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4 Chiral perturbation theory

4.1 Chiral symmetry in QCD

QCD is the accepted theory of the strong interactions. At large momentum transfer, as
in deep inelastic scattering processes and the decays of heavy particles such as the Z, the
theory is perturbative due to asymptotic freedom. The flip side is that in the infrared,
the theory becomes nonperturbative. This is good in the sense that we know that the
light hadrons don’t look at all like a collection of quarks weakly interacting via gluon
exchange. But it does mean that QCD is not of much help in quantitatively understanding
this phenomenology without resorting to lattice QCD and a computer. However, there does
exist an e↵ective field theory which is very powerful for treating analytically the interactions
of the lightest hadrons, the pseudoscalar octet, consisting of the ⇡, K, K and ⌘.

The reason that the pseudoscalar octet mesons are lighter is because they are the pseudo-
Goldstone bosons (PGBs) that arise from the spontaneous breaking of an approximate
symmetry in QCD.

Consider the QCD Lagrangian, keeping only the three lightest quarks, u, d and s:
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where D
µ

= @
µ

+ igA
µ

is the covariant derivative, A
µ

= Aa

µ

T
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are the eight gluon fields
with T

a

being SU(3) generators in the 3 representation, and G
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being the gluon field
strength. Note that if I write the kinetic term in terms of right-handed and left-handed
quarks, projected out by (1± �
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This term by itself evidently respects a U(3)
L

⇥U(3)
R

symmetry, where I rotate the three
flavors of left-handed and right-handed quarks by independent unitary matrices. One com-
bination of these transformations, the U(1)

A

transformation where q
i

! ei↵�5q
i

is in fact
not a symmetry of the quantum theory, due to anomalies; it is a symmetry of the action but
not of the measure of the path integral. This leaves us with a U(1)

V

⇥ SU(3)
L

⇥ SU(3)
R

symmetry. The U(1)
V

is just baryon number, under which both left- and right-handed
quarks of all flavors pick up a common phase. The remaining SU(3)
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symme-
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, where R and L are independent SU(3)
matrices, is called “chiral symmetry”.

SU(3)
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is not an exact symmetry of QCD, however. The quark mass terms
may be written as
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where the quark masses m
i

are called “current masses”, not to be confused with the much
bigger constituent quark masses in the quark model. Since the mass term couples left- and
right-handed quarks, it is not invariant under the full chiral symmetry. Several observations:
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• Note that if the mass matrix M were a dynamical field, transforming under SU(3)
L

⇥
SU(3)

R

as

M ! RML† , (100)

then the Lagrangian would be chirally invariant. Thinking of the explicit breaking
of chiral symmetry as being due to spontaneous breaking due to a field M which
transforms as above makes it simple to understand howM must appear in the e↵ective
theory, which will have to be chirally invariant given the above transformation. This
is called treating M as a “spurion”.

• The symmetry is broken to the extent that M 6= RML†. Since m
u

and m
d

are much
smaller than m

s

, SU(2)
L

⇥ SU(2)
R

is not broken as badly as SU(3)
L

⇥ SU(3)
R

;

• If all three quark masses were equal but nonzero, then QCD would respect an exact
SU(3)

V

⇢ SU(3)
L

⇥ SU(3)
R

symmetry, where one sets L = R. This is the SU(3)
symmetry of Gell-Mann.

• Sincem
d

�m
u

is small, SU(2)
V

⇢ SU(3)
V

, where L = R and they act nontrivially only
on the u and d quarks, is quite a good symmetry...also known as isospin symmetry.

• Independent vectorlike phase rotations of the three flavors of quarks are exact sym-
metries...these three U(1) symmetries are linear combinations of baryon number, I

3

isospin symmetry, and Y (hypercharge). The latter two are violated by the weak
interactions, but not by the strong or electromagnetic forces.

We know that this still is not the whole story though. An added complication is that
the QCD vacuum spontaneously breaks the chiral SU(3)

L

⇥ SU(3)
R

symmetry down to
Gell-Mann’s SU(3)

V

via the quark condensate:
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which transforms as a (3, 3) under SU(3)
L

⇥ SU(3)
R

. Here ⇤ has dimensions of mass. If
one redefines the quark fields by a chiral transformation, the Kronecker �-function above
gets replaced by a general SU(3) matrix,
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! (LR†)
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⌘ ⌃
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. (102)

If L = R (an SU(3)
V

transformation), ⌃
ij

= �
ij

which shows that the condensate leaves
unbroken the SU(3)

V

symmetry. For L 6= R, ⌃
ij

represents a di↵erent vacuum from eq.
(101), and if it wasn’t for the explicit breaking of SU(3)

L

⇥SU(3)
R

by quark masses in the
QCD Lagrangian, these two di↵erent vacua would be degenerate. By Goldstone’s theorem
therefore, there would have to be eight exact Goldstone bosons — one for each of the eight
broken generators — corresponding to long wavelength, spacetime dependent rotations of
the condensate. We will parametrize these excitations by replacing

⌃ ! ⌃(x) ⌘ e2i⇡(x)/f , ⇡(x) = ⇡
a

(x)T
a

(103)

where the T
a

are the SU(3) generators (a = 1, . . . , 8) in the defining representation nor-
malized to

TrT
a

T
b

=
1

2
�
ab

, (104)
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f is a parameter with dimension of mass which we will relate to the pion decay constant
f
⇡

, and the ⇡
a

are eight mesons transforming as an octet under SU(3)
V

. These bosons
correspond to long wavelength excitations of the vacuum.

