

arXiv [hep-ex]1407.0583

Benjamin Nachman SLAC, Stanford University

October 7, 2014

Other SLAC people involved: Till Eifert, Philippe Grenier, Qi Zeng

Motivation

A minimal SUSY solution to the hierarchy problem requires light stops

Gospel Church Choir Cats Cat Art By Tarafly

Copyright © 2011 DC Comics - from <u>http://en.wikipedia.org/</u> <u>wiki/Fil_:Superman.jpg</u>, see copyright information there.

for **SU**per**SY**mmetry

There is no (approximate) symmetry to protect the Higgs mass from Quantum Corrections

Naively, the mass receives quadratic corrections to highest mass scale

The largest (quantum) contribution comes from the [fermionic] top quark loop - can cancel with [scaler] stop loops

Image from Flip Tanedo (Quantum Diaries)

The parameter space of natural SUSY is huge

Technically, natural SUSY is a framework, not a model

The Minimal Supersymmetric SM has o(100) parameters

Simplifying assumptions

- 1. *R*-parity conservation
- 2. stop is the only light squark
- 3. lightest neutralino is the LSP

Three important

Target Models

We use simplified models: Leading order processes with 100% branching ratios

Stop is (mostly) right-handed and the neutralino is (mostly) bino

Not happy with simple?

We will also consider asymmetric decays where

BR(b+chargino) + BR(t+LSP) = 1but BR(b+chargino) < 1 & BR(t+LSP) < 1

We also will study the impact of the stop mixing (impacts top polarization and acceptance)

Still not happy?

Just for you, we also considered a scan in the pMSSM*

(R-parity conserving MSSM subject to experimentally motivated constraints - 19 parameters)

1307.8444: Authors listed (*)

6

*Thanks to the work of M. Cahill-Rowley, J.L. Hewett, A. Ismail, and T.G. Rizzo

Search Strategy

1 lepton channel: optimal mix of cross section and background rejection

(1) **Preselection**

-Reach the trigger plateau -Remove most multijet events

(2) **Discriminating Variables**

-Robust techniques to isolate the signal Many designed specifically for this search

-Combine variables to form signal regions (SRs)

(3) **Background estimation**

-For the dominant backgrounds, define control regions (CRs) -Estimate systematic uncertainties

(4) **Results**

Credit: D0 Collaboration: <u>http://www-d0.fnal.gov/</u> <u>Run2Physics/top/top_public_web_pages/</u>

Preselection Trigger: (Single Isolated *e* or μ) or E_T^{T} miss -E_T^{miss} > 100 GeV > 24 GeV @ HLT > 80 GeV @ HLT -Exactly one isolated e or μ with $p_T > 25$ GeV -No other e or μ with $p_T > 10$ GeV -At least one b-jet @ 70% efficiency -At least four jets (anti- k_t R=0.4) **Detector characteristics** Width: 44m Muon Detectors **Electromagnetic Calorimeters** Diameter: 22m 7000t Weight: CERN AC - ATLAS V1997 Solenoid Forward Calorimeters End Cap Toroid

SRs target particular regions of phase space

There is an m_{T2} for you!

Transverse mass is a powerful variable because it takes advantage of the targeted topology

There is a class of variables which generalize the transverse mass to multiple invisible particles

Qa

Pa

'Missed'

Particles

 $m_{T2} \equiv \min_{\vec{q}_{Ta} + \vec{q}_{Tb} = \vec{p}_{T}^{miss}} \{ \max(m_{Ta}, m_{Tb}) \},\$ $m_{Ti}^{2} = \left(\sqrt{p_{Ti}^{2} + m_{pi}^{2}} + \sqrt{q_{Ti}^{2} + m_{qi}^{2}} \right)^{2} - (\vec{p}_{Ti} + \vec{q}_{Ti})^{2}$ (usual transverse mass)

11

With the appropriate choices of m_{qi}, these variables have endpoints for the background

m_{T2} for the stop 1L search

After E_{τ}^{miss} and m_{τ} requirements, dominant background has **two** leptons

Including Resolution Information: Significance Variables

Mis-measurement can induce large E_T^{miss} This motivated the E_T^{miss} significance:

