
Resummation of Double Logarithms in
the Rapidity Evolution of Color

Dipoles
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DGLAP and BFKL Evolutions
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High-Energy Scattering & the BK Equation

124 Dipole approach to high parton density QCD

q

γ∗
x⊥ x⊥

Fig. 4.1. Forward scattering amplitude for DIS on a proton or nuclear target in the rest
frame of the target: the virtual photon splits into a qq̄ pair which then interacts with the
target. The interaction is depicted by the vertical oval. For simplicity the electron that emits
the virtual photon is not shown.

coherence length in the longitudinal plus direction (see Sec. 2.3),

x+ ≈ 2

|q−| = 2q+

Q2
, (4.2)

is much larger than the size of the nucleus. If the virtual photon fluctuates into a quark–
antiquark pair, the typical lifetime of such a qq̄ fluctuation would also be much longer
than the nuclear diameter. Therefore, a DIS process in the nuclear rest frame occurs when
a virtual photon fluctuates into a qq̄ pair (which we will also refer to as a color dipole or
simply a dipole); the qq̄ pair proceeds to interact with the target (Gribov 1970, Bjorken
and Kogut 1973, Frankfurt and Strikman 1988). The forward scattering amplitude for the
process is pictured in Fig. 4.1, with the qq̄ dipole–nucleus interaction represented by the
vertical oval. This is the dipole picture of DIS (Kopeliovich, Lapidus, and Zamolodchikov
1981, Bertsch et al. 1981, Mueller 1990, Nikolaev and Zakharov 1991). Note that while
the topology of the DIS diagram in Fig. 4.1 is the same as for DIS in the IMF, shown in
Fig. 2.2, the time-ordering of the interactions is different in the two figures.

The interaction of a virtual photon with a nucleus can be viewed as a two-stage process:
the virtual photon decays into a colorless dipole consisting of a quark and an antiquark
and the colorless dipole travels through the nucleus. However, this separation between the
time scale for the photon to decay into the qq̄ pair and the interaction time is not the
only advantage of the dipole picture. Another important simplification comes from the fact
that in high energy scattering a colorless dipole, with transverse size x⊥, does not change
its size during the interaction and therefore the S-matrix of the interaction is diagonal
with respect to the transverse dipole size (Zamolodchikov, Kopeliovich, and Lapidus 1981,
Levin and Ryskin 1987, Mueller 1990, Brodsky et al. 1994). Indeed, while the colorless
dipole is traversing the target, the distance x⊥ between the quark and antiquark can only
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Dipole Picture [Nikolaev &

Zakharov ’91; Mueller ’94]

Sxy = tr
Nc

[V †xVy]

� Mixed representation

{x⊥, k+} well-suited for

high-energy scattering
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Balitsky-Kovchegov (BK) equation

∂Y Sxy = ᾱs
2π

∫
z
Mxyz[SxzSzy − Sxy];

Mxyz = (x−y)2

(x−z)2(z−y)2

[Balitsky ’96; Kovchegov ’98]
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Balitsky-Kovchegov equation also emerges as
mean-field-approximation of JIMWLK formalism

JIMWLK Evolution Multiparticle Production & Rapidity Correlations Conclusions

JIMWLK Hamiltonian

For a gluon crossing a shockwave target, the background
field propagator is essentially a Wilson line

U
†
x = P exp

[
ig
∫

dx+A−a (x+,x)T a
]

and then (
∫

dp+/p+ → ln(1/x))

∆H = ln 1
xHJIMWLK

HJIMWLK = 1
(2π)3

∫
Kxyz(U †x − U †z)ab(U †y − U †z)acRb

xR
c
y

+ + + + + + + · · ·

Ra
uU

R†
x = igδuxU

R†
x T aR

Kxyz = KixzKiyz ︸ ︷︷ ︸
=2gta

ελ·k
k2

∫
d2k
(2π)2e

ik·(x−z) = ig
π t

aεiλ
(x− z)i

(x− z)2︸ ︷︷ ︸
≡Kixz

Particle Production in pA with Rapidity Correlations Diffraction 2014 José Daniel Madrigal

[Jalilian-Marian, Kovner, McLerran & Weigert ’97; J.-Marian, Kovner, Leonidov & Weigert ’98; Iancu,

Leonidov & McLerran ’01]

Actually, BK and JIMWLK predictions for dipole scattering amplitude turn

out to be very similar [Kuokkanen, Rummukainen & Weigert ’08]
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NLO Corrections & Resummation of Collinear
Logarithms

• Tour-de-force computations of NLO corrections to BFKL [Fadin & Lipatov

’98; Camici & Ciafaloni ’98], BK [Balitsky & Chirilli ’08] and JIMWLK [Balitsky &

Chirilli ’13; Kovner, Lublinsky & Mulian ’14] equations.