If you are somewhat overwhelmed by this amazing mix of symmetries that are gauged,
global, exact, approximate, spontaneously broken and anomalous (and usually more than
one of these attributes at the same time), rest assured that it took a decade and many
physicists to sort it all out (the 1960’s).

4.2 Quantum numbers of the meson octet

It is useful to use the basis for SU(3) generators T
a

= 1

2

�
a

, where �
a

are Gell Mann’s eight
matrices. The meson matrix ⇡ ⌘ ⇡

a

T
a

appearing in the exponent of ⌃ is a traceless 3⇥ 3
matrix. We know that under and SU(3)

V

transformation L = R = V ,

⌃ ! V ⌃V † = e2iV ⇡V

†
/f , (105)

implying that under SU(3)
V

the mesons transform as an octet should, namely

⇡ ! V ⇡V † . (106)

Then by restricting V to be an I
3

(T
3

) or a Y (T
8

) rotation we can read o↵ the quantum
numbers of each element of the ⇡ matrix and identify them with real particles:
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An easy way to understand the normalization is to check that

Tr(⇡⇡) =
1

2

X

a

(⇡
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)2 =
1

2
(⇡0)2 +

1

2
⌘2 + ⇡+⇡� +K+K� +K0K0 . (108)

4.3 The chiral Lagrangian

4.3.1 The leading term and the meson decay constant

We are now ready to write down the e↵ective theory of excitations of the chiral condensate
(the chiral Lagrangian), ignoring all the other modes of QCD. This is analogous to the
quantization of rotational modes of a diatomic molecule, ignoring the vibrational modes.
We are guided by two basic principles of e↵ective field theory: (i) The chiral Lagrangian
must exhibit the same approximate chiral symmetry as QCD, which means that it must be
invariant under ⌃ ! L⌃R† for arbitrary SU(3)

L

⇥ SU(3)
R

matrices L, R. We will also be
able to incorporate symmetry breaking e↵ects by including the matrixM , requiring that the
chiral Lagrangian be invariant under the chiral symmetry if M were to transform as in eq.
(100). (ii) The other principle is that the e↵ective theory be an expansion of local operators
suppressed by powers of a cuto↵ ⇤, which is set by the scale of physics we are ignoring,
such as the ⇢, K⇤, !, and ⌘0 mesons (with masses m

⇢

= 770 MeV, m
K

⇤ = 892 MeV,
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m
!

= 782 MeV and m
⌘

0 = 958 MeV). In practice, the cuto↵ seems to be at ⇤ ' 1 GeV in
many processes. Our calculations will involve an expansion in powers of momenta or meson
masses divided by ⇤. This cuto↵ is to be compared withm

⇡

± = 140 MeV, m
K

+ = 494 MeV
and m

⌘

= 548 MeV. For purely mesonic processes, meson masses always appear squared,
which helps. Nevertheless, one can surmise that chiral perturbation theory will work far
better for pions than kaons or the ⌘. This is a reflection of the fact that SU(2)

L

⇥ SU(2)
R

is a much better symmetry of QCD than SU(3)
L

⇥ SU(3)
R

.
The lowest dimension chirally symmetric operator we can write down is

L
0

=
f2

4
Tr@⌃†@⌃ = Tr@⇡@⇡ +

1

3f2

Tr[@⇡,⇡]2 + . . . (109)

Note that the f2/4 prefactor is fixed by requiring that the mesons have canonically normal-
ized kinetic terms. Thus we have an infinite tower of operators involving a single unknown
parameter, f . From the above Lagrangian, it would seem that the only way to determine
f is by looking at ⇡⇡ scattering. However there is a better way: by looking at the charged
pion decay ⇡ ! µ⌫. This occurs through the “semi-leptonic” weak interaction eq. (71),
namely the operator

1p
2
G

F

V
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(u�µ(1� �
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)d) (µ�
µ

(1� �
5

)⌫
µ

) + h.c. (110)

The matrix element of this operator sandwiched between |µ⌫i and h⇡| factorizes, and the
leptonic part is perturbative. We are left with the nonperturbative part,

h0|u�µ(1� �
5

)d|⇡�(p)i ⌘ i
p
2 f

⇡

pµ . (111)

The pion decay constant f
⇡

is determined from the charged pion lifetime to be f
⇡

=
92.4± .25 MeV.