 $E_T^{miss}/Uncertainty(E_T^{miss})$

It is common to approximate the uncertainty as ~ 0.5 x $\sqrt{H_{\rm T}}$

We can improve this by using known η and p_{τ} dependent resolution functions for jets

$$H_{\mathrm{T,sig}}^{\mathrm{miss}} = \frac{|\vec{H}_{\mathrm{T}}^{\mathrm{miss}}| - M}{\sigma_{|\vec{H}_{\mathrm{T}}^{\mathrm{miss}}|}},$$

where H_T^{miss} is the vector sum of all

measured identified objects

-Shameless self promotion-

Generalizes to any kinematic variable

See 1303.7009 (*BN and C. G. Lester*)

Many other discriminating variables have been developed to suppress the two lepton background

High stop mass = Boosted Tops Hadronic Top Mass breaks down

The direction of the large radius jets is also powerful 15

When the p_T of the tops is high enough, jets begin to merge $\Delta R \sim 2m/p_T$ For $p_T^{top} \sim m_{stop}/2$, $\Delta R \sim 1$ for m_{stop} ~ 700 GeV ATLAS 🗕 Data 180ر/ 160ر $\sqrt{s} = 8 \text{ TeV}, \int L dt = 20 \text{ fb}^{-1}$ ∎tī W+jets Preselection Single top --- $m(\widetilde{t}_1,\widetilde{\chi}_1^0)$ =(700,1) GeV ($\sigma \times 100$) 140 Diboson Z+jets 120 ∎tī∨ 100 🖉 Total SM 80 60 40 20 ⊇1.5 ທ Data / 1.5 2 2.5 3 $\Delta \phi$ (subleading large-R jet, $\vec{p}_{\tau}^{\text{miss}}$) 0.5

For SM, second top is leptonic, which is close to the p_T^{miss}

Compressed Spectra: Low E_T^{miss} Signal Resembles the Background

Recover sensitivity by fitting the *shapes* of kinematic variables

Bin the relevant distribution(s) with bins chosen to have a distribution of S/B

We have used 2D shape fits using **m_T** and one of **E_T^{miss}** or **am_{T2}**

b+Chargino SRs

A highlight; for more details see the paper

Background Estimation

Background Estimation

Every SR has two dedicated Control Regions (CRs) for data-driven estimates of the dominant backgrounds

Top CR: invert $m_T < m_W$

W+jets CR: invert m_T < m_W b-veto instead of b-tag

QCD multijets estimated in the data by loosening lepton isolation

Shape Fits: Background Integrated into Fit

Every shape fit has regions which 'act' like CRs

> In the fit, they are treated like all other bins

Can normalize per E_T^{miss} bin to maximize sensitivity

(Trade off syst for stat uncertainty)

Data-Driven Validation: $t\bar{t}Z(\rightarrow \nu\bar{\nu})$ from $t\bar{t}\gamma$

Except for neutrinos and their mass, the Feynman diagrams are identical

At high p_T , boson mass irrelevant so the yield of one can predict the other

Define new m_T and E_T^{miss} variables with the photon treated as invisible

Many theoretical and experimental uncertainties should cancel in the extrapolation to the SR

Results

Reminder for reading exclusion plots

95% Confidence Level

Line: Observed Limit Band: Signal Theory Uncertainties

> Line: Expected Limit Band: All other Uncertainties

t+Neutralino Results

t+Neutralino Results

t+Neutralino Results

To show 2D exclusions, need a hypothesis on $m_{chargino} = f(m_{neutralino}, m_{stop})$

Soft b-jet p_T spectrum

3 jets and veto b-jets

To show 2D exclusions, need a hypothesis on $m_{chargino} = f(m_{neutralino}, m_{stop})$

One common form is f(x,y)=2x (*Gaugino Universality*)

To show 2D exclusions, need a

Continuous exclusion between simplified models

Results: pMSSM

M. Cahill-Rowley, J.L. Hewett, A. Ismail, and T.G. Rizzo produced a large scan of the 19 parameter pMSSM

Models required to get m_h~125 GeV, saturate the DM relic density and have low FT.

Conclusions

We have searched extensively for a natural stop using the 8 TeV **ATLAS** dataset

We have developed many new techniques to search for stops in the range ~200-700 GeV

Many regions of simplified and not-so-simplified parameter space excluded

No evidence (yet) of SUSY

Stay tuned for 13 TeV results next year!