• Large size of the NLO corrections found in BFKL equation, that would
deprive it of its predictive power and lead to instabilities [Ross ’98].

• No reason to expect lack-of-convergence problems to be attenuated by
non-linear terms in BK-JIMWLK equation [Triantafyllopoulos ’03; Avsar,

Staśto, Triantafyllopoulos & Zaslavsky ’11].

• Origin of large NLO corrections identified to come from large
transverse logarithms. Several procedures devised for all-order
resummation of large logs and stabilization of the kernel [Salam ’98;

Ciafaloni, Colferai, Salam & Staśto ’03; Sabio Vera ’05].
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Figure 5: Evolution speed of the conformal dipole amplitude at initial condition with different values for the anomalous
dimension.
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Figure 6: Evolution speed of the conformal dipole amplitude at y = 5 with different values for the anomalous dimension at the
initial condition.

The change of the saturation scale with energy is quanti-
fied more precisely in Fig. 2 with the evolution speed of
the saturation scale

λ =
d lnQ2

s

dy
, (10)

where the precise definition of Q2
s used here is

N(r2 = 2/Q2
s) = 1− e−1/2. (11)

The NLO corrections can again be seen to significantly
slow down the evolution speed. The conformal and “non-
conformal” dipoles have comparable evolution speeds af-
ter a few evolution steps, and the total evolution speed
decreases slowly as a function of Qs. Note that the small
anomalous dimension in the initial condition makes the
leading order evolution faster than λ ∼ 0.2 . . . 0.3 ob-
tained in leading order fits with γ ∼ 1 [1, 3, 37, 38].
Also the parameter Q2

s,0 that controls the initial satu-

ration scale is not the same as the saturation scale Q2
s

obtained by solving the equation (11), and in this case
Qs,0/ΛQCD ∼ 19 corresponds to having an initial satura-
tion scale Qs/ΛQCD ∼ 40.

One would generally expect N to increase with rapid-
ity, corresponding to the physical picture of more gluons

being emitted when the available phase space increases
with increasing collision energy. This is the behavior
seen in the LO equation. To study when exactly this
happens we show in Fig. 3 the evolution speed (logarith-
mic derivative of the dipole amplitude ∂yN(r)/N(r)) at
y = 0 with different values for the anomalous dimension
γ and initial saturation scale Qs,0 as a function of the
parent dipole size. We see that the scattering amplitude
does indeed increase, but only for a suitable choice of
the initial conditions: small enough γ and large enough
Qs,0. Let us discuss the interpretation of the logarith-
mic derivative plots in more detail. For smaller Qs the
NLO corrections are so large that ∂yN(r)/N(r) is nega-
tive around the “front” r ∼ 1/Qs, which makes the so-
lution progress unphysically in the wrong direction, with
Qs decrasing with rapidity. For larger Qs, the behavior
around r ∼ 1/Qs is less problematic, and we can focus
on the small r tail of the amplitude. Here note that
if ∂yN(r)/N(r) has a constant positive value, the ampli-
tude grows exponentially in rapidity, but retains its shape
as a function of r, resembling the small r behavior of the
leading order evolution equation. This is indeed what
happens for γ = 0.6 and, marginally, for γ = 0.8. For
γ = 1.0, however, we observe a negative, logarithmically

Large corrections and instabilities in NLO BK traced back to double

transverse logs [Lappi & Mantysäari ’15]:

of the solutions of Eq. (4). On the experimental side, the
cross section is proportional to some power of the coupling
constant, so the argument determines how big (or how
small) the cross section is. The typical argument of �s is
the characteristic transverse momenta of the process. For
high enough energies, they are of order of the saturation
scale Qs, which is �2� 3 GeV for the CERN LHC, so
even the difference between ��Qs� and ��2Qs� can make a

substantial impact on the cross section. The precise form of
the argument of �s should come from the solution of the
BK equation with the running-coupling constant, and the
starting point of the analysis of the argument of �s in
Eq. (4) is the calculation of the NLO evolution.