Even though QCD is nonperturbative, we can easily match this charged current operator
onto an operator in the chiral Lagrangian. That is because we can write

u�µ(1� �
5

)d = 2
�
jµ
L1

+ ijµ
L2

�
, (112)

where jµ
La

are the eight SU(3)
L

currents
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⌘ q�µ
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To compute these currents in the e↵ective theory is easy, since we know that under SU(3)
L

transformations ⌃ ! L⌃, or �
La

⌃ = iT
a

⌃, and can just compute the left-handed currents
from the Lagrangian eq. (109) using Noethers theorem. The result is:
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In particular,
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were I made use of eq. (107). Comparing this equation with eq. (111) we see that to this
order,

f = f
⇡

= 93 MeV . (116)

In general it is not possible to exactly match quark operators with operators in the
chiral Lagrangian; it was possible for the semileptonic decays simply because the weak
operator factorized into a leptonic matrix element and a hadronic matrix element of an
SU(3)

L

symmetry current. For a purely hadronic weak decay, such as K ! ⇡⇡ the four
quark operator cannot be factorized, and matching to operators in the chiral Lagrangian
involves coe�cients which can only be computed on a lattice. Even for these processes the
chiral Lagrangian can be predictive, relating weak decays with di↵erent numbers of mesons
in the final state.

4.3.2 Explicit symmetry breaking

Up to now, I have only discussed operators in the chiral Lagrangian which are invariant.
Note that that there are no chirally invariant operators which do not have derivatives (other
than the operator 1). For example, one cannot write down a chirally invariant mass term for
the pions. Recall that without explicit chiral symmetry breaking in the QCD Lagrangian,
there would be an infinite number of inequivalent degenerate vacua corresponding to dif-
ferent constant values of the matrix ⌃; therefore the energy (and the Lagrangian) can only
have operators which vanish when ⌃ is constant, up to an overall vacuum energy indepen-
dent of ⌃. In fact, rotating ⌃ ! ⌃0 = ⌃ + id✓

a

T
a

⌃ is an exact symmetry of the theory
(SU(3)

L

), and corresponds to shifting the pion fields ⇡
a

! ⇡
a

+d✓
a

f/2+O(⇡2). Derivative
interactions are a result of this shift symmetry. (In the literature, this is called a nonlinearly
realized symmetry, which is to say, a spontaneously broken symmetry). A theory of mass-
less particles with nontrivial interactions at zero momentum transfer (such as QCD) would
su↵er severe infrared divergences, and so if the interactions had not been purely derivative,
the theory would either not make sense, or would become nonperturbative like QCD.

This all changes when explicit chiral symmetry breaking is included. Now not all vacua
are equivalent, the massless Goldstone bosons become massive “pseudo-Goldstone bosons”
(PGBs), and acquire nonderivative interactions. In pure QCD, the only sources of explicit
chiral symmetry breaking are instantons (which explicitly break the U(1)

A

symmetry, and
the quark mass matrix. Electromagnetic interactions also introduce chiral symmetry break-
ing, as do weak interactions.

Quark masses. To include the e↵ect of quark masses, we need to include the mass
matrix M , recalling that if it transformed as in eq. (100), then the theory would have to
be invariant. Just as with derivatives, each power of M will be accompanied by 1/⇤. The
leading operator we can write down is

L
M

= ⇤2f2

✓
c

2

1

⇤
TrM⌃+ h.c.

◆
⌘ 1

2
f2Tr(e⇤M)⌃+ h.c. , (117)

where c is an unknown dimensionless coe�cient, and I defined

c⇤ ⌘ e⇤ = O(⇤) . (118)
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Expanding to second order in the ⇡, I get

L
M

= �m2

⇡

⇡+⇡� �m2

K

+K+K� �m2

K

0K0K0 � 1

2

�
⇡0 ⌘

�
M2

0

✓
⇡0

⌘

◆
, (119)

with
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Note that (i) the squares of the meson masses are proportional to quark masses; (ii) ⇡0 � ⌘
mixing is isospin breaking and proportional to (m

u

� m
d

); (iii) expanding in powers of
(m

u

� m
d

), m2

⌘

and m2

⇡

0 are given by the diagonal entries of M2

0

, up to corrections of
O
�
(m

u

�m
d

)2
�
; (iv) we cannot directly relate quark and meson masses because of the

unknown coe�cient e⇤.
Ignoring isospin breaking due to electromagnetism and the di↵erence m

u

6= m
d

, the
masses obey the Gell-Mann Okuba formula

3m2

⌘

+m2

⇡

= 4m2

K

. (122)

The two sides of the above equation are satisfied experimentally to better than 1% accuracy.

