another top-down application of EFT is to answer the question of why the sky is blue. More
precisely, why low energy light scattering from neutral atoms in their ground state (Rayleigh
scattering) is much stronger for blue light than red6 The physics of the scattering process
could be analyzed using exact or approximate atomic wave functions and matrix elements,
but that is overkill for low energy scattering. Let’s construct an “e↵ective Lagrangian” to

5The elements of the CKM matrix are named after which quarks they couple through the charged current,
namely V11 ⌘ V

ud

, V12 ⌘ V
us

, V21 ⌘ V
cd

, etc.
6By “low energy” I mean that the photon energy E

�

is much smaller than the excitation energy �E of the
atom, which is of course much smaller than its inverse size or mass:

E
�

⌧ �E ⌧ a�1
0 ⌧ M

atom

.

Thus the process is necessarily elastic scattering, and to a good approximation we can ignore that the atom
recoils, treating it as infinitely heavy.
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describe this process. This means that we are going to write down a Lagrangian with all
interactions describing elastic photon-atom scattering that are allowed by the symmetries
of the world — namely Lorentz invariance and gauge invariance. Photons are described by
a field A

µ

which creates and destroys photons; a gauge invariant object constructed from
A

µ

is the field strength tensor F
µ⌫

= @
µ

A
⌫

� @
⌫

A
µ

. The atomic field is defined as �
v

,
where �

v

destroys an atom with four-velocity v
µ

(satisfying v
µ

vµ = 1, with v
µ

= (1, 0, 0, 0)

in the rest-frame of the atom), while �†
v

creates an atom with four-velocity v
µ

. In this
case we should use relativistic scaling, since we are interested in on-shell photons, and are
uninterested in recoil e↵ects (the kinetic energy of the atom):

[x] = [t] = �1, [p] = [E] = [A
µ

] = 1 , [�] =
3

2
, (74)

where the atomic field � destroys an atom with four-velocity v
µ

(satisfying v
µ

vµ = 1, with
v
µ

= (1, 0, 0, 0) in the rest-frame of the atom), while �† creates an atom with four-velocity
v
µ

.
So what is the most general form for L

eff

? Since the atom is electrically neutral, gauge
invariance implies that � can only be coupled to F

µ⌫

and not directly to A
µ

. So L
eff

is
comprised of all local, Hermitian monomials in �†�, F

µ⌫

, v
µ

, and @
µ

. Certain combinations
we needn’t consider for the problem at hand — for example @

µ

Fµ⌫ = 0 for radiation (by
Maxwell’s equations); also, if we define the energy of the atom at rest in it’s ground state to
be zero, then vµ@

µ

� = 0, since v
µ

= (1, 0, 0, 0) in the rest frame, where @
t

� = 0. Similarly,
@
µ

@µ� = 0. Thus we are led to consider the interaction Lagrangian

L
e↵

= c
1

�†�F
µ⌫

Fµ⌫ + c
2

�†�v↵F
↵µ

v
�

F �µ

+c
3

�†�(v↵@
↵

)F
µ⌫

Fµ⌫ + . . . (75)

The above expression involves an infinite number of operators and an infinite number of
unknown coe�cients! Nevertheless, dimensional analysis allows us to identify the leading
contribution to low energy scattering of light by neutral atoms.

With the scaling behavior eq. (??), and the need for L to have dimension 4, we find the
dimensions of our couplings to be

[c
1

] = [c
2

] = �3 , [c
3

] = �4 . (76)

Since the c
3

operator has higher dimension, we will ignore it. What are the sizes of the
coe�cients c

1,2

? To do a careful analysis one needs to go back to the full Hamiltonian for
the atom in question interacting with light, and “match” the full theory to the e↵ective
theory. We will discuss this process of matching later, but for now we will just estimate the
sizes of the c

i

coe�cients. We note that extremely low energy photons cannot probe the
internal structure of the atom, and so the cross-section ought to be classical, only depending
on the size of the scatterer. Since such low energy scattering can be described entirely in
terms of the coe�cients c

1

and c
2

, we conclude that

c
1

' c
2

' r3
0

.

The e↵ective Lagrangian for low energy scattering of light is therefore

L
eff

= r3
0

⇣
a
1

�†
v

�F
µ⌫

Fµ⌫ + a
2

�†
v

�v↵F
↵µ

v
�

F �µ

⌘
(77)
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where a
1

and a
2

are dimensionless, and expected to be O(1). The cross-section (which
goes as the amplitude squared) must therefore be proportional to r6

0

. But a cross section �
has dimensions of area, or [�] = �2, while [r6

0

] = �6. Therefore the cross section must be
proportional to

� / E4

�

r6
0

, (78)

growing like the fourth power of the photon energy. Thus blue light is scattered more
strongly than red, and the sky looks blue.