Let us present our result for the NLO evolution of the
color dipole (hereafter, we use notations X 
 x� z, X0 

x� z0, Y 
 y� z, and Y0 
 y� z0),

d
d�
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: (5)

Here � is the normalization point in the MS scheme and
b � 11

3 Nc �
2
3nf is the first coefficient of the � function.

The result of this paper is the gluon part of the evolution;
the quark part of Eq. (5) proportional to nf was found
earlier [9,10]. Also, the terms with cubic nonlinearities
were previously found in the large-Nc approximation in
Ref. [11]. The NLO kernel is a sum of the running-
coupling part (proportional to b), the nonconformal
double-log term � ln�x�y�

2

�x�z�2 ln�x�y�
2

�x�z�2 , and the three confor-
mal terms which depend on the two four-point conformal
ratios X2Y02

X02Y2 and �x�y�
2�z�z0�2

X2Y02
. Note that the logarithm of the

second conformal ratio ln�x�y�
2�z�z0�2

X2Y02 is absent.
It should be emphasized that the NLO result itself does

not lead automatically to the argument of the coupling
constant �s in Eq. (4). In order to get this argument one
can use the renormalon-based approach [12]: first get the
quark part of the running-coupling constant coming from
the bubble chain of quark loops and then make a conjecture
that the gluon part of the � function will follow that
pattern. Equation (5) proves this conjecture in the first
nontrivial order: the quark part of the � function 2

3nf
calculated earlier gets promoted to the full b. The analysis
of the argument of the coupling constant was performed in
Refs. [9,10], and we briefly review it in Sec. VII for
completeness. Roughly speaking, the argument of �s is

determined by the size of the smallest dipole min�jx�
yj; jx� zj; jy� zj�.

The paper is organized as follows. In Sec. II we remind
the reader of the derivation of the BK equation in the
leading order in �s. In Secs. III and IV, which are central
to the paper, we calculate the gluon contribution to the
NLO kernel of the small-x evolution of color dipoles: in
Sec. III we calculate the part of the NLO kernel corre-
sponding to one-to-three dipoles transition, and in Sec. IV
we calculate the one-to-two dipoles part. In Sec. V we
assemble the NLO BK kernel, and in Sec. VI we compare
the forward NLO BK kernel to the NLO BFKL results [13].
The results of the analysis of the argument of the coupling
constant are briefly reviewed in Sec. VII. Appendix A is
devoted to the calculation of the UV-divergent part of the
one-to-three dipole kernel, and in Appendix B we discuss
the dependence of the NLO kernel on the cutoff in the
longitudinal momenta.

II. DERIVATION OF THE BK EQUATION

Before discussing the small-x evolution of the color
dipole in the next-to-leading approximation, it is instruc-
tive to recall the derivation of the leading order (BK)
evolution equation. As discussed in the Introduction, the
dependence of the structure functions on xB comes from

IAN BALITSKY AND GIOVANNI A. CHIRILLI PHYSICAL REVIEW D 77, 014019 (2008)

014019-2
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Our Goals

1 Identify the diagrammatic origin of double logarithmic
corrections and its relation to the ’kinematic constraint’
[Ciafaloni ’88; Andersson, Gustafson & Samuelsson ’96; Kwieciński, Martin & Sutton ’96; Beuf

’14].

2 Implement directly the collinear resummation in coordinate
space, as required by non-linear structure of BK equation.

3 Express the resummed evolution equation in terms of a local
(energy-independent) kernel, as compared to non-local in rapidity
proposals [Motyka & Staśto ’09; Beuf ’14]
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The DLA Limit of the BFKL Equation
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(Naive) DLA Limit of the BFKL Equation

BFKL Equation (T = 1− S, T � 1)

∂Y Txy(Y ) =
ᾱs
2π

∫
d2zMxyz[Txz(Y ) + Tzy(Y )− Txy(Y )]

z-integration becomes logarithmic when daughter dipoles are much larger
than the original one (|x− z| ' |z − y| � r ≡ |x− y|)
Mxyz ' r2/(x − z)4 and Txz ' Tzy ∝ z2; negligible virtual term.