Electromagnetism. To include electromagnetism into the chiral Lagrangian, we have
to first go back to QCD and ask what currents out of our eight jµ

La

and jµ
Ra

couple to the
photon. That is easy: the photon couples to the electromagnetic current which can be
written as

Jµ

em

= eq�µP
L

Q
L

q + eq�µP
R

Q
R

q , Q =

0

@
2

3

�1

3

�1

3

1

A , (123)

a simple linear combination of octet currents. So symmetry determines the covariant deriva-
tive in the chiral Lagrangian to be

D
µ

⌃ = @
µ

⌃� ieA
µ

(Q
L

⌃� ⌃Q
R

) (124)

since ⌃ ! L⌃R† under SU(3)
L

⇥SU(3)
R

. Note that when we set the ⌃ field to its vacuum
value, ⌃ = 1, the photon term drops out of the covariant derivative, which is to say that the
vacuum does not break electromagnetism spontaneously. Also note that the Q

L,R

matrices
are SU(3)

L

⇥ SU(3)
R

spurions: in order to have unbroken chiral symmetry we would need
D

µ

⌃ to have the transformation property D
µ

⌃ ! LD
µ

⌃R† when ⌃ ! L⌃R†, which would
require the transformation properties

Q
L

! L†Q
L

L† , Q
R

! RQ
R

R† , (125)
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which is to say that Q
L

transforms as part of the adjoint (octet) of SU(3)
L

and a singlet
under SU(3)

R

, and conversely for Q
R

. We would have muddled this if we had not taken
care to distinguish Q

L,R

from each other from the start, even though for the photon then
end up being the same matrix.

If we now want to compute the electromagnetic contribution to the ⇡+�⇡0 mass splitting
to order ↵ we naturally look at the two one-loop diagrams we encounter in scalar QED.
These are quadratically divergent, which means they need a counter term which would
contribute to the pion mass2 approximately ⇠ ↵/4⇡⇤2 ⇠ e2f2. From the transformation
properties eq. (125) we see that we can add such a counter term operator to the chiral
Lagrangian of the form

L
↵

= ⇠f4

↵

4⇡
TrQ

L

⌃Q
R

⌃† (126)

where would would expect c = O(1), but which needs to be fit to data or computed using
lattice QCD. If we use the MS scheme in Landau gauge, them the 1-loop diagrams vanish
and we are left only with the direct contribution from the above operator in . Expanding
it to second order in meson fields we get

L
↵

= �⇠f4e2
2

f2

TrQ
L

[⇡, [⇡, Q
R

]] = �2⇠e2f2

�
⇡+⇡� +K+K�� (127)

a simple result which says that the meson mass2 gets shifted by a constant amount propor-
tional to its charge. We can fit ⇠ in this scheme and find

⇠ =
m2

⇡

+ �m2

⇡

0

2e2f2

= 0.9 . (128)

Thus to leading order in ↵ and the quark masses, our formula for the meson masses
take the form

m2

⇡

+ = e⇤(m
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+m
d

) +
↵

4⇡
�2 , m2

K

+ = e⇤(m
u

+m
s

) +
↵

4⇡
�2 , (129)

with the neutral particle masses unchanged. In the above formula, �2 = 2⇠(4⇡f)2 is a free
parameter as far as we are concerned, but following Weinberg, combine lesson masses in
such a way that it drops out and calculate the ratios of quark masses via the formulas

(m2

K

+ �m2

K

0)� (m2

⇡

+ �m2

⇡

0)
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0

=
m
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�m
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m
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,
3m2

⌘

�m2

⇡

0

m2

⇡

0

=
4m

s

m
u

+m
d

. (130)

Plugging in the measured meson masses, the result is

m
u

m
d

' 1

2
,

m
d

m
s

' 1

20
. (131)

To specify the quark masses themselves, one must perform a lattice QCD calculation and
designate a renormalization scheme. Lattice simulations typically find m

s

renormalized at
µ = 2 GeV in the MS scheme lies in the 80� 100 MeV range, from which one infers from
the above ratios m

d

⇠ 5 MeV, m
u

⇠ 2.5 MeV in the same scheme. Evidently most of the
mass of baryons and vector mesons does not come from the intrinsic masses of the quarks.
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4.4 Loops and power counting

What makes the chiral Lagrangian and EFT and not just another model of the strong
interactions is that it consists of all local operators consisted with the symmetries of QCD,
and that there exists a power counting scheme that allows one to work to a given order, and
to be able to make a reliable estimate of the errors arising from neglecting the subsequent
order. As discussed in the second lecture, the power counting scheme is intimately related
to how one computes radiative corrections in the theory.

Beyond the leading term is an infinite number of chirally invariant operators one can
write down which are higher powers in derivatives, as well as operators with more inser-
tions of the quark mass matrix M . The derivative expansion is in powers of @/⇤. This
power counting is consistent with the leading operator eq. (109), if you consider the chiral
Lagrangian to have a prefactor of ⇤2f2, then even in the leading operator derivatives enter
as @/⇤. Since we have found that meson octet masses scale as m2

⇡ ' (e⇤M), and since for
on-shell pions p2 ⇠ m2, it follows that one insertion of the quark mass matrix is equivalent
to two derivatives in the e↵ective field theory expansion. This leads us to write the chiral
Lagrangian as a function of (@/⇤) and e⇤M/⇤2. Including electromagnetism is straightfor-
ward as well: since a derivative @⌃ becomes a covariant derivative D