BACKUP

Large Radius Jets

Why low am_{T2} for 3body?

odels

Mass [GeV]					Branch	ing rat	io $\tilde{t}_1 \rightarrow$	→				
\tilde{t}_1	$ ilde{\chi}_1^0$	$ ilde{\chi}_2^0$	$ ilde{\chi}_3^0$	$\tilde{\chi}_1^{\pm}$	$\tilde{\chi}_2^{\pm}$	$t \tilde{\chi}_1^0$	$t \tilde{\chi}_2^0$	$t ilde{\chi}_3^0$	$b\tilde{\chi}_1^{\pm}$	$b\tilde{\chi}_2^{\pm}$	$[T_{11}]^2$	$[N_{11}]^2$
404	40	221	230	220	1073	0.09	0.01	0.09	0.81	0.00	0.53	0.96
404	44	324	445	325	471	0.16	0.00	0.00	0.84	0.00	0.98	0.99
407	46	368	372	367	1515	0.74	0.00	0.00	0.26	0.00	0.02	0.98
408	49	187	207	188	376	0.02	0.31	0.23	0.41	0.04	0.97	0.95
409	39	211	212	206	1768	0.05	0.24	0.02	0.68	0.00	0.56	0.95
409	49	180	190	179	795	0.02	0.22	0.17	0.59	0.00	0.99	0.94
410	40	232	253	234	427	0.11	0.25	0.00	0.64	0.00	0.96	0.97
410	43	387	396	386	889	0.88	0.00	0.00	0.12	0.00	0.01	0.99
413	42	197	367	197	385	0.03	0.10	0.00	0.85	0.02	0.95	0.98
413	45	373	406	374	508	0.32	0.00	0.00	0.68	0.00	0.99	0.99
414	45	194	440	195	453	0.03	0.14	0.00	0.83	0.00	0.96	0.99
416	45	394	397	393	1975	0.90	0.00	0.00	0.10	0.00	0.99	0.99
417	46	333	350	335	573	0.65	0.00	0.00	0.35	0.00	0.96	0.98
418	39	206	209	202	1779	0.09	0.05	0.28	0.59	0.00	0.47	0.95
546	46	292	310	292	520	0.02	0.28	0.24	0.44	0.01	0.98	0.98
547	46	346	374	346	500	0.12	0.49	0.00	0.22	0.16	0.93	0.98
550	40	225	235	225	760	0.02	0.28	0.24	0.46	0.00	0.98	0.96
551	43	351	366	351	621	0.07	0.38	0.21	0.35	0.00	0.98	0.99
552	41	249	275	252	420	0.02	0.20	0.21	0.44	0.13	0.98	0.97
552	42	332	337	331	1496	0.05	0.47	0.35	0.13	0.00	0.99	0.98
552	43	346	350	344	1501	0.08	0.27	0.52	0.13	0.00	0.97	0.98
552	43	385	397	385	731	0.36	0.00	0.00	0.64	0.00	0.97	0.99
554	44	439	445	439	1007	0.21	0.00	0.00	0.79	0.00	0.99	0.99
555	47	279	287	280	933	0.04	0.54	0.38	0.04	0.00	0.97	0.97
553	147	169	444	168	455	0.31	0.12	0.00	0.27	0.30	0.07	0.93
554	151	195	207	191	1969	0.09	0.35	0.43	0.12	0.00	0.88	0.68
546	154	210	213	200	434	0.07	0.40	0.34	0.05	0.14	0.86	0.70

Table 1. Properties of the 27 selected pMSSM models. The table contains the masses of the stop, of neutralinos and of the charginos, the branching ratios of the stop decays, the $\tilde{t}_{\rm L}$ content of the \tilde{t}_1 ($[T_{11}]^2$, with T being the stop mixing matrix) and the bino content of the χ_1^0 ($[N_{11}]^2$, with N being the neutralino mixing matrix).

