Exercises in Flavor Physics

A. Consider a model with three quark flavors, u, d, s: u_R^I , d_R^I and s_R^I are each an SU(2)-singlet representation (as in the SM); u_L^I and d_L^I form an SU(2)-doublet (as in the SM), but s_L^I is an SU(2)-singlet (differently from the SM). (The super-index I denotes interaction eigenstates, and distinguish them from the mass eigenstates u, d, s.)

- 1. Write the most general Yukawa and mass terms.
- 2. What is the size of the quark mixing matrix (characterizing the W-couplings)?
- 3. Show that the Z-boson has flavor-changing couplings.
- 4. Find a relation between the $Z\overline{d_L}s_L$ coupling and the $W\overline{u_L}s_L$ coupling.
- 5. Show that the Higgs-boson has flavor-changing couplings.
- 6. Are there tree-level contributions to $K_L \to \mu^+ \mu^-$ decay? Draw the diagram and estimate the ratio $\Gamma(K_L \to \mu^+ \mu^-)/\Gamma(K^+ \to \mu^+ \nu_{\mu})$. Based on the measured rates, is the model viable?

B. We here investigate CP violation in *B* decays. (The quark content of the relevant meson states are the following: $B^0 = \bar{b}d$, $K^0 = \bar{s}d$, $\psi = \bar{c}c$, $\phi = \bar{s}s$.)

- 1. Write down the underlying quark process for the $B \to \psi K_S$ decay. Draw the tree level diagram and find the leading CKM dependence.
- 2. Write down the underlying quark process for the $B \to \phi K_S$ decay. Argue that there is no tree level contribution.
- 3. Draw the diagram(s) and find the leading CKM dependence.
- 4. Find $S_{\psi K_S}$ and $S_{\phi K_S}$. Obtain the relation between them.
- 5. If the relation is violated, which of the following explanations is (im)plausible:
 - There are large SM corrections to the leading CKM dependence.
 - There is a new physics contribution to $B^0 \overline{B}^0$ mixing.
 - There is a new physics contribution to $B \to \psi K_S$.
 - There is a new physics contribution to $B \to \phi K_S$.