µ

⌃ = @
µ

⌃�ieA
µ

[Q,⌃],
the photon field enters as eA

µ

/⇤. Operators arising from electromagnetic loops involve two
insertions of the quark charge matrix Q in the proper way (see problem (III.6), along with
a loop factor ↵/(4⇡). Therefore the chiral Lagrangian takes the form

L = ⇤2f2 bL
h
⌃, @/⇤, e⇤M/⇤2, eA/⇤, (↵/4⇡)Q2

i
, (132)

where bL is a dimensionless sum of all local, chirally invariant operators (treating M and Q
as spurions), where the coe�cient of each term (except L

0

) is preceded by a dimensionless
coe�cient to be fit to experiment... which we expect to be O(1), but which may occasionally
surprise us! That last assumption is what allows one to estimate the size of higher order
corrections.

It should be clear now in what sense the u, d and s are light quarks and can be treated
in chiral perturbation theory, while the c, b and t quarks are not: whether the quarks
are light or heavy is relative to the scale ⇤, namely the mass scale of resonances in QCD.
Since the c has a mass ⇠ 1.5 GeV there is no sensible way to talk about an approximate
SU(4)⇥SU(4) chiral symmetry and include D, D

s

and ⌘
c

mesons in our theory of pseudo-
Goldstone bosons7 Of course, you might argue that the strange quark is sort of heavy and
should be left out as well, but if we don’t live dangerously sometimes, life is too boring.

4.4.1 Subleading order: the O(p4) chiral Lagrangian

It is a straightforward exercise to write down subleading operators of the chiral Lagrangian.
These are operators of O(p4), O(p2M) and O(M2), where M is the quark mass matrix.
This was first done by Gasser and Leutwyler, and their choice for the set of operators has

7This does not mean that an e↵ective theory for D � ⇡ interactions is impossible. However, the D mesons
must be introduced as heavy matter fields, similar to the way we will introduce baryon fields later, as opposed to
approximate Goldstone bosons.
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become standard:
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⌘
(�⌃+ h.c.)

⌘

+L
6

(Tr (�⌃+ h.c.))2

+L
7

(Tr (�⌃� h.c.))2

+L
8

Tr (�⌃�⌃+ h.c.) , (133)

where � ⌘ 2e⇤M , where e⇤ entered in eq. (117). Additional operators involving F
µ⌫

need
be considered when including electromagnetism.

Note that according to our power counting, we expect the L
i

to be of size

L
i

⇠ ⇤2f2

⇤4

=
f2

⇤2

⇠ 10�2 . (134)

4.4.2 Calculating loop e↵ects

Now consider loop diagrams in the e↵ective theory. These are often divergent, and so the
first issue is how to regulate them. It is easy to show that a momentum cuto↵ applied
naively violates chiral symmetry; and while it is possible to fix that, by far the simplest
regularization method is dimensional regularization with a mass independent subtraction
scheme, such as MS.

The MS scheme introduces a renormalization scale µ, usually chosen to be µ = ⇤.
However, unlike with cuto↵ regularization, one never gets powers of the renormalization
scale µ when computing a diagram; µ can only appear in logarithms. Consider, for example,
the O(⇡4) operator from L

0

, of the form 1

f

2 (@⇡)2⇡2, and contract the two pions in (@⇡)2; this
one-loop graph will renormalize the pion mass. However, since the diagram is proportional
to 1/f2, and no powers of the renormalization scale µ can appear, dimensional analysis
implies that any shift in the pion mass from this graph must be proportional to �m2

⇡

⇠
(m0

⇡

)4/(4⇡f)2, times a possible factor of ln(m
⇡

/µ), where (m0

⇡

)2 ⇠ ⇤̃M is the mass squared
of the meson at leading order. Here I have included the factor of 1/(4⇡)2 that typically
arises from a loop diagram. Ignoring the logarithm, compare with this contribution to the
pion mass contribution from the O(p4) chiral Lagrangian, which yields �m2

⇡

⇠ (⇤̃M)2/⇤2.
We see that so long as

4⇡f
⇡

& ⇤ , (135)

then the contribution from the radiative correction from the lowest order operator is compa-
rable to or smaller than the second order tree-level contribution, up to lnm2

⇡

/µ2 corrections.
What about the logarithm? Note that ln(⇤2/m2

⇡

) ' 4 for µ = 1 GeV. Therefore a term
with a logarithm is somewhat enhanced relative to the higher order tree-level contributions.
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It is therefore common to see in the literature a power counting scheme of the form

p2 > p4 lnµ2/p2 > p4 . . . (136)

which means that in order of importance, one computes processes in the following order:

1. Tree level contributions from the O(p2) chiral Lagrangian;

2. Radiative corrections to the O(p2) chiral Lagrangian, keeping only O(p4 ln p2) terms;

3. Tree level terms from the O(p4) chiral Lagrangian, as well as O(p4) radiative contri-
butions from the O(p2) chiral Lagrangian;

and so forth. Keeping the logs and throwing out the analytic terms in step #2 is equivalent
to saying that most of the O(p4) chiral Lagrangian renormalized at µ = m

⇡

would come
from running induced by the O(p2) Lagrangian in scaling down from µ = ⇤ to µ = m

⇡

,
and not from the initial values of couplings in the O(p4) Lagrangian renormalized at µ = ⇤.
This procedure would not be reasonable in the large N

c

limit (see problem (III.7)) but
seems to work reasonably well in the real world.

