DIS2015

On the intrinsic heavy quark content of the nucleon and its impact on heavy new physics at the LHC

Florian Lyonnet

with T. Ježo, K. Kovařík, A. Kusina, F. Olness, I. Schienbein, J. Yu

Southern Methodist University

April 29, 2015

Introduction

- **Heavy quarks parton distribution function** play an important role in several SM and BSM processes
 - ▶ b plus jet, associated tW, tH^+
- Standard approach of PDF analysis:
 - DGLAP+ boundary condition
- Purely perturbative treatment: $m_c=1.3~{\rm GeV?}~m_b=4.5~{\rm GeV?}$
 - Light-cone and meson cloud models predict a non-perturbative heavy quark component
- Global analysis for IC by CTEQ and Jimenez-Delgado et al.
 - ⇒ set significantly different limits

Motivations

Our approach

- (II) Intrinsic heavy quark evolution can be decoupled
 - Quantify our approximation
- (III) Fill the gap by providing **IB**(IC) PDF
 - ▶ Well suited because the normalization can be adjusted freely
- IV) Study the impact of IC and IB on parton-parton luminosities at the LHC
 - ► Assess the impact on SM and NP processes

Motivations

Our approach

- (II) Intrinsic heavy quark evolution can be decoupled
 - ► Quantify our approximation
- (III) Fill the gap by providing **IB**(IC) PDF
 - Well suited because the normalization can be adjusted freely
- (IV) Study the impact of IC and IB on parton-parton luminosities at the LHC
 - ► Assess the impact on SM and NP processes

Introduction

Our approach

- (II) Intrinsic heavy quark evolution can be decoupled
 - Quantify our approximation
- (III) Fill the gap by providing **IB**(IC) PDF
 - ▶ Well suited because the normalization can be adjusted freely
- (IV) Study the impact of IC and IB on parton-parton luminosities at the **LHC**
 - Assess the impact on SM and NP processes

- II) Evolution of intrinsic heavy quarks
- III) Intrinsic bottom PDFs
- IV) Parton-parton Luminosities and intrinsic heavy quarks at the LHC 14 TeV
- V) Conclusion

Evolution equation

- $Q_1(x,\mu_0) := Q(x,\mu_0) Q_0(x,\mu_0) ,$
 - ▶ in $\overline{\rm MS}$ (only NLO), $Q_0(x,\mu_0)=0$ if $\mu_0=m_Q$
- Any non-zero boundary condition $Q(x, m_Q) \neq 0$ can be attributed to intrinsic component
- Light quark q, heavy quark (c or b) Q, and gluon g

Evolution equation

- $Q_1(x,\mu_0) := Q(x,\mu_0) Q_0(x,\mu_0) ,$
 - ▶ in $\overline{\rm MS}$ (only NLO), $Q_0(x,\mu_0)=0$ if $\mu_0=m_Q$
- Any non-zero boundary condition $Q(x, m_Q) \neq 0$ can be attributed to intrinsic component
- Light quark q, heavy quark (c or b) Q, and gluon g

$$\dot{g} = P_{gg} \otimes g + P_{gq} \otimes q + P_{gQ} \otimes Q,
\dot{q} = P_{qg} \otimes g + P_{qq} \otimes q + P_{qQ} \otimes Q,
\dot{Q} = P_{Qg} \otimes g + P_{Qq} \otimes q + P_{QQ} \otimes Q.$$

- $Q = Q_0 + Q_1$
 - $lackbox{ }Q_0$ is the usual radiatively generated extrinsic heavy quark
 - $ightharpoonup Q_1$ is the **non-perturbative** intrinsic heavy quark

- $Q_1(x, \underline{\mu_0}) := Q(x, \mu_0) Q_0(x, \mu_0),$
 - ▶ in $\overline{\rm MS}$ (only NLO), $Q_0(x,\mu_0)=0$ if $\mu_0=m_Q$
- Any non-zero boundary condition $Q(x, m_Q) \neq 0$ can be attributed to intrinsic component
- Light quark q, heavy quark (c or b) Q, and gluon g

- $Q = Q_0 + Q_1$
 - $lackbox{ }Q_0$ is the usual radiatively generated extrinsic heavy quark
 - $ightharpoonup Q_1$ is the **non-perturbative** intrinsic heavy quark

Evolution equation

- $Q_1(x,\mu_0) := Q(x,\mu_0) Q_0(x,\mu_0),$
 - ▶ in $\overline{\mathrm{MS}}$ (only NLO), $Q_0(x,\mu_0)=0$ if $\mu_0=m_Q$
- \blacksquare Any non-zero boundary condition $Q(x,m_Q)\neq 0$ can be attributed to intrinsic component
- Light quark q, heavy quark (c or b) Q, and gluon g
- $(q, g, Q_0) \Rightarrow$ usual DGLAP eq. without intrinsic
- lacksquare Q_1 Standalone **non-singlet** evolution equation
 - $\dot{Q}_1 = P_{QQ} \otimes Q_1 .$