Soft Lepton Selections

	bCa_low	bCa_med	bCb_med1	bCb_high				
Preselection	soft-lepton preselection, cf. table 3.							
Lepton	= 1	soft lepton	$= 1$ soft lepton with $p_{\rm T} < 25 {\rm GeV}$					
Jets	≥ 2 with	≥ 3 with	≥ 2	with				
	$p_{\rm T} > 180, 25 {\rm GeV}$	$p_{\rm T} > 180, 25, 25 {\rm GeV}$	$p_{\rm T} > 60, 60 {\rm GeV}$					
Jet veto		_	$H_{\rm T,2} < 50 \mathrm{GeV}$					
b-tagging	$\geq 1b$ -tag amongst	sub-leading jets (70% eff.)	Leading two jets b -tagged (60% eff.)					
b-veto	1 st jet not	b-tagged (70% eff.)						
m_{bb}		_	> 15	$0{ m GeV}$				
$egin{array}{c} m_{bb} \ E_{ m T}^{ m miss} \end{array}$	$> 370 \mathrm{GeV}$	- > 300 GeV	> 15 $> 150 \mathrm{GeV}$	$0 \mathrm{GeV}$ > 250 GeV				
$egin{array}{c c} m_{bb} \ E_{ m T}^{ m miss} \ E_{ m T}^{ m miss} \ E_{ m T}^{ m miss} / m_{ m eff} \end{array}$	$> 370 { m GeV}$ > 0.35	- > 300 GeV > 0.3	> 15 $> 150 \mathrm{GeV}$	$0 \mathrm{GeV}$ > 250 GeV				
$egin{array}{c} m_{bb} \ E_{ m T}^{ m miss} \ E_{ m T}^{ m miss} / m_{ m eff} \ m_{ m T} \end{array}$	> 370 GeV > 0.35 > 90 GeV	- > 300 GeV > 0.3 > 100 GeV	> 150 GeV	0 GeV > 250 GeV -				
$egin{array}{c} m_{bb} \ E_{ m T}^{ m miss} \ E_{ m T}^{ m miss}/m_{ m eff} \ m_{ m T} \ m Exclusion$ set	> 370 GeV > 0.35 > 90 GeV sup: shape-fit	- > 300 GeV > 0.3 > 100 GeV	> 15 > 150 GeV	0 GeV > 250 GeV -				
$egin{aligned} m_{bb} \ E_{ m T}^{ m miss} \ E_{ m T}^{ m miss}/m_{ m eff} \ m_{ m T} \ \end{array}$	> 370 GeV > 0.35 > 90 GeV sup: shape-fit 4 bins in lepton	- $> 300 \text{GeV}$ > 0.3 > 100 GeV p_{T} range [6(7), 50] GeV	> 15 > 150 GeV 6 bins in am_{T2} r	0 GeV > 250 GeV 				
$egin{array}{c} m_{bb} \ E_{ m T}^{ m miss} \ E_{ m T}^{ m miss}/m_{ m eff} \ m_{ m T} \ m Exclusion set \ m Discovery set \end{array}$	> 370 GeV > 0.35 > 90 GeV 5up: shape-fit 4 bins in lepton 5up		> 15 > 150 GeV 6 bins in am_{T2} r	0 GeV > 250 GeV - - - - - - - - - - - - -				