4.4.3 Renormalization of h0|qq|0i
As an example of a simple calculation, consider the computation of the ratios of the quark
condensates,

x =
h0|uu|0i
h0|ss|0i . (137)

Since the operator qq gets multiplicatively renormalized, h0|q
i

q
i

|0i is scheme dependent,
but the ratio x is not. The QCD Hamiltonian density is given by H = . . .+ qMq+ . . ., and
so it follows from the Feynman-Hellman theorem8 that

h0|q
i

q
i

|0i = @

@m
i

h0|H|0i = @E
0

@m
i

, (138)

where E
0

is the vacuum energy density. We do not know what is E
0

, but we do know its
dependence one the quark mass matrix; from eq. (119)

E
0

= const.� 1

2
f2Tr(e⇤M)⌃+ h.c. +O(M2 lnM)

�����
⌃ij=�ij

= f2e⇤TrM + . . . , (139)

from which it follows that this scheme

h0|q
i

q
i

|0i = e⇤f2 , (140)

and that in any scheme the leading contributions to x is

x = 1 . (141)

8The substance of the Feynman-Hellman theorem is that in first order perturbation theory, the wave function
doesn’t change while the energy does.
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Well good — this is what we started with for massless QCD in eq. (101)! To get the
subleading logarithmic corrections, we need to compute the O(m2 lnm2) one-loop correction
to the vacuum energy. This loop with no vertices’s is the Feynman diagram for which
Feynman rules don’t work! As easily seen in a Euclidean path integral, the vacuum energy
density in a box of 4-volume V T for a real, noninteracting scalar is just

E
0

= � 1

V T
ln
�
det(�⇤+m2)

��1/2

=
1

V T

1

2
Tr ln(�⇤+m2) . (142)

In d = (4� 2✏) Euclidean dimensions this just involves evaluating for each mass eigenstate
the integral

µ4�d

2

Z
ddk

(2⇡)d
ln(k2 +m2) . (143)

where the prefactor of µ4�d was included to keep the mass dimension to equal 4.
Let us first perform the di↵erentiation with respect to quark mass. Then in this scheme

we get the correction

� h0|q
i

q
i

|0i = 1

2

X

a

@m2

a

@m
i

µ4�d

Z
ddk

(2⇡)d
1

k2 +m2

������!
MS

�
X

a

@m2

a

@m
i

✓
m2

a

lnm2

a

/µ2

32⇡2

◆
,(144)

where a is summed over the meson mass eigenstates, and m
i

is the mass of the ith flavor of
quark. The final result was arrived at after performing the MS subtraction (where you only
keep the lnm2 term in the ✏ ! 0 limit; see the appendix ?? for dimensional regularization
formulas).

To the order we are working, the quark condensate ratios are therefore given by

h0|q
i

q
i

|0i
h0|q

j

q
j

|0i = 1� 1

32⇡2e⇤f2

X

a

m2

a

lnm2

a

/µ2

✓
@m2

a

@m
i

� @m2

a

@m
j

◆
. (145)

Using the masses given in eq. (120) and eq. (121), ignoring ⇡0 � ⌘ mixing, we find

x =
h0|uu|0i
h0|ss|0i = 1� 3g

⇡

+ 2g
K

0 + g
⌘

+O(m4) , (146)

where

g
P

⌘ 1

32⇡2f2

m2

P

ln

✓
m2

P

µ2

◆
(147)

with P = ⇡, K+, K0, ⌘. The answer is µ dependent, since I have neglected to include the
O(p4) Lagrangian contributions at tree-level, and in fact it is precisely those operators that
serve as counterterms for the 1/✏ poles subtracted in MS. However, in the usual practice
of chiral perturbation theory, I have assumed that with µ = ⇤, the contributions from
the O(p4) Lagrangian are small compared to the chiral logs I have included. Plugging in
numbers with µ = 1 GeV I find

g
⇡

' �0.028 , g
K

' �0.13 , g
⌘

' �0.13 (148)

implying that x ' 0.70 — a 30% correction from the leading result x = 1. This is typical of
any chiral correction that involves the strange quark, since m2

K

/⇤2 ' 25%. Corrections to
huui/hddi will be much smaller, since they depend on isospin breaking, of which a typical
measure is (m2

K

0 �m2

K

+)/⇤2 ' 0.004.
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4.5 Chiral lagrangians for BSM physics

4.5.1 Technicolor

Chiral lagrangians are the tool for studying the physics of Goldstone Bosons. The pions
in particular are the ones we have been looking at, but we know that there are at least
three other Goldstone bosons in reality: namely the three that are “eaten” via the Higgs
mechanism and become the longitudinal degrees of freedom in the W± and the Z0 gauge
bosons in the SM. Let us start by asking what the world would look like if the Higgs doublet
was omitted from the SM; to make this toy model simpler, let’s also imagine that the world
only has one family of fermions, u, d, e, ⌫

e

, and in the following discussion I will ignore the
leptons.

