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3 EFT and radiative corrections

Up to now we have ignored quantum corrections in our e↵ective theory. A Lagrangian
such as eq. (56) is what used to be termed a “nonrenormalizable” theory, and to be
shunned. The problem was that the theory needs an infinite number of counterterms to
subtract all infinities, and was thought to be unpredictive. In contrast, a “renormalizable”
theory contained only marginal and relevant operators, and needed only a finite number
of counterterms, one per marginal or relevant operator allowed by the symmetries. (A
“superrenormalizable” theory contained only relevant operators, and was finite beyond a
certain order in perturbation theory.) However Wilson changed the view of renormalization.
In a perturbative theory, irrelevant operators are renormalized, but stay irrelevant. On
the other hand, the coe�cients of relevant operators are renormalized to take on values
proportional to powers of the cuto↵, unless forbidden by symmetry. Thus in Wilson’s view
the relevant operators are the problem, since giving them small coe�cients requires fine-
tuning – unless a symmetry forbids corrections that go as powers of the cuto↵. Relevant
operators protected by symmetry include fermion masses and Goldstone boson masses, but
for a general interacting scalar, the natural mass is m2 ' ↵⇤2 — which means one should
never see such scalars in the low energy theory.

In this lecture I discuss the techniques used to create top-down EFTs beyond tree level,
as well as an example of an EFT with a marginal interaction with asymptotic freedom and
an exponentially small IR scale.

3.1 Matching

I will consider a toy model for UV physics with a light scalar � and a heavy scalar S :

L
UV

=
1

2

�
(@�)2 �m2�2 + (@S)2 �M2S2 � �2S

�
(89)

The parameter  has dimension of mass, and I will assume  < M . Never mind that the
vacuum energy is unbounded below; one won’t see this in perturbation theory. Suppose
we are interested in 2� ! 2� scattering at energies much below the S mass M , and want
to construct the EFT with the S field “integrated out”. There are good reasons for doing
so: if you try to compute observables in this theory at some low momentum k << M
you are typically going to run into large logarithms of the form ln k2/M2 that will spoil
perturbation theory. They are easily taken care of in an EFT where you integrate out S at
the scale µ = M , matching the EFT to the full theory to ensure that you are reproducing
the same physics. Then within the EFT you run the couplings from µ = M down to µ = k
before doing your calculation. The renormalization group running sums up these large logs
for you.

One performs the matching in a loop expansion, meaning that first you make sure that
tree diagrams agree in the two theories, as in our derivation of the Fermi theory of weak
interactions from the SM. Then you make sure that the one-loop diagrams agree with each
other, then two-loop, etc. Why is this justified? Consider a graph with P propagators, V
vertices and E external legs. Euler’s formula tells us that L = P � V + 1. Furthermore,
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for a theory with a single type of interaction vertex involving n fields, it must be that
(E + 2P ) = nV , since one end of every external line and two ends of every internal line
must end on a vertex, and there must be n lines coming in to each vertex. Putting these
two equations together we have V = (2L + E � 2)/(n � 2), which shows that for a given
number of external lines, the number of vertices grows with the number of loops, so a loop
expansion is justified if a perturbative expansion is justified. It is also worth noting that
a loop expansion is an expansion in ~: since ~ enters the path integral through exp(iS/~),
every propagator brings a power of ~ and every vertex brings a power of ~�1; it follows
that a graph is proportional to ~P�V = ~L�1. Since the path integrand for the EFT is
exp(iS

eft

/~, the L-loop matching involves contributions to L
eft

at O(~L). It is convenient
therefore to count powers of ~, keeping in mind that this is justified when perturbation
theory is justified.

So we match the UV theory eq. (89) to the EFT order by order in a loop expansion
= ~ expansion; since the EFT is expressed in terms of local operators, the matching also
involves performing an expansion in powers of external momenta, translating to derivatives
acting on fields in the EFT. We only match amplitudes involving light particles on external
legs.