b+Chargino Lepton Selections

	bCb_med2	bCc_diag	bCd_bulk	Cd_bulk bCd_high1					
Preselection	Default preselection criteria, cf. table 3.								
Lepton	= 1 lepton	= 1 lepton with $ \eta(\ell) < 1.2$	= 1 lepton						
Jets	≥ 4 with	≥ 3 with	≥ 4 with		≥ 4 with				
	$p_{\rm T} > 80, 60, 40, 25 {\rm GeV}$	$p_{\rm T} > 80, 40, 30 {\rm GeV}$	$p_{\rm T} > 80, 60, 40, 25 {\rm GeV}$		$p_{\rm T} > 80, 80, 40, 25 {\rm GeV}$				
b-tagging / veto	$\geq 2 \ (80\% \text{ eff.}) \text{ with}$	= 0 (70% eff.) with	$\geq 1 (70\% \text{ eff.}) \text{ with}$	$\geq 2 \ (80\% \text{ eff.}) \text{ with}$	$\geq 2 \ (80\% \text{ eff.}) \text{ with}$				
	$p_{\rm T} > 140,75 {\rm GeV}$	$p_{\rm T} > 25 {\rm GeV}$	$p_{\rm T} > 25 {\rm GeV}$	$p_{\rm T} > 75, 75{\rm GeV}$	$p_{\rm T} > 170, 80{\rm GeV}$				
$E_{ m T}^{ m miss}$	$> 170 \mathrm{GeV}$	$> 140 \mathrm{GeV}$	$> 150 \mathrm{GeV}$		$> 160 \mathrm{GeV}$				
$m_{ m T}$	$> 60 \mathrm{GeV}$	$> 120 \mathrm{GeV}$	> 60 GeV > 1		120 GeV				
$E_{ m T}^{ m miss}/\sqrt{H_{ m T}}$	$> 6 {\rm GeV}^{1/2}$	$> 5 {\rm GeV}^{1/2}$	$> 7 \text{ GeV}^{1/2}$ $> 9 \text{ GeV}^{1/2}$		$> 8 {\rm GeV}^{1/2}$				
am_{T2}	$> 80 \mathrm{GeV}$	_	$> 80 \mathrm{GeV}$ $> 200 \mathrm{GeV}$		$> 250 \mathrm{GeV}$				
Track, $ au$ -veto	track & loose τ -veto	_	track & loose τ -veto						
$\Delta R(j_1,\ell)$	_	$\in [0.8, 2.4]$	_						
$\Delta \phi(\mathrm{jet}, ar{p}_\mathrm{T}^\mathrm{miss})$	$> 0.8 (1^{st} and 2^{nd} jet)$	$> 2.0 \ (1^{st} \text{ jet}), > 0.8 \ (2^{nd} \text{ jet})$	$> 0.8 (1^{\text{st}} \text{ and } 2^{\text{nd}} \text{ jet})$						
Exclusion setup	shape-fit in $m_{\rm T}$ and $am_{\rm T2}$,	cut-and-count	shape-fit in $m_{\rm T}$ and $am_{\rm T2}$, cut-and-		nd-count				
	cf. figure 9.		cf. figure 9.	gure 9.					
Discovery setup	test signal-sensitive bins.	cut-and-count	test signal-sensitive bins.	sensitive bins. cut-and-count					

3body and Mixed SRs

	tNbC_mix	3body				
Preselection	Default preselection criteria, cf. table 3.					
Lepton	= 1 lepton					
Jets	≥ 4 jets with $p_{\rm T} > 80, 70, 50, 25{\rm GeV}$	≥ 4 jets with $p_{\rm T} > 80, 25, 25, 25{\rm GeV}$				
b-tagging	$\geq 1 \ b$ -tag (70% eff.) with $p_{\rm T} > 60 {\rm GeV}$	$\geq 1 \ b$ -tag (70% eff.) with $p_{\rm T} > 25 {\rm GeV}$				
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 270 \mathrm{GeV}$	$> 150 \mathrm{GeV}$				
$m_{ m T}$	$> 130 \mathrm{GeV}$	$> 60 \mathrm{GeV}$				
am_{T2}	$> 190 \mathrm{GeV}$	$> 80 \mathrm{GeV}$				
topness	> 2	_				
m_{jjj}	$< 360{ m GeV}$	_				
$E_{ m T}^{ m miss}/\sqrt{H_{ m T}}$	$> 9 \text{ GeV}^{1/2}$	$> 5 \ { m GeV}^{1/2}$				
au-veto	loose					
$\Delta \phi(\mathrm{jet}_i,ec{p}_{\mathrm{T}}^{\mathrm{miss}})$	$> 0.6 \ (i = 1, 2)$	$> 0.2 \ (i = 1, 2)$				
$\Delta \phi(\ell, ar{p}_{ ext{T}}^{ ext{miss}})$	> 0.6	> 1.2				
$\Delta R(\ell, \mathrm{jet}_i)$	$< 2.75 \ (i = 1)$	$> 1.2 \ (i = 1), > 2.0 \ (i = 2)$				
$\Delta R(\ell, b ext{-jet})$	< 3.0	—				
Exclusion setup	cut-and-count	shape-fit in $m_{\rm T}$ and $am_{\rm T2}$, cf. figure 6.				
Discovery setup	cut-and-count	test signal-sensitive bins one-by-one.				