Without the Higgs the SU(2) ⇥ U(1) gauge bosons are all massless down at the QCD
scale and have to be included in the chiral Lagrangian. Therefore we need only consider an
SU(2)⇥ SU(2)/SU(2) chiral Lagrangian, where the ⌃ field represents the three pions and
is written as

⌃ = e2iTa⇡a/f⇡ , T
a

=
�
a

2
, (149)

but how do we incorporate the gauge fields? Recall that in the SM the gauge charges of
the quarks under SU(2)⇥ U(1) are

✓
u
d

◆

L

= 2 1
6
, u

R

= 1 2
3
, d

R

= 1� 1
3
. (150)

Note that the SU(2)
L

of the chiral Lagrangian is exactly the same group as the SU(2)
L

that is gauged in the SM; the gauged U(1) charge Y can be written as

Y =
1

2
B + T

3,R

(151)

where B is baryon number, the U(1)
V

symmetry that acts the same on all LH and RH
quarks, and T

3,R

2 SU(2)
R

. The U(1)
V

part is uninteresting in the chiral Lagrangian since
the pions do not carry that quantum number; however we have to use covariant derivatives
for the SU(2)

L

⇥ U(1)
R

part of the gauge group:

@
µ

⌃ =) D
µ

⌃ = @
µ

⌃+ igW a

µ

T
a

⌃� ig0B
µ

⌃T
3

, (152)

where I used the fact that under SU(2) ⇥ SU(2) the ⌃ field transforms as ⌃ ! L⌃†
R

; the
dagger on R is what is responsible for the minus sign in front of the U(1) gauge boson piece
above.

Something peculiar is going on: now that SU(2)
L

is gauged, the matrix L is promoted
to a spacetime dependent matrix L(x), and I can choose L(x) = ⌃†(x)...and a gauge
transformation can turn ⌃ into the unit matrix! This is because the quark condensate
hq

L

q
R

i has broken the weak interactions spontaneously, the W and B get masses, and we
just rediscovered unitary gauge.

Now let’s look at the kinetic term for the ⌃ field in unitary gauge:

f2

4
TrD

µ

⌃(Dµ⌃)† =
f2

4

h
g2W a

µ

WµbTrT
a

T
b

� 2gg0W 3

µ

BµTrT
3

T
3

+ g02TrT
3

T
3

i
. (153)
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This gives us a mass2 matrix for the gauge bosons

M2 =
f2

4

0

BB@

g2

g2

g2 �gg0

�gg0 g02

1

CCA (154)

with eigenvalues

m2 =

⇢
0,

g2f2

4
,
g2f2

4
,
(g2 + g02)f2

4

�
⌘
�
m2

�

, m2

w

, m2

w

, mz2
 

(155)

where

m2

�

= 0 , m2

w

=
e2f2

⇡

4 sin2 ✓
w

, m2

z

=
m2

w

cos2 ✓
w

(156)

with the conventional definitions g = e/ sin ✓
w

, g0 = e/ cos ✓
w

.
This would look precisely like the SM if instead of f

⇡

= 93 MeV we took f
⇡

= 250 GeV!
This was the observation of both Weinberg and Susskind [9–11]: that the strong interactions
would provide the Higgs mechanism in the SM without the Higgs doublet field. While the
W and Z would get massive, as in the SM, in this theory there might not be an actual Higgs
boson (it is not in the chiral Lagrangian, and QCD does not have any narrow 0+ resonance),
and the order parameter for the symmetry breaking is a quark bilinear now instead of a
fundamental scalar, and so that there is no naturalness problem: the weak scale is set by
the QCD scale, which can be naturally much smaller than the GUT or Planck scales due
to asymptotic freedom, just as Cooper pairs in superconductivity are so much larger than
the crystal lattice spacing.

However, f
⇡

6= 250 GeV and we do not want to give away the pion. So instead we
posit a new gauge interaction, just like color but at a higher scale called technicolor, and
new fermions that carry this gauge quantum number, U , D, called techniquarks. Now
the techniquarks condense with a technipion decay constant F

⇧

= 250 GeV, and we have
explained the SM without the Higgs!

This is great, except for three problems: (i) the Higgs boson has been discovered, long
after the invention of technicolor; (ii) it is di�cult to construct a technicolor theory where
precision radiative corrections to the weak interactions agree with what is measured; (iii) as
described here, the techniquark condensate only fulfills one of the roles played by the Higgs
serves in the SM: giver of mass to the gauge bosons. To realize the other role — giver of
mass to the quarks and leptons — requires new interactions added to be technicolor (e.g.,
Extended Technicolor), more complications, and potential problems with flavor changing
neutral currents. There are more complex versions of the original theory still being explored,
but the compelling beauty of the original concept is no longer there.