Sum rule

Full-fledge analysis:

■ Modified **sum rule** in global analysis:

$$\int_0^1 dx \ x \ \left(g + \sum_i (q_i + \bar{q}_i) + Q_0 + \bar{Q}_0 + Q_1 + \bar{Q}_1\right) = 1.$$

- Allowing for a small violation of the sum rule we can completely decouple the analysis of intrincic heavy quarks
 - $\Rightarrow \left\{ \begin{array}{l} \bullet \text{ Can take any PDF set for } (q,g,Q_0) \\ \bullet \text{ Add the standalone intrinsic heavy quark} \end{array} \right.$
- lacksquare Violation of the sum rule: $\int_0^1 \,\mathrm{d} x \; x \; \left(Q_1 + ar Q_1 \right)$

- II) Evolution of intrinsic heavy quarks
- III) Intrinsic bottom PDFs
- IV) Parton-parton Luminosities and intrinsic heavy quarks at the LHC 14 TeV
- V) Conclusion

Different matching conditions

BHPS Intrinsic charm:

$$c_1(x) = \bar{c}_1(x) \propto x^2 [6x(1+x)\ln x + (1-x)(1+10x+x^2)]$$

- Normalization and precise energy scale are not specified
- b-quark expected to be very similar with normalization suppressed $m_c^2/m_b^2 \simeq 0.1$
- Matching scale is "unknown"

$$b_1(x, m_b) = \frac{m_c^2}{m_b^2} c_1(x, m_c)$$

- $\blacktriangleright b_1(x,m_c)=rac{m_c^2}{m_b^2}c_1(x,m_c)\Rightarrow {
 m our~ansatz}$
- Remains valid at all scales
- Note that asymmetric boundary conditions, $c_1(x) \neq \bar{c}_1(x), b_1(x) \neq \bar{b}_1(x)$ could be accommodated (like in meson cloud models)

Different matching conditions

BHPS Intrinsic charm:

$$c_1(x) = \bar{c}_1(x) \propto x^2 [6x(1+x)\ln x + (1-x)(1+10x+x^2)]$$

- Normalization and precise energy scale are not specified
- b-quark expected to be very similar with normalization suppressed $m_c^2/m_b^2 \simeq 0.1$
- Matching scale is "unknown":
 - $b_1(x, m_b) = \frac{m_c^2}{m_b^2} c_1(x, m_c)$
 - $b_1(x,m_c)=rac{m_c^2}{m_b^2}c_1(x,m_c)\Rightarrow ext{our ansatz}$
- Remains valid at all scales
- Note that asymmetric boundary conditions, $c_1(x) \neq \bar{c}_1(x), b_1(x) \neq \bar{b}_1(x)$ could be accommodated (like in meson cloud models)

BHPS Intrinsic charm:

$$c_1(x) = \bar{c}_1(x) \propto x^2 [6x(1+x)\ln x + (1-x)(1+10x+x^2)]$$

- Normalization and precise energy scale are not specified
- b-quark expected to be very similar with normalization suppressed $m_c^2/m_b^2 \simeq 0.1$
- Matching scale is "unknown":
 - $b_1(x, m_b) = \frac{m_c^2}{m_b^2} c_1(x, m_c)$
 - $lackbr{b} b_1(x,m_c) = rac{m_c^2}{m_b^2} c_1(x,m_c) \Rightarrow ext{our ansatz}$
- Remains valid at all scales
- Note that asymmetric boundary conditions, $c_1(x) \neq \bar{c}_1(x), b_1(x) \neq \bar{b}_1(x)$ could be accommodated (like in meson cloud models)

$$b_1(x,m_c) = \frac{m_c^2}{m_b^2} c_1(x,m_c), \ \int_0^1 c_1(x) = 0.01, \ m_c = 1.3 \ {\rm GeV}, \ m_b = 4.5 \ {\rm GeV}$$

■ The normalization can be changed by simple rescaling

$c_1(x), b_1(x)@NLO$

$$b_1(x,m_c) = \frac{m_c^2}{m_b^2} c_1(x,m_c), \ \int_0^1 c_1(x) = 0.01, \ m_c = 1.3 \ \text{GeV}, \\ m_b = 4.5 \ \text{GeV}$$

■ The normalization can be changed by simple rescaling

- Modifications in BHPS models are essentially at large-x
- IB effects less pronounced:
 - ightharpoonup Still, observables dominated by b initiated processes could be enhanced by a factor up to ~ 1.6
 - ▶ For constraining intrinsic bottom \Rightarrow low Q and high-x e.g. AFTER@LHC

- Comparison of $c_1(x) + \text{CTEQ6.6}$ and c(x) of CTEQ6.6c0 with the same normalization

 - $\int_0^1 dx \ c(x) = 0.01$ $\int_0^1 dx \ x \left[c(x) + \bar{c}(x) \right] = 0.0057$
- Charm-quark with 1% normalization

The error is under control and reaches at worst 5%.

