$\rightarrow K A \vee L I$

東京大学 the University of Tokyo

the Standaird Model

but only up to iron

fate of the Sun in 4.5 billion years

> "ghintiz


```
                #%20
```

$.7 \%=$

anthropic?

- protons and neutrons weigh very similar
- if v is bigger by 20, neutron is 20% heavier than proton, all neutrons decay into protons
- no nuclei possible!
- This is why $v \ll M_{p p}$? (Barr et al)

OK, atoms came from stars. What about stars themselves?

Dark Matter

Homework

Show how images can be distorted like this

Cheshire cat

image invisible dark mâyerı,

more than 80% of matter in the Universe is not atoms

$$
\frac{\sigma_{\text {scatt }}}{m} \lesssim \frac{10^{-24} \mathrm{~cm}}{\mathrm{GeV}}
$$

, bullet cluster
two clusters collided at $4500 \mathrm{~km} / \mathrm{sec}$:
4B lyrs away

10^{-5}
 dark matter is our mother

birth of a star

superb performance

HSC: 3 colors in 2.5 hours HST: I color in 500 hours

Weak lensing mass map for ~20 sq. degrees field (2hrs data)

What is dark matter?

Dim Stars? Black

Closing the PBH as DM window

Capela, Pshirkov, \& Tinyakov: arXiv:1301.4984

Mass Limits

"Uncertainty Principle"

- Clumps to form structure
- imagine $V=G_{N} \frac{M m}{r}$
- "Bohr radius": $r_{B}=\frac{\hbar^{2}}{G_{N} M m^{2}}$
- too small $m \Rightarrow$ won't "fit" in a galaxy!
- m > $10^{-22} \mathrm{eV}$ "uncertainty principle" bound (modified from Hu, Barkana, Gruzinov, astro-ph/0003365)

discuss various possibilities highly biased list most references are mine

$$
\begin{gathered}
\left\langle\sigma_{2 \rightarrow 2} v\right\rangle \approx \frac{\alpha^{2}}{m^{2}} \\
\alpha \approx 10^{-2} \\
m \approx 300 \mathrm{GeV}
\end{gathered}
$$

"weak" coupling _weak" mass scale correct abundance

Miracle ${ }^{2}$

thermal relic

- thermal equilibrium when T> m_{x}
- Once T<m m_{χ}, no more χ created
- if stable, only way to lose them is annihilation
- but universe expands and χ get dilute
- at some point they can't find each other
- their number in comoving
 volume "frozen"

Freeze-out
 $$
H \approx g_{*}^{1 / 2} \frac{T^{2}}{M_{P l}}
$$

$$
\Gamma_{\mathrm{ann}} \approx\left\langle\sigma_{\mathrm{ann}} v\right\rangle n
$$

$$
H\left(T_{f}\right)=\Gamma_{\mathrm{ann}}
$$ drops below the expansion rate

$$
n \approx g_{*}^{1 / 2} \frac{T_{f}^{2}}{M_{P l}\left\langle\sigma_{\mathrm{ann}} v\right\rangle}
$$

- Yield Y=n/s constant under expansion

$$
s \approx g_{*} T^{3}
$$

$$
Y=\frac{n}{s} \approx g_{*}^{-1 / 2} \frac{1}{M_{P l} T_{f}\left\langle\sigma_{\mathrm{ann}} v\right\rangle}
$$

less abundance

$$
\begin{aligned}
& \Omega_{\chi}=\frac{m_{\chi} Y s_{0}}{\rho_{c}} \\
& \approx g_{*}^{-1 / 2} \frac{x_{f}}{M_{P l}^{3}\left\langle\sigma_{\mathrm{ann}} v\right\rangle} \frac{s_{0}}{H_{0}^{2}}
\end{aligned}
$$

Order of magnitude

- "Known" $\Omega_{x}=0.23$ determines the WIMP

$$
\begin{aligned}
& \Omega_{\chi} \approx g_{*}^{-1 / 2} \frac{x_{f}}{M_{P l}^{3}\left\langle\sigma_{\mathrm{ann}} v\right\rangle} \frac{s_{0}}{H_{0}^{2}} \\
& \left\langle\sigma_{\mathrm{ann}} v\right\rangle \approx \frac{1.12 \times 10^{-10} \mathrm{GeV}^{-2} x_{f}}{g_{*}^{1 / 2} \Omega_{\chi} h^{2}}
\end{aligned}
$$

- simple estimate of the annihilation cross section

$$
\begin{aligned}
& \sim 10^{-9} \mathrm{GeV}^{-2} \\
& \left\langle\sigma_{\mathrm{ann}} v\right\rangle \approx \frac{\pi \alpha^{2}}{m_{\chi}^{2}} \\
& m_{\chi} \approx 300 \mathrm{GeV}
\end{aligned}
$$

- weak-scale mass!!!

$$
\left\langle\sigma_{\mathrm{ann}} v\right\rangle \simeq 2.2 \times 10^{-26} \mathrm{~cm}^{3} / \mathrm{sec}
$$

"WIMP Miracle"