4.5.2 Composite Higgs

What is so beautiful about technicolor is that by replacing the fundamental Higgs scalar field
with a quark bilinear, the fine tuning problem is avoided. Do we have to abandon that idea
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simply because we have seen a Higgs boson that looks fundamental? No, that has happened
before: the pions looked fundamental when discovered, and only over a decade later was it
decided that they were composite bound states. Furthermore, they are relativistic bound
states – at least in the chiral limit, their compositeness scale is much smaller than their
Compton wavelengths. Relativistic bound states are in general ba✏ing things we have no
handle on as they always require strong coupling. One of the few exceptions when we
understand what is going on exception is when the bound states are Goldstone bosons, like
the pions in QCD. So let us return to the QCD chiral Lagrangian for inspiration, this time
not looking at the pions as candidates for the longitudinal W and Z, but as candidates for
the Higgs doublet [12, 13].

A Higgs doublet field has four real degrees of freedom, so we need to look at a chiral La-
grangian with at least four Goldstone bosons. The SU(2)⇥SU(2)/SU(2) chiral Lagrangian
only has three pions, so that won’t do; however the SU(3) ⇥ SU(3)/SU(3) example has
eight mesons. Furthermore, there is a ready made SU(2) doublet in that theory – the kaon.
In fact, note that under the unbroken isospin and strong hypercharge SU(2)⇥U(1) global
symmetry of QCD, the kaon doublet transforms just like the Higgs doublet does under
gauged electroweak SU(2)⇥ U(1) symmetry in the SM. So what if we scaled up a version
of QCD with three massless flavors, gauge the vector-like SU(2) ⇥ U(1) symmetry, and
identify the kaon doublet with the Higgs doublet?

In such a theory the Higgs would get a mass from SU(2) ⇥ U(1) gauge interactions,
just as the ⇡+ gets a mass contribution from electromagnetic contributions (see problem
6). Unfortunately this contribution to the Higgs mass2 is positive, and so there is no
spontaneous symmetry breaking in the model so far. What is needed is some e↵ect that
contributes a negative mass2. Various examples have been found that will do this: one is
an axial gauge group under which the constituents of the composite Higgs are charged [14];
another and more compelling source of destabilization of the composite Higgs potential is
the top quark [2]. The basic idea is that operators can be induced in the chiral Lagrangian
which favor the vacuum ⌃ 6= 1 and prefer a small nonzero value corresponding to the
composite Higgs doublet getting a vev v which can be computable in terms of f and
coupling constants, such as the top Yukawa coupling. This scale v is set to 250 GeV and
is the usual Higgs vev; the theory then predicts at a higher scale ⇤ ' 4⇡f the Higgs will
reveal itself to be composite. The bigger the ratio f/v, the more fundamental the Higgs
will appear at low energy. For a recent discussion of the viability of the composite Higgs
idea and accelerator tests, see [15].
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4.6 Problems for lecture IV

IV.1) Verify eq. (107).

IV.2) How does ⌃ transform under P (parity)? What does this transformation imply for
the intrinsic parity of the ⇡

a

mesons? How does ⌃ transform under C (charge conjugation)?
Which of the mesons are eigenstates of CP , and are they CP even or odd? Recall that
under P and C the quarks transform as

P : q ! �0q ,

C : q ! CqT , C = C† = C�1 = �CT , C�
µ

C = ��T
µ

, C�
5

C = �
5

.
(157)

IV.3) How do we know that c, and hence e⇤, is positive in eq. (117)? How would the
world look di↵erent if it were negative? Hint: consider what ⌃ matrix would minimize the
vacuum energy, and its implications for the spectrum of the theory.

IV.4) An axion is a hypothetical particle proposed to explain why the electric dipole
moment of the neutron is so small (the strong CP problem). It couples to quarks through
the quark mass matrix, where one makes the substitution

M ! MeiaX/fa (158)

in eq. (99), where a is the axion field, f
a

is the axion decay constant, and X is a 3 ⇥ 3
diagonal matrix constrained to have TrX = 1. Compute the axion mass in terms of m

⇡

, f
⇡

and f
a

, dropping terms of size m
u,d

/m
s

. Hint: use the remaining freedom in choosing X
to ensure that the axion does not mix with the ⇡0 or the ⌘ mesons.

IV.5) Is the relation eq. (135) obeyed in QCD for large N
c

(where N
c

is the number of
colors, and N

c

= 3 in the real world)?

IV.6) Consider the operator eq. (127) which accounts for the ⇡+��0 mass splitting. What
would happen if instead of gauging electromagnetism I gauged axial electromagnetism (all
quarks have the same Q

R

, but now Q
L

! �Q
L

in the photon couplings). How do you
interpret the e↵ect of this operator in the absence of quark masses, M = 0? How could this
be used in a composite Higgs model?
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