Is the expression eq. (78) valid for arbitrarily high energy? No, because we left out
terms in the e↵ective Lagrangian we used. To understand the size of corrections to eq. (78)
we need to know the size of the c

3

operator (and the rest we ignored). Since [c
3

] = �4,
we expect the e↵ect of the c

3

operator on the scattering amplitude to be smaller than the
leading e↵ects by a factor of E

�

/⇤, where ⇤ is some energy scale. But does ⇤ equal M
atom

,
r�1

0

⇠ ↵m
e

or �E ⇠ ↵2m
e

? The latter is the smallest scale and hence the most important.
We expect our approximations to break down as E

�

! �E since for such energies the
photon can excite the atom. Hence we predict

� / E4

�

r6
0

(1 +O(E
�

/�E)) . (79)

The Rayleigh scattering formula ought to work pretty well for blue light, but not very far
into the ultraviolet. Note that eq. eq. (79) contains a lot of physics even though we did
very little work. More work is needed to compute the constant of proportionality.

2.2 Accidental symmetry and BSM physics

Now let’s switch tactics and talk about bottom-up applications of EFT. We would like to
have clues of physics beyond the SM (BSM). Evidence we currently have for BSM physics
are the existence of gravity, neutrino masses and dark matter. Hints for additional BSM
physics include circumstantial evidence for Grand Unification and for inflation, the absence
of a neutron electric dipole moment, and the baryon number asymmetry of the universe.
Great puzzles include the origin of flavor and family structure, why the electroweak scale
is so low compared to the Planck scale (but not so far from the QCD scale), and why we
live in an epoch where matter, dark matter, and dark energy all have have rather similar
densities.

In order to make progress we would like to have more data, and looking for subtle e↵ects
due to irrelevant operators can in some cases give us a much farther experimental reach
than can collider physics. Those cases are necessarily ones where the irrelevant operators
violate symmetries that are preserved by the marginal and irrelevant operators in the SM.
We call these symmetries “accidental symmetries”: they are not symmetries of the UV
theory, but they are approximate symmetries of the IR theory.

A simple and practical example of an accidental symmetry is SO(4) symmetry in lattice
QCD — the Euclidian version of the Lorentz group. Lattice QCD formulates QCD on a 4d
hypercubic lattice, and then looks in the IR on this lattice modes whose wavelengths are
so long that they are insensitive to the discretization of spacetime. But why is it obvious
that a hypercubic lattice will yield a continuum Lorentz invariant theory? The reason
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lattice field theory works is because of accidental symmetry: Operators on the lattice are
constrained by gauge invariance and the hypercubic symmetry of the lattice. While it is
possible to write down operators which are invariant under these symmetries while violating
the SO(4) Lorentz symmetry, such operators all have high dimension and are not relevant.
For example, if A

µ

is a vector field, the SO(4)-violating operator A
1

A
2

A
3

A
4

is hypercubic
invariant and marginal and so could spoil the continuum limit we desire; however, the only
vector field in lattice QCD is the gauge potential, and such an operator is forbidden because
it is not gauge invariant. In the quark sector the lowest dimension operator one can write
which is hypercubic symmetric but Lorentz violating is

4X

µ=1

 �
µ

D3

µ

 (80)

which is dimension six and therefore irrelevant. Thus Lorentz symmetry is automatically
restored in the continuum limit.

Accidental symmetries in the SM notably include baryon number B and lepton number
L: if one writes down all possible dimension  4 gauge invariant and Lorentz invariant
operators in the SM, you will find they all preserve B and L. It is possible to write down
dimension five �L = 2 operators and dimension six �B = �L = 1 operators, however.
That means that no matter how completely B and L are broken in the UV, at our energies
these irrelevant operators become...irrelevant, and B and L appear to be conserved, at
least to high precision. So perhaps B and L are not symmetries of the world at all – they
just look like good symmetries because the scale of new physics is very high, so that the
irrelevant B and L violating operators have very little e↵ect at accessible energies. We will
look at these di↵erent operators briefly in turn.