Tree level matching. At ~0 we have to match the two theories at tree level. There
are an infinite number of tree level graphs one can write down in the full theory, but the
only ones we have to match are those that do not fall apart when I cut a light particle
propagator...these I will call “1LPI” diagrams, for “1 Light Particle Irreducible”. The
other graphs will be automatically accounted for in the EFT by connecting the vertices
with light particle propagators. That means we can fully determine the EFT by computing
the three tree diagrams of the UV theory on the left side of Fig. 7. Because we are doing
a momentum expansion, these will determine an infinite number of operator coe�cients in
the EFT. To compute the 4-point vertices in the EFT at this order, we equate the graphs
shown in Fig. 7. Here I do not compute the graphs, but just indicate their general size,
with the result

L0

e↵

=
1

2
(@�)2 � 1

2
m2�2 � c

0

2

M2

�4

4!
� d

0

2

M4

(@�)2�2

4
+ . . . , (90)

where c
0

, d
0

etc. are going to be O(1) dimensionless numbers and the ellipses refers to
operators with four powers of � and more powers of derivatives. The factors of 2 comes
from the two vertices on the LHS of Fig. 7, and expanding the heavy scalar propagator in
powers of the light field’s momentum gives terms of the form (p2/M2)n ⇥ 1/M2.

One loop matching. At O(~1 we have to compute all 1-loop 1PLI graphs in the full
theory with arbitrary numbers of external legs, in a Taylor expansion in all powers of
external momenta, and equate the result to all diagrams in the EFT that are order ~;
the latter include (i) all 1-loop diagrams from L0

eft

(since its couplings are O(~0) and a
loop brings in a power of ~), plus (ii) all tree diagrams from L1

eft

, since the couplings of
L1

eft

are O(~). The matching conditions for the two-point functions are shown in Fig. 8,
and those for the four-point functions are shown in Fig. 9. All loop diagrams are most
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Figure 7: Matching at O(~0) between the UV theory and the EFT: on the left, integrating out the
heavy scalar S (dark propagator); on the right, all contributions of four-point vertices the tree
level EFT L0. Equating the two sides allows on to solve for this vertices.
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Figure 8: Matching the 2-point function in the EFT at O(~). On the left, the 1-loop 1LPI
graph contributing in the full theory, and on the right, graphs from the EFT include 1-loop
graphs involving the 4-point vertices from L0

EFT, as well as O(~) tree-level contributions from
�2 operators in L1

EFT, including the mass and kinetic term, as well as the infinite number of
operators induced at this order with more derivatives.

easily renormalized using the MS with renormalization scale set to the matching scale, e.g.
µ = M , so that the lnM2/µ2 terms that will arise vanish. The result one will find is

L1

eft

=
1

2

✓
1 + a

1

2

16⇡2M2

◆
(@�)2 � 1

2

✓
m2 + b

1

2

16⇡2

◆
�2

�

c
0

✓
2

M2

◆
+ c

1

✓
4

16⇡2M4

◆�
�4

4!

�

d
0

✓
2

M4

◆
+ d

1

✓
4

16⇡2M6

◆�
(@�)2�2

4
+ . . . (91)

where the coe�cients a, b, c, d are going to be O(1). In addition at this order there are
higher n-point vertices generated in the EFT, such as �6, (�@2�)2, etc. This Lagrangian
can be used to compute 2�! 2� scattering up to 1 loop. One can perform an a

1

-dependent
rescaling of the � field to return to a conventionally normalized kinetic term.

Let me close this section with several comments about the above example:

• Notice that the loop expansion is equivalent to an expansion in (2/16⇡2M2). To the
extent that this is a small number, perturbation theory and the loop expansion make
sense.

• We see that the matching correction to the scalar mass2 is not proportional to m2,
so that it is “unnatural” for the physical mass to be ⌧ 

2

16⇡

2 — that would require a
finely tuned conspiracy between m2 and 2.

• The coe�cients of operators in the e↵ective field theory are regularization scheme
dependent. Their values di↵er for di↵erent schemes, but physical predictions do not
(e.g, the relative cross sections for 2�! 2� at two di↵erent energies).
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Figure 9: Matching the 4-point function in the EFT at O(~). On the left, the 1LPI graphs in the
full theory (with the ellipsis indicating other topologies), and on the right the O(~) contribution
from the EFT, including 1-loop graphs involving the 4-point vertices from L0

EFT and tree level
contributions from 4-point vertices in L1

EFT, which are determined from this matching condition.

• In the matching conditions the graphs in both theories have pieces depending non-
analytically on light particle masses and momenta (eg, lnm2/M2 or ln p2/M2)...these
terms cancel on both sides of the matching condition so that the interactions in L

eft

have a local expansion in inverse powers of 1/M . This is an important and generic
property of e↵ective field theories.