Writing Txy(Y ) ≡ r2Q2
0Axy → r2Q2

0A(Y, r2)

A(Y, r2) = A(0, r2) + ᾱs

∫ Y

0

dY1

∫ 1/Q2
0

r2

dz2

z2
A(Y1, z

2)

(Naive) DLA Equation (resums powers of ᾱsY ρ, ρ ≡ ln[1/r2Q2
0] to all

orders)

A(Y, ρ) = I0(2
√
ᾱsY ρ)
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The Diagrammatic Origin of the DLA
Equation
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Computation of Time-Ordered Diagrams
• Lifetime of gluon fluctuation τp ≡ 2p+/p2 = 1/p−

• Eikonal approximation p+ � k+

296 E. Iancu et al. / Physics Letters B 744 (2015) 293–302

Fig. 2. Diagrams with two gluons which are ordered in longitudinal momentum (p+ > k+) and also in lifetime (τp > τk); (a) a real–real graph; (b) a virtual–real graph.

virtual and it is both emitted and reabsorbed prior to the emission 
of the soft gluon, which is real. Beyond LLA, other time orderings 
become important as well and will be later considered (see Fig. 3).

We shall first evaluate the 2-real-gluon graph in Fig. 2a. After 
integrating over all emission times, within the ranges −∞ < t1 <

τ1 < 0 and 0 < τ2 < t2 < ∞, one finds the following contribution 
to the change in dipole S-matrix7 (below, 

∫
u ≡ ∫

d2u and 
∫

p ≡∫ d2 p
(2π)2 )

− g4N2
c

(2π)2

∫
uz

Sxu Suz Sz y

×
∫

p p̃kk̃

eip·(u−x)eip̃·(x−u)eik·(z−y)eik̃·(u−z) p · p̃

p2 p̃2

k · k̃

k2k̃
2

×
q+∫

q+
0

dk+

k+

q+∫
k+

dp+

p+
p+

p+ + k+ p2

k2

p+

p+ + k+ (p̃−k̃)2

k̃
2

. (6)

In the integrals over k+ and p+ , the upper limit q+ is the longitu-
dinal momentum of the quark and antiquark in the original dipole, 
while the lower limit q+

0 = Q 2
0 /2P− is the longitudinal scale at 

which the scattering probes the dipole wavefunction. (P− is the 
target longitudinal momentum, with s = 2q+ P− , while Q 0 is the 
respective transverse scale.) That is, the overall rapidity interval 
available for the evolution of the projectile is Y = ln(q+/q+

0 ). The 
denominators in the second line come from time integrations and 
can be recognized as the usual ‘energy’ (here, in the sense of p−) 
denominators of light-cone perturbation theory. For instance,

p+

p+ + k+ p2

k2

= k−

p− + k− = τp

τp + τk
, (7)

where τp ≡ 2p+/p2 = 1/p− is the lifetime of the hard gluon fluc-
tuation, as determined by the uncertainty principle, and similarly 
for τk . The integral over p+ is logarithmic provided p+ dominates 
both energy denominators, that is, so long as8 p+ > k+(p2/k2), or 
τp > τk . Hence, to leading logarithmic accuracy for the longitudinal 
logarithm, one can replace τp/(τp + τk) � 	(τp − τk).

In the BFKL regime, one assumes that there is no strong hier-
archy between the transverse momenta, |k| ∼ |p|, so the condition 
τp > τk is automatically satisfied when p+ > k+ . In that case, one 
can freely integrate over transverse momenta in expressions like 

7 To keep expressions simple, we use the large-Nc limit at intermediate steps, but 
some of the final results, notably the DLA equation (17), are valid for any Nc .

8 For the purposes of power counting, one can use |k| ∼ |k̃| and |p| ∼ |p̃ − k̃|; 
indeed, the difference between e.g. k and k̃ is due to the scattering off the target, 
which is a comparatively small effect in the high transverse momenta (or small 
dipole sizes) regime of interest.

Eq. (6), to generate the Weizsäcker–Williams propagators of the 
soft gluons, according to∫

d2 p

(2π)2

pi

p2
eip·(x−z) = − i

2π

xi − zi

(x − z)2
. (8)

After also summing over all possible connections for the two emit-
ted gluons, one builds the relevant product of dipole kernels (i.e., 
Mx yuMu yz for the sequence of emissions illustrated in Fig. 2).

