Exercises

Invisibles School 2015, Hitoshi Murayama

1. Reproduce the Friedmann equation

$$
\begin{equation*}
\left(\frac{\dot{R}}{R}\right)^{2}=\frac{8 \pi}{3} G \rho-\frac{k}{R^{2}} \tag{1}
\end{equation*}
$$

from the Newtonian argument. Then using the (central values of) Planck data

$$
\begin{align*}
h_{0} & =0.6704, \tag{2}\\
\Omega_{r e l} & =4.15 \times 10^{-5} h_{0}^{-2}, \tag{3}\\
\Omega_{m} & =\Omega_{b}+\Omega_{c}=0.3183, \tag{4}\\
\Omega_{\Lambda} & =0.6817, \tag{5}
\end{align*}
$$

compute the age of the Universe. Note that $H_{0}=100 h_{0} \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$, and assume ρ_{Λ} is constant (vacuum energy).
2. Using the Schwarzschild metric due to a point mass,

$$
\begin{equation*}
d s^{2}=\left(1-\frac{r_{S}}{r}\right)(c d t)^{2}-\frac{(d r)^{2}}{1-r_{S} / r}-r^{2}(d \theta)^{2}-r^{2} \sin ^{2} \theta(d \phi)^{2} \tag{6}
\end{equation*}
$$

where $r_{S}=\frac{2 G M}{c^{2}}$, show that the deflection angle to the first order in M is given by

$$
\begin{equation*}
\Delta \theta=2 \frac{r_{S}}{r_{c}} \tag{7}
\end{equation*}
$$

where r_{c} is the closest approach to the point mass.
3. Using the deflection angle from part 2., show how a round-shaped object can be seen as multiple images of elongated shapes.
4. Using the conservation of n_{b} / s and the current value $n_{b} / n_{\gamma}=6.5 \times 10^{-10}$, work out the asymmetry in the quark number

$$
\begin{equation*}
A_{q} \equiv \frac{n_{q}-n_{\bar{q}}}{n_{q}+n_{\bar{q}}} \tag{8}
\end{equation*}
$$

before the QCD phase transition.
5. Show that only two flavors is sufficient to have CP violation in the seesaw mechanism.