2.2.1 BSM physics: neutrino masses

to write down a dimension five gauge variant �L = 2 operator:

L
�L=2

= � 1

⇤
(LH)(LH) , L =

✓
⌫
`�

◆
, H =

✓
h+

h0

◆
, hHi = vp

2

✓
0
1

◆
, (81)

where v = 250 GeV. There is only one independent operator (ignoring flavor) since the two
Higgs fields (HH) cannot be antisymmetrized and therefore must be in an SU(2)-triplet.
An operator coupling LL in a weak triplet to HH in a weak triplet can be rewritten in the
above form, where the combination (LH) is a weak singlet,

(LH) =
�
⌫h0 � `�h+

�
�! ⌫vp

2
. (82)

Therefore after spontaneous symmetry breaking by the Higgs, the operator gives a contri-
bution to the neutrino mass,

L
�L=2

= �1

2
m
⌫

⌫⌫ , m
⌫

=
v2

⇤
, (83)

a �L = 2 Majorana mass for the neutrino. A mass of m
⌫

= 10�2 eV corresponds to
⇤ = 6 ⇥ 1015 GeV, an interesting scale, being near the scale of GUT models, and far
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Figure 6: Two ways the dimension 5 operator for neutrino masses in eq. (81) could arise from
tree level exchange of a heavy particle: either from exchange of a heavy SU(2) ⇥ U(1) singlet
fermion N , or else from exchange of a massive SU(2) triplet scalar �.

beyond the reach of accelerator experiments. Or: if ⇤ = 1019 GeV, the Planck scale, then
m
⌫

= 10�5 eV. This operator provides a possible and rather compelling explanation for
the smallness of observed neutrino masses: they arise as Majorana masses because lepton
number is not a symmetry of the universe, but are very small because lepton number
becomes an accidental symmetry below a high scale. Of course, we could have the spectrum
of the low energy theory wrong: perhaps there is a light right-handed neutrino and neutrinos
only have L-preserving Dirac masses like the charged leptons, small simply because of a
very small Yukawa coupling to the Higgs. Neutrinoless double beta decay experiments are
searching for lepton number violation in hopes of establishing the Majorana mass scenario.

In any case, it is interesting to imagine what sort of UV physics could give rise to the
operator in eq. (81). Two possibilities present themselves for how such an operator could
arise from a high energy theory at tree level, shown in Fig. 6 – either through exchange of
a heavy SU(2)⇥ U(1) singlet fermion (a “right handed neutrino”), or else via exchange of
a heavy scalar with quantum number 3

1

under SU(2)⇥ U(1). The fact that the resultant
light neutrino mass is inversely proportional to the new scale of physics (called the “see-saw
mechanism”) simply results from the fact that a neutrino mass operator in the SM is an
irrelevant dimension-5 operator.

Note that just as G
F

is proportional to g2/M2

W

, and therefore knowing G
F

was not
su�cient for predicting the W mass, the scale ⇤ is not necessarily the mass of a new
particle, as it will be inversely proportional to coupling constants about which we know
nothing except in the context of some particular UV candidate theory.

2.2.2 BSM physics: proton decay

At dimension 6 one can write down operators in the SM which violate B; as they all consist
of three quark fields and a lepton field, they are all �B = 1, �L = operators conserving
the combination B�L. Below the QCD scale one needs to match the three quark operator
onto hadron fields. An example of such an operator would be

1

⇤2

✏
abc

✏
↵�

✏
��

(da↵
L

ub�
L

)(uc�
L

e�
L

� dc�
L

⌫�
L

) , (84)

where a, b, c are color indices and ↵,�, �, � are SU(2) Lorentz indices for the left-handed
Weyl spinors; the terms in parentheses are weak SU(2) singlets, and the whole operator is
neutral under weak hypercharge. Below the QCD scale one has to match the three-quark
operator onto hadrons fields. Thus roughly speaking uud ! Z

1

p+Z
2

(p⇡0+n⇡+)+ . . .. We
can assume that the Z factors are made up of pure numbers times the appropriate powers
of the strong interaction scale, such as f

⇡

' 100 MeV, the pion decay constant. The Z
1
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term cannot lead to proton decay, but the Z
2

term can via the processes p ! e+⇡0, or
p ! ⇡+⌫. We can make a crude estimate of the width (inverse lifetime) to be

� '
M5

p

⇤4

1

8⇡
(85)

where I used dimensional analysis to estimate the M5

p

/⇤4 factor, assuming that the strong
interaction scale in Z

2

as well as powers of momenta from phase space integrals could be
approximated by the proton mass M

p

, and I inserted a typical 2-body phase space factor
of 1/8⇡. For a bound on the proton lifetime of ⌧

p

> 1034 years, this crude estimate gives
us ⇤ & 1016 GeV, not so far o↵ the bound one finds from a more sophisticated calculation.
If proton decay is discovered, that will tell us something about the scale of new physics,
and then the task will be to construct the full UV theory from what we learn about proton
decay, much as the SM was discovered starting from the Fermi theory.