Comparison of g(x) of CTEQ6.6 and g(x) of CTEQ6.6c0 with 1% normalization

■ The error is larger at high x but the gluon is very small and the uncertainties large in this region.

- Introduction
- II) Evolution of intrinsic heavy quarks
- III) Intrinsic bottom PDFs
- IV) Parton-parton Luminosities and intrinsic heavy quarks at the LHC 14 TeV
- V) Conclusion

Definition

$$\frac{d\mathcal{L}_{ij}}{d\tau}(\tau,\mu) = \frac{1}{1+\delta_{ij}} \int_{\tau}^{1} \frac{dx}{x} \Big[f_i(x,\mu) f_j(\tau/x,\mu) + (i \leftrightarrow j) \Big]$$

Validity of the approximation on the Luminosities:

Definition

$$\frac{d\mathcal{L}_{ij}}{d\tau}(\tau,\mu) = \frac{1}{1+\delta_{ij}} \int_{\tau}^{1} \frac{dx}{x} \Big[f_i(x,\mu) f_j(\tau/x,\mu) + (i \leftrightarrow j) \Big]$$

Validity of the approximation on the Luminosities:

Note that for the intrinsic bottom the error is smaller

Luminosities @ the LHC14 TeV

Production of a heavy state

$$\sigma_{pp\to H+X} = \sum_{ij} \int_{\tau}^{1} d\tau \frac{d\mathcal{L}_{ij}}{d\tau} \hat{\sigma}_{ij}(s), \ \sqrt{\tau} = m_H/\sqrt{S}$$

■ E.g. a **heavy scalar** with couplings proportional to the **fermion mass**: m_c^2/m_b^2 factor compensated

$$\sqrt{\tau} = m_H/\sqrt{S}$$

■ The impact of the intrinsic charm is clearly visible and outside the uncertainty band from PDF for both $c\bar{c}$ and cg.

- Also include an extreme scenario with the first moment of IB at 1%.
- Effects smaller than for IC as expected
- 3.5% normalization is distinguishable

- I) Introduction
- II) Evolution of intrinsic heavy quarks
- III) Intrinsic bottom PDFs
- IV) Parton-parton Luminosities and intrinsic heavy quarks at the LHC 14 TeV
- V) Conclusion

- Intrinsic heavy quarks can be decoupled ⇒ non-singlet evolution
 - Can generate matched IC/IB distributions for any PDF set without re-doing a global analysis
 - ► The normalization can be chosen freely
- The Approximation holds to a very good level for all relevant applications:
 - ► For **IB**, it is very good
 - For IC
 - (i) 1-2% normalization ⇒ error smaller than PDF uncertainty at large-x
 - (ii) For larger norms, the error grows but the effect also such that it can easily be separated from the *without IC case*.
- Need a low Q large-x machine to constrain IB
 - ► Electron Ion Collider (EIC)
 - ► Large Hadron-Electron collider (LHeC)
 - ► AFTFR@IHC

- Intrinsic heavy quarks can be decoupled ⇒ non-singlet evolution
 - Can generate matched IC/IB distributions for any PDF set without re-doing a global analysis
 - ► The normalization can be chosen freely
- The Approximation holds to a very good level for all relevant applications:
 - ► For **IB**, it is very good
 - ► For **IC**:
 - (i) 1-2% normalization \Rightarrow error smaller than **PDF uncertainty** at large-x
 - (ii) For larger norms, the error grows but the effect also such that it can easily be separated from the *without IC case*.
- Need a low Q large-x machine to constrain IB
 - ► Electron Ion Collider (EIC)
 - ► Large Hadron-Electron collider (LHeC)
 - ► AFTFR@IHC

- Intrinsic heavy quarks can be decoupled⇒ non-singlet evolution
 - Can generate matched IC/IB distributions for any PDF set without re-doing a global analysis
 - ► The normalization can be chosen freely
- The Approximation holds to a very good level for all relevant applications:
 - For IB, it is very good
 - ► For **IC**:
 - (i) 1-2% normalization ⇒ error smaller than PDF uncertainty at large-x
 - (ii) For larger norms, the error grows but the effect also such that it can easily be separated from the without IC case.
- \blacksquare Need a low Q large-x machine to constrain IB
 - ► Electron Ion Collider (EIC)
 - ► Large Hadron-Electron collider (LHeC)
 - AFTFR@I HC.

• the c PDF of CTEQ66.c0 goes negative at large-x small Q