top+Neutralino SRs

	tN_diag	tN_med tN_high		tN_boost				
Preselection	Default preselection criteria, cf. table 3.							
Lepton	= 1 lepton							
Jets	≥ 4 with $p_{\rm T} >$	≥ 4 with $p_{\rm T} >$	≥ 4 with $p_{\rm T} >$	≥ 4 with $p_{\rm T} >$				
	$60, 60, 40, 25{\rm GeV}$	$80, 60, 40, 25 { m GeV}$	$100, 80, 40, 25 {\rm GeV}$	$75, 65, 40, 25{\rm GeV}$				
b-tagging	≥ 1	b-tag (70% eff.) and	nongst four selected	jets				
large-R jet		_		$\geq 1, p_{\rm T} > 270 {\rm GeV}$				
				and $m > 75 \mathrm{GeV}$				
$\Delta \phi(\mathrm{jet}_{2}^{\mathrm{large-}R},ar{p}_{\mathrm{T}}^{\mathrm{miss}})$		—		> 0.85				
$E_{ m T}^{ m miss}$	$> 100 \mathrm{GeV}$	$> 200 \mathrm{GeV}$	$> 320 \mathrm{GeV}$	$> 315 \mathrm{GeV}$				
$m_{ m T}$	$> 60 \mathrm{GeV}$	$> 140 \mathrm{GeV}$	$> 200 \mathrm{GeV}$	$> 175 \mathrm{GeV}$				
am_{T2}	_	$> 170 \mathrm{GeV}$ $> 170 \mathrm{GeV}$		$> 145 \mathrm{GeV}$				
$m_{ m T2}^{ au}$	_	_	$> 120 \mathrm{GeV}$	_				
topness	_	_	_	> 7				
$m_{ m had-top}$	\in [130, 205] GeV	$\in [130, 195] \mathrm{GeV}$	$\in [130, 250] \mathrm{GeV}$					
au-veto	tight	_	_	modified, see text.				
$\Delta R(b ext{-jet},\ell)$	< 2.5	_	< 3	< 2.6				
$E_{ m T}^{ m miss}/\sqrt{H_{ m T}}$	$> 5 \ { m GeV}^{1/2}$	_						
$H_{ m T,sig}^{ m miss}$	_	>	> 10					
$\Delta \phi(\mathrm{jet}_i, ec{p}_{\mathrm{T}}^{\mathrm{miss}})$	$> 0.8 \ (i = 1, 2)$	$> 0.8 \ (i=2)$	_	$> 0.5, 0.3 \ (i = 1, 2)$				
Exclusion setup	shape-fit in $m_{\rm T}$ and	cut-and-count						
	$E_{\rm T}^{\rm miss}$, cf. figure 6.							
Discovery setup	test signal-sensitive		cut-and-count					
	bins one-by-one.							