Matching computations like this are used for predicting the low energy gauge couplings
in the SM as predicted by Grand Unified Theories (GUTS), integrating out the heavy
particles at the GUT scale M

GUT

and matching onto the SM as the EFT. At tree level
matching, the gauge couplings in the EFT at the scale µ = M

GUT

are equal (when suitably
normalizing the U(1) coupling), and then one runs them down to low energy, each gauge
coupling running in the SM with its own 1-loop �-function. This is the classic calculation
of Georgi, Quinn and Weinberg [3] and can be used to predict ↵

s

(M
Z

), since the input are
two unknowns (the scale M

GUT

and the GUT gauge coupling g(µ) at µ = M
GUT

) while the
output are the three parameter of the SM ↵, ↵

s

(M
Z

), and sin2 ✓
w

. However, if you want
greater precision you must match the GUT to the EFT at one loop, which generates small
and unequal shifts in the SM gauge coupling at µ = M

GUT

, and then one scales them down
using the 2-loop �-functions.

3.2 Landau liquid versus BCS instability

In our discussion of 2D quantum mechanics we encountered asymptotic freedom and the dy-
namical generation of an exponentially small scale in the IR. This is a possibility in theories
with marginal interactions that are pushed into relevancy by small radiative corrections;
however it is known that for relativistic QFTs it only actually happens in nonabelian gauge
theories – the most famous example being QCD. Asymptotic freedom explains why ⇤

QCD

is naturally so much smaller than the GUT or Planck scales. However, the same physics is
responsible for the large Cooper pairs found in superconducting materials, which I describe
here, following the work of Polchinski [4]. I like this example because it emphasizes that
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you should not have a fixed idea what an EFT has to look like, but should be able to adapt
its use to widely di↵erent theories.

A condensed matter system can be a very complicated environment; there may be
various types of ions arranged in some crystalline array, where each ion has a complicated
electron shell structure and interactions with neighboring ions that allow electrons to wander
around the lattice. Nevertheless, the low energy excitation spectrum for many diverse
systems can be described pretty well as a “Landau liquid”, whose excitations are fermions
with a possibly complicated dispersion relation but no interactions. Why this is the case can
be simply understood in terms of e↵ective field theories, modifying the scaling arguments
to account for the existence of the Fermi surface.

Let us assume that the low energy spectrum of the condensed matter system has
fermionic excitations with arbitrary interactions above a Fermi surface characterized by
the fermi energy ✏

F

; call them “quasi-particles”. Ignoring interactions at first, the action
can be written as

S
free

=

Z
dt

Z
d3p

X

s=± 1
2

h
 
s

(p)†i@
t

 
s

(p)� (✏(p)� ✏
F

) †
s

(p) 
s

(p)
i

(92)

where an arbitrary dispersion relation ✏(p) has been assumed.
To understand how important interactions are, we wish to repeat some momentum space

version of the scaling arguments I introduced in the first lecture. In the present case, a low
energy excitation corresponds to one for which (✏(p) � ✏

F

) is small, which means that p

must lie near the Fermi surface. So in momentum space, we will want our scaling variable
to vary the distance we sit from the Fermi surface, and not to rescale the overall momentum
p. After all, here a particle with p = 0 is a high energy excitation.

This situation is a bit reminiscent of HQET where we wrote p
µ

= mv
µ

+ k
µ

, with k
µ

being variable that is scaled, measuring the “o↵-shellness” of the heavy quark. So in the
present case we will write the momentum as

p = k+ ` (93)

where k lies on the Fermi surface and ` is perpendicular to the Fermi surface (shown in
Fig. 10 for a spherical Fermi surface). Then ` is the quantity we vary in experiments
and so we define the dimension of operators by how they must scale so that the theory is
unchanged when we change ` ! r`. If an object scales as rn, then we say it has dimension
n. Then [k] = 0, [`] = 1, and [

R
d3p =

R
d2kd`] = 1. And if we define the Fermi velocity as

v

F

(k) = r
k

✏(k), then for `⌧ k,

✏(p)� ✏
F

= ` · v
F

(k) +O(`2) , (94)

and so [✏ � ✏
f

] = 1 and [@
t

] = 1. Given that the action eq. (92) isn’t supposed to change
under this scaling,

[ ] = �1

2
. (95)
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Figure 10: The momentum p of an excitation is decomposed as p = k + `, where k lies on the
Fermi surface (which does not have to be a sphere), and ` is perpendicular to the Fermi surface.
Small |`| corresponds to a small excitation energy.