However, this is strictly correct only so long as the transverse 
phase-space is by itself not logarithmic, meaning so long as Y � ρ , 
where ρ ≡ ln(Q 2/Q 2

0 ) measures the logarithmic separation in 
transverse scales between the original dipole, with size r ≡ 1/Q , 
and the target, with size 1/Q 0. In the end, the transverse integra-
tions in Eq. (6) are restricted to this range, e.g. Q 2

0 � p2 � Q 2 (see 
below). For sufficiently large values of ρ , one opens the phase-
space for a logarithmic integration over p2, which favors rela-
tively large values |p| � |k|. In this regime, the theta-function 
	(τp −τk) = 	(p+ −k+(p2/k2)) becomes relevant and its effect is 
to reduce the longitudinal phase-space, roughly from Y to Y − ρ .

To the accuracy of interest, i.e. to correctly keep both the cor-
rections of orders ᾱsY and ᾱsρ

2 generated when integrating out 
the hard gluon p+ , the constraint τp > τk can be enforced directly 
in coordinate space, like p+ū2 > k+ z̄2. Here, we have anticipated 
that the corrections of the form ᾱsρ

2 come from emissions which 
are strongly ordered in transverse sizes, such that the daughter 
dipoles are much larger than the parent one. In this regime,

|z − x| � |z − y| � |z − u| � |u − x| � |u − y|
� r = |x − y| , (9)

and ū refers to any of the sizes, |u−x| or |u− y|, of the first pair of 
daughter dipoles, while z̄ similarly refers to the daughter dipoles 
produced by the second splitting. After performing the momen-
tum integrals in Eq. (6), summing over all the possible connections 
for both emitted gluons, and adding the other splitting sequence 
(where the gluon at z is emitted from the dipole (x, u)), one finds 
the following result from the 32 time-ordered graphs with two ‘re-
al’ gluons (at large Nc ):

(
ᾱs

2π

)2
q+∫

q+
0

dk+

k+

q+∫
k+

dp+

p+

∫
uz

	(p+ū2 − k+ z̄2)

× Mx yu
[
Mu yz Sxu Suz Sz y + Mxuz Sxz Szu Su y

]
, (10)

where ū = max (|u − x|, |u − y|) and z̄ = max (|z − x|, |z − y|,
|z − u|). Except for the theta-function enforcing time-ordering, this 
is recognized as the effect of two consecutive steps in the LO BFKL 
evolution.

To this result, one must add contributions coming from virtual 
graphs, evaluated to the same accuracy. The ‘real–virtual’ graphs in 
which the harder gluon (p+) is virtual, whereas the softer one (k+) 
is real, are the only ones that matter for the subsequent discussion 
of DLA. Consider first the 32 such graphs whose topologies (i.e. 
time-orderings) exist already at LLA, namely those where the two 

− g4N2
c

(2π)2

∫
uz

Sxu Suz Sz y

×
∫

pp̃kk̃

eip·(u−x)eip̃·(x−u)eik·(z−y)eik̃·(u−z) p · p̃
p2 p̃2

k · k̃
k2k̃

2

×
q+∫

q+
0

dk+

k+

q+∫
k+

dp+

p+
p+

p+ + k+ p2

k2

p+

p+ + k+ (p̃−k̃)2

k̃
2

.

p+

p+ + k+ p2

k2

=
τp

τp + τk

'
{

1 in BFKL

Θ(τp − τk) in DLA
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Real-Real Contribution

( ᾱs
2π

)2
∫ q+

q+0

dk+

k+

∫ q+

k+

dp+

p+

∫
uz

Mxyu[MuyzSxuSuzSzy +MxuzSxzSzuSuy]

×Θ(p+ū2 − k+z̄2), ū = max(|u− x|, |u− y|); z̄ = max(|z − x|, |z − y|)

Virtual-Real Contribution

−
( ᾱs

2π

)2
∫ q+

q+0

dk+

k+

∫ q+

k+

dp+

p+

∫
uz

MxyuMxyzSxzSzyΘ(p+ū2 − k+z̄2)