Validation Regions

Results

Begion		Exp bkg	n_{0}	$N_{\rm non-SM}$		$\sigma_{\rm vis}$ [fb]	
Itegion	005.	Exp. okg.	P_0	Obs.	Exp.	Obs.	Exp.
tN_med	12	13.0 ± 2.2	≥ 0.5	8.5	9.2	0.4	0.5
tN_high	5	5.0 ± 1.0	≥ 0.5	6.0	6.0	0.3	0.3
tN_boost		3.3 ± 0.7	0.17	7.0	5.3	0.3	0.3
bCa_low	11	6.5 ± 1.4	0.08	12.2	7.8	0.61	0.92
bCa_med	20	17 ± 4	0.33	14.4	12.3	0.72	0.68
bCb_med1	41	32 ± 5	0.12	23.5	16.0	1.17	0.88
bCb_high	7	9.8 ± 1.6	≥ 0.5	6.5	7.9	0.32	0.22
bCc_diag	493	470 ± 50	0.27	110.6	95.1	5.4	4.7
bCd_high1	16	11.0 ± 1.5	0.09	13.2	8.5	0.7	0.4
bCd_high2	5	4.4 ± 0.8	0.36	6.3	5.7	0.3	0.3
tNbC_mix	10	7.2 ± 1.0	0.13	9.7	7.0	0.5	0.3
tN_diag							
$125 < E_{\rm T}^{\rm miss} < 150 {\rm GeV}, \ 120 < m_{\rm T} < 140 {\rm GeV}$	117	136 ± 22	≥ 0.5	42.1	55.7	2.1	2.7
$125 < E_{\rm T}^{\rm miss} < 150 {\rm GeV}, \qquad m_{\rm T} > 140 {\rm GeV}$	163	152 ± 20	0.35	55.4	47.8	2.7	2.4
$E_{\rm T}^{\rm miss} > 150 {\rm GeV}, \ 120 < m_{\rm T} < 140 {\rm GeV}$	101	98 ± 13	0.43	36.1	33.9	1.8	1.7
$E_{\rm T}^{\rm miss} > 150 {\rm GeV}, \qquad m_{\rm T} > 140 {\rm GeV}$	217	236 ± 29	≥ 0.5	58.7	71.4	2.9	3.5
bCb_med2							
$ 175 < am_{\rm T2} < 250 {\rm GeV}, 90 < m_{\rm T} < 120 {\rm GeV}$	10	12.1 ± 2.0	≥ 0.5	7.3	8.8	0.4	0.4
$ 175 < am_{\rm T2} < 250 {\rm GeV}, \qquad m_{\rm T} > 120 {\rm GeV}$	10	7.4 ± 1.4	0.10	9.7	7.3	0.5	0.4
$am_{\rm T2} > 250 {\rm GeV}, 90 < m_{\rm T} < 120 {\rm GeV}$	16	21 ± 4	≥ 0.5	9.3	12.3	0.5	0.6
$am_{\rm T2} > 250 {\rm GeV}, \qquad m_{\rm T} > 120 {\rm GeV}$	9	9.1 ± 1.6	≥ 0.5	7.7	7.8	0.4	0.4
bCd_bulk							
$ 175 < am_{\rm T2} < 250 {\rm GeV}, 90 < m_{\rm T} < 120 {\rm GeV}$	144	133 ± 22	0.29	36.1	33.9	1.8	1.7
$ 175 < am_{\rm T2} < 250 {\rm GeV}, \qquad m_{\rm T} > 120 {\rm GeV}$	78	73 ± 8	0.34	58.7	71.4	2.9	3.5
$am_{\rm T2} > 250 {\rm GeV}, 90 < m_{\rm T} < 120 {\rm GeV}$	61	66 ± 6	≥ 0.5	17.5	20.9	0.9	1.0
$am_{\rm T2} > 250 {\rm GeV}, \qquad m_{\rm T} > 120 {\rm GeV}$	29	26.5 ± 2.6	0.34	14.8	12.6	0.7	0.6
3body							
$80 < am_{\rm T2} < 90 \text{GeV}, 90 < m_{\rm T} < 120 \text{GeV}$	12	16.9 ± 2.8	≥ 0.5	7.3	9.9	0.4	0.5
$ 80 < am_{\rm T2} < 90 \text{GeV}, \qquad m_{\rm T} > 120 \text{GeV}$	8	8.4 ± 2.2	≥ 0.5	7.9	7.8	0.4	0.4
$90 < am_{\rm T2} < 100 {\rm GeV}, 90 < m_{\rm T} < 120 {\rm GeV}$	29	35 ± 4	≥ 0.5	11.7	14.7	0.6	0.7
$90 < am_{\rm T2} < 100 {\rm GeV}, m_{\rm T} > 120 {\rm GeV}$	22	29 ± 5	≥ 0.5	55.4	47.8	2.7	2.4

To show 2D exclusions, need a hypothesis on $m_{chargino} = f(m_{neutralino}, m_{stop})$

Another choice, f(x,y)=106 GeV (*why 106? Because ~ LEP limit*)

To show 2D exclusions, need a hypothesis on $m_{chargino} = f(m_{neutralino}, m_{stop})$

Another choice, f(x,y)=x+5 GeV

To show 2D exclusions, need a hypothesis on $m_{chargino} = f(m_{neutralino}, m_{stop})$

Another choice, f(x,y)=x+20 GeV

To show 2D exclusions, need a hypothesis on $m_{chargino} = f(m_{neutralino}, m_{stop})$

Another choice, f(x,y)=y-10 GeV

b+Chargino Results

 $m_{stop} = 300 \text{ GeV}$