Now consider an interaction of the form

S
int

=

Z
dt

Z
4Y

i=1

(d2k
i

d`
i

)�3(P
tot

)C(k
1

, . . . ,k
4

) †
s

(p
1

) 
s

(p
2

) †
s

0(p
3

) 
s

0(p
4

) . (96)

This will be relevant, marginal or irrelevant depending on the dimension of C. Apparently
we have the scaling dimension [�3(P

tot

)C] = �1. So how does the � function by itself
scale? For generic k vectors, �(P

tot

) is a constraint on the k vectors that doesn’t change
much as one changes `, so that [�3(P

tot

)] = 0. It follows that [C] = �1 and that the four
fermion interaction is irrelevant...and that the system is adequately described in terms of
free fermions (with an arbitrary dispersion relation). This is why Landau liquid theory
works and is related to why in nuclear physics Pauli blocking allows a strongly interacting
system of nucleons to have single particle excitations.

This is not the whole story though, or else superconductivity would never occur. Let
us look more closely at the conclusion above [�3(P

tot

)] = 0. Consider the case when all
the `

i

= 0, and therefore the p

i

= k

i

and lie on the Fermi surface. Suppose we fix the
two incoming momenta k

1

and k

2

. The �3(P
tot

) then constrains the sum k

3

+ k

4

to equal
k

1

+ k

2

, which generically means that the vectors k

3

and k

4

are constrained up to point
to opposite points on a circle that lies on the Fermi surface (Fig. 11b). Thus one free
parameter remains out of the four independent parameters needed to describe the vectors
p

3

and p

4

. So we see that in this generic case, �3(P
tot

) o↵ers three constraints, even when
`
i

= 0. Therefore �3(P
tot

) = �3(K
tot

) is una↵ected when ` is scaled, and we find the above
assumption [�3(P

tot

)] = 0 to be true, and Landau liquid theory is justified.
However now look at the special case when the collisions of the incoming particles are

nearly head-on, k
1

+ k

2

= 0. Now �3(P
tot

) constrains the outgoing momenta to satisfy
k

3

+k

4

= 0. But as seen in Fig. 11a, this only constrains k
3

and k

4

to lie on opposite sides
of the Fermi surface. Thus �3(P

tot

) seems to be only constraining two degrees of freedom,
and could be written as �2(k

3

+ k

4

)�(0). This singularity obviously arose because the set
the `

i

= 0, and so �3(P
tot

) must be scaling as an inverse power of `. For nonzero ` the �(0)
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Figure 11: Fermions scattering near the Fermi surface. (a) Head-on collisions: With k
1

+k
2

= 0,
only two degrees of freedom in the outgoing momenta k

3

and k
4

are constrained, as they can point
to any two opposite points on the Fermi surface. (b) The generic Landau liquid case, where the
incoming particles do not collide head-on, and three degrees of freedom in the outgoing momenta
k
3

and k
4

are constrained, as they must point to opposite sides of a particular circle on the Fermi
surface. Figure from ref. [5], courtesy of Thomas Schäfer.

becomes �(`
tot

), and as a result, the � function scales with `�1: [�3(P
tot

(] = �1. But since
[�3(P

tot

)C] = �1, it follows that for these head-on collisions we must have [C] = 0, and the
interaction is marginal!

We have already seen that quantum corrections make a marginal interaction either
irrelevant or relevant; it turns out that for an attractive interaction, the interaction becomes
relevant, and for a repulsive interaction, it becomes irrelevant, just as we found for the �-
function interaction in two dimensions.

Therefore, an attractive contact interaction between quasiparticles becomes strong ex-
ponentially close to the Fermi surface (since the coupling runs logarithmically), and can
lead to pairing and superconductivity just as the asymptotically free QCD coupling leads to
quark condensation and chiral symmetry breaking. The BCS variational calculation shows
that the pairing instability does indeed occur; the e↵ective field theory analysis explains
why Cooper pairs are exponentially large compared to the lattice spacing in superconduc-
tors. The di↵erence between superconductors and metals that behave as Landau liquids
depends on the competition between Coulomb repulsion and phonon mediated attraction
in the particular material, which determines the sign of the C coupling.

3.3 Relevant operators and naturalness

We saw earlier that a scalar field mass typically gets large quantum corrections, so that
in a theory with new physics at scales much larger than the weak scale (e.g. any GUT
theory, and probably any theory with gravity!) it seems unnatural to have a Higgs with a
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weak scale mass...a natural size for the Higgs mass2 would be ↵/4⇡⇤2. That makes people
optimistic that the cuto↵ in the SM is at only a few TeV, above which scale new physics
is operative, such as SUSY or some new strong interactions. Another relevant operator
that is problematic is the unit operator, which is called the vacuum energy or cosmological
constant. Loop corrections to this are expected to be O(⇤4) in an EFT with cuto↵ ⇤.
Fermion masses look relevant and therefore problematic, but typically are not because of
chiral symmetry (see problem III.1).