- A stable particle at the weak scale with "EMstrength" coupling naturally gives the correct abundance
- This is where we expect new particles because of the hierarchy problem $m_{w} \ll M_{\text {PI }}$
- Many candidates of this type: supersymmetry, little Higgs with T-parity, Universal Extra Dimensinos, etc
- If so, we may even create dark matter at accelerators

- It is probably WIMP (Weakly Interacting Massive Particle)
- Stable heavy particle produced in early Universe, left-over from near-complete annihilation
- millions of them go through your body every second
avoid noise on the surface *go to quiet underground

Omega from colliders

SUSY case study
Baltz, Battaglia, Peskin, Wizansky hep-ph/0602I87

program

- telescope measurement of dark matter
- underground detection experiments
- production with accelerators
- If they agree with each other:
\Rightarrow Will know what Dark Matter is

\Rightarrow Will understand universe back to $t \sim 10^{-10}$ sec

History of the Universe

$$
\begin{gathered}
\left\langle\sigma_{2 \rightarrow 2} v\right\rangle \approx \frac{\alpha^{2}}{m^{2}} \\
\alpha \approx 10^{-2} \\
m \approx 300 \mathrm{GeV} \\
\text { WIMP miracle! }
\end{gathered}
$$

$$
\begin{aligned}
& \left\langle\sigma_{3 \rightarrow 2} v^{2}\right\rangle \approx \frac{\alpha^{3}}{m^{5}} \\
& \left.\quad \alpha \approx 4 \pi \begin{array}{c}
\text { Hochberg, Kuflik, } \\
\text { Volansky, Wacker } \\
m
\end{array}\right)=300 \mathrm{MeV}^{\text {arXiv: }} 402.5143
\end{aligned}
$$

SIMP miracle!

SIMPlest Mirácle

- Not only the mass scale is similar to QCD
- dynamics itself can be QCD! Miracle ${ }^{3}$
- DM = pions
- e.g. $\operatorname{SU}(4) / S p(4)=S^{5}$

$$
\begin{gathered}
\mathcal{L}_{\text {chiral }}=\frac{1}{16 f_{\pi}^{2}} \operatorname{Tr}^{\mu} U^{\dagger} \partial_{\mu} U \\
\mathcal{L}_{\mathrm{WZW}}=\frac{8 N_{c}}{15 \pi^{2} f_{\pi}^{5}} \epsilon_{a b c d e} \epsilon^{\mu \nu \rho \sigma} \pi^{a} \partial_{\mu} \pi^{b} \partial_{\nu} \pi^{c} \partial_{\rho} \pi^{d} \partial_{\sigma} \pi^{e}+O\left(\pi^{7}\right) \\
\pi_{5}(G / H) \neq 0
\end{gathered}
$$

THE RESULTS

Solid curves: solution to Boltzmann eq. $\quad \frac{m_{\pi}}{f_{\pi}} \propto m_{\pi}^{3 / 10}$
Dashed curves: along that solution

$$
\frac{\sigma_{\text {scatter }}}{m_{\pi}} \propto m_{\pi}^{-9 / 5}
$$

THE RESULTS

Solid curves: solution to Boltzmann eq. $\quad \frac{m_{\pi}}{f_{\pi}} \propto m_{\pi}^{3 / 10}$
Dashed curves: along that solution

$$
\frac{\sigma_{\text {scatter }}}{m_{\pi}} \propto m_{\pi}^{-9 / 5}
$$

THE RESULTS

Solid curves: solution to Boltzmann eq. $\frac{m_{\pi}}{f_{\pi}} \propto m_{\pi}^{3 / 10}$
Dashed curves: along that solution

$$
\frac{\sigma_{\text {scatter }}}{m_{\pi}} \propto m_{\pi}^{-9 / 5}
$$

communication

- 3 to 2 annihilation
- excess entropy must be transferred to $\mathrm{e}^{ \pm}, \gamma$
- need communication at some level
- leads to experimental signal

VECTOR PORTAL

- Gauge a $\mathrm{U}(\mathrm{I})$ subgroup of the flavor symmetry
- New gauge-boson kinetically mixed with the hyper charge gauge boson

Avoid semi-annihilation:

KINETICALLY MIXED U(I)

- e.g., $S \cup(4)$ gauge group with
- gauged $\cup(1):\left(\begin{array}{ccc}1 & & \\ & -1 & \\ & & -1\end{array}\right)$
- kinetic mixing induced by:

$$
\frac{\epsilon_{\gamma}}{2 c_{W}} B_{\mu \nu} F_{D}^{\mu \nu}
$$

[Lee, Seo I504.00745]

AXION PORTAL

- e.g., $S U(2)$ gauge group with 2 flavors and coupling to photons

$$
\begin{gathered}
\mathcal{L}_{\text {axion }}=-\frac{1}{2} m_{q} e^{i a<f_{a}} J^{i j} q_{i} q_{j}+\frac{1}{\left(f_{a \gamma}\right)} a F_{\mu \nu} \tilde{F}^{\mu \nu} \\
\pi \cdots \mathrm{SM} \\
m_{a}^{2}=\frac{m_{\pi}^{2} f_{\pi}^{2}}{f_{a}^{2}}
\end{gathered}
$$

AXION PORTAL