2.3 BSM physics: “partial compositeness”

This next topic does not have to do with accidental symmetry violation, but instead picks
up on an interesting feature of the baryon number violating interaction we just discussed,
as it suggests a mechanism for quarks and leptons to acquire masses without a Higgs. In
estimating the e↵ects of the dimension six �B = 1 operator in the previous section I said
that the 3-quark operator could be expanded as uud ! Z

1

p + Z
2

(p⇡0 + n⇡+) + . . ., and
then focussed on the Z

2

term. But what about the Z
1

term? By dimensions, Z
1

⇠ ⇤3

QCD

,
and so that term gives rise to a peculiar mass term of the form

⇤3

QCD

⇤2

pe (86)

which allows a proton to mix with a positron. If we imagined eliminating the Higgs doublet
from the SM, the proton would still get a mass from chiral symmetry breaking in QCD, and
even though there would not be an electron mass, there would be the above contribution
allowing positron-proton mixing. For the two component system one would have a mass
matrix looking something like

 
M

p

⇤

3
QCD

⇤

2

⇤

3
QCD

⇤

2 0

!
(87)

and to the extent that ⇤ � ⇤
QCD

we find the mass eigenvalues to be

m
1

' M
p

, m
2

'
⇤6

QCD

M
p

⇤4

(88)

so for ⇤ = 1016 GeV the positron gets a mass of m
e

' 10�64 GeV. Yes, this is a ridiculously
small mass of no interest, but it is curious that the positron got a mass at all, without there
being any Higgs field! It must be that QCD has spontaneously broken SU(2) ⇥ U(1)
without a Higgs, and that this proton decay operator has somehow taken the place of a
Higgs Yukawa coupling — the roles the Higgs plays in the SM. Therefore it is worth asking
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whether this example be modified somehow to obtain more interesting masses for quarks
and leptons?

In the last lecture we will examine how QCD breaks the weak interactions, and how a
scaled up version called technicolor, with the analogue of the pion decay constant f

⇡

being
up at the 250 GeV scale instead of 93 MeV, could properly account for the spontaneous
breaking of SU(1) ⇥ U(1) without a Higgs. Here I will just comment that such a theory
would be expected to have TeV mass “technibaryons”, which could carry color and charge.
With an appropriate dimension 6 operator such as our proton decay operator, but with
techniquarks in place of quarks, and all the standard model fermions in place of the positron
field, in principle one could give masses to all the SM fermions through their mixing with the
technibaryons. This is the idea of “partial compositeness”, which in its original formulation
[1] was not especially useful for model building, but which has become more interesting in
the context of composite Higgs [2] – more about composite Higgs later too.

,

26



D

R

A

F

T

2.4 Problems for lecture II

II.1) What is the dimension of the operator �10 in a d = 2 relativistic scalar field theory?

II.2) One defines the “critical dimension” d
c

for an operator to be the spacetime dimension
for which that operator is marginal. How will that operator behave in dimensions d when
d > d

c

or d < d
c

? In a theory of interacting relativistic scalars, Dirac fermions, and gauge
bosons, determine the critical dimension for the following operators:

1. A �3 interaction;

2. A gauge coupling to either a fermion or a boson through the covariant derivative in
the kinetic term;

3. A Yukawa interaction, �  ;

4. An anomalous magnetic moment coupling  �
µ⌫

Fµ⌫ for a fermion;

5. A four fermion interaction, (  )2.

II.3) Derive the analogue of Fermi’s theory in eq. (71) for tree level Z exchange, expressing
your answer in terms of G

F

using the fact that M2

Z

= M2

W

/ cos2 ✓
w

.

II.4) Aside from the dimension 5 lepton number violating operator we discussed, what
other interesting dimension 5 operators could be added to the SM, and what experiments
could look for their e↵ects?

II.5) Show that the operator

✏
↵�

(L
↵i

(�
2

�a)
ij

L
�j

) (H
k

(�
2

�a)
k`

H
`

)

is equivalent up to a factor of two to

✏
↵�

(L
↵i

(�
2

)
ij

H
j

)(L
�k

(�
2

)
k`

H
`

)

where ↵, � are Weyl spinor indices, and i, j, k, ` are the SU(2) gauge group indices. Write
down the two high energy theories that could give rise to the neutrino mass operator as in
Fig. 6. How do I see that these theories break lepton number by two units?
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