It could be that new physics is around the corner, but one has to wonder whether the
naturalness argument isn’t missing something, especially because we see a small cosmolog-
ical constant, and we see a light Higgs mass, but we don’t see a host of not-very-irrelevant
higher dimension operators that one might expect to be generated by new physics, and
whose e↵ects we would expect to have seen already if its scale were low. Various ideas
have been suggested for alternatives to naturalness. One popular one is the anthropoid
principle, the idea that there are many places in the universe with di↵erent parameters,
most of which are “natural” but in which life is impossible. Therefore we exist in those very
peculiar fine-tuned places where life is possible and we shouldn’t worry that it looks like a
bizarre world. To make these arguments sensible you have to (i) have a UV theory for the
possible values and correlations between parameters (for example: is it possible to find a
place where the up quark is heavy and the down quark is light, or do they have to scale
together?), as well as a sensible theory for the a priori probability distribution that they
take; then (ii) one has to have a good understanding about how these parameters a↵ect our
existence. I have only seen two examples where these two criteria are met at all: anthropic
arguments for the cosmological constant [6], and anthropic arguments for the axion in an
inflationary universe (see [7] and references therein).

Another idea is that the world is fine-tuned because of its dynamical evolution. A very
creative idea along these lines recently appeared in [8]. See also the parable I have reprinted
below from my 1997 TASI lectures; I wrote that after being at a conference where I thought
that SUSY advocates were being unreasonably smug!

3.4 A parable (from TASI 1997)

I used to live in San Diego near a beach that had high cli↵s beside it. The cli↵s were
composed of compressed sand, and sand was always sprinkling down to the beach below.
At the base of these cli↵s there was always a little ramp of sand. One day I was walking
down the beach with a physicist friend of mine, and she remarked on the fact that each of
these ramps of sand was at precisely the same angle.

“How peculiar!” she said, and I had to agree, but thought no further of it. However,
she had a more inquiring mind than I, and called me up that evening:

“I’ve been conducting an experiment,” she said. “I take a box of sand and tilt it until it
avalanches, which occurs at an angle ✓

c

. You won’t believe it, but ✓
c

is precisely the same
angle as the ramps of sand we saw at the beach! Isn’t that amazing?”

“Indeed,” I said. “Apparently someone has performed the same experiment as you, and
has sent someone out to adjust all the sand piles to that interesting angle. Perhaps it’s the
Master’s project of some Fine Arts student.”

“That’s absurd!” she said. I could believe it if the artist did this once, but just think
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— the wind is always blowing sand onto some piles and o↵ of other piles! The artist would
have to fix the piles continuously, day and night!” As unlikely as this sounded, I had to
insist that there seemed to be no alternative. However, the next morning when we met
again, my friend was jubilant.

“I figured out what is going on!” she exclaimed. “I have deduced the existence of swind.
Every time the wind blows and moves the sand, swind blows and moves it back! I call this
‘Swindle Theory’. ”

“That’s absurd!” I exclaimed. “Wind is made of moving molecules, what in the world
is swind made of, and why haven’t we seen it?”

“Smallecules,” she replied, “they’re too small to see.”
“But you still need the art student to come by in the beginning and fix the sand at

precisely the angle ✓
c

, right?” I asked.
“True”
“So why should I believe in Swindle Theory? You’ve hardly explained anything!”
“Well look,” she retorted, “see how beautiful the Navier-Stokes equations become when

generalized to include swind?”
Indeed, the equations were beautiful, so beautiful that I felt compelled to believe in

Swindle Theory, although I occasionally still have my doubts...
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3.5 Problems for lecture III

III.1) A small fermion mass can be considered natural, in contrast to a small scalar mass.
This has to do with the fact that if a fermion becomes massless, usually the symmetry of the
theory is enhanced by a U(1) chiral symmetry  ! ei↵�5 . Thus at m = 0, there cannot
be any renormalization of the fermion mass. A corollary is that at nonzero mass m, any
renormalization must be proportional to m. Can you explain why this makes the fermion
mass behave like a marginal operator rather than a relevant one? Can you construct an
example of a theory where it is not natural to have a light fermion?
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