To DLA accuracy MuyzMxyu ' r2

ū2z̄4 and 1− SxuSuzSzy ' Tuz + Tzy ' 2T (z̄2)
and we generate logarithmic phase space∫ z̄2

r2

dū2

ū2

∫ q+

k+ z̄2

ū2

dp+

p+
=

∫ z̄2

r2

dū2

ū2

(
ln
q+

k+
− ln

z̄2

ū2

)
= Y ρ− ρ2

2

Y = ln
q+

k+
; ρ = ln

z̄2

r2
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Cancellation of Anti-Time-Ordered Diagrams in DLA
Anti-time ordered graphs, involving factors p−

p−+k− ' Θ(τk − τp) are
also potentially enhanced by double transverse logs

∫ z̄2

r2

dū2

ū2

∫ q+

k+ z̄2

ū2

dp+

p+
=

∫ z̄2

r2

dū2

ū2
ln
z̄2

ū2
=
ρ2

2E. Iancu et al. / Physics Letters B 744 (2015) 293–302 297

Fig. 3. Pattern of cancellations (to DLA) in 2-gluon graphs with anti-time-ordering (τp < τk).

gluons have no overlap in time with each other (an example is 
shown in Fig. 2b). They give

−
(

ᾱs

2π

)2
q+∫

q+
0

dk+

k+

q+∫
k+

dp+

p+

∫
uz

Mx yuMx yz Sxz Sz y . (11)

In the BFKL context, this contribution is used to regulate the short-
distance singularities of Eq. (10) as u → x and u → y at a scale set 
by the original dipole size: ū � r. In the present context, it plays a 
similar role (as anticipated in Eq. (9)), except for the fact that only 
the time-ordered piece of (11) is needed for that purpose. That 
is, albeit the virtual graphs included in Eq. (11) do not naturally 
involve any time ordering, it is nevertheless useful to distinguish 
between the respective time-ordered (TO) and anti-time-ordered 
(ATO) contributions, by inserting 1 = 	(τp − τk) + 	(τk − τp) in 
the integrand of Eq. (11). (Here and from now on, τp = p+ū2

and τk = k+ z̄2.) Then the TO piece must be combined with the 
2-real-gluon contribution in Eq. (10), which is itself time-ordered, 
whereas the ATO piece is to be considered together with other 
virtual–real graphs, which are naturally ATO and will be discussed 
below.

From now on, we shall limit ourselves to the strict double–
logarithmic approximation (DLA), where each power of ᾱs is ac-
companied by either Yρ or ρ2. The corresponding contribution of 
Eq. (10) can be isolated by taking the single scattering approxi-
mation and restricting the integrations over u and z according to 
Eq. (9). This allows for simplifications like

Mu yzMx yu � r2

ū2 z̄4
,

1 − Sxu Suz Sz y � Tuz + T z y � 2T (z̄2) . (12)

For subsequent discussions, it is important to stress that, to DLA, it 
is only the last emitted gluon (the one with the largest transverse
size z̄) which contributes to scattering. Then the integrals over p+
and ū are both logarithmic, as anticipated, and can be evaluated as

z̄2∫
r2

dū2

ū2

q+∫
k+ z̄2

ū2

dp+

p+ =
z̄2∫

r2

dū2

ū2

(
ln

q+

k+ − ln
z̄2

ū2

)
= Yρ − ρ2

2
, (13)

where the logarithmic variables Y = ln(q+/k+) and ρ = ln(z̄2/r2)

refer to the phase-space available to the hard gluon p+ . Note that 
we have implicitly assumed above that Y > ρ , so that the integral 

over p+ has indeed support for any ū ≥ r. This can be recog-
nized as the condition for the lifetime τk = k+ z̄2 of the soft gluon 
fluctuation be (much) smaller than the ‘lifetime’ τq = q+r2 of the 
original dipole (the duration of the quantum process which has 
produced that dipole, e.g. the fluctuation of the virtual photon in 
DIS).

To summarize, by integrating out the intermediate gluon p+ , 
one has produced, besides the expected LLA contribution ᾱsYρ , 
also a contribution ᾱsρ

2, which can be interpreted as a NLO cor-
rection to the BFKL kernel for the emission of the soft gluon k+ . 
This correction matches the respective piece (that enhanced by a 
double transverse logarithm) of the full NLO result in Ref. [9]. The 
last remark might suggest that the remaining 2-gluon graphs, that 
have not been considered so far and which correspond to other 
time orderings, do not contribute to order ᾱsρ

2. But this is not 
quite true: contributions of this order arise from all the diagrams 
which are anti-time-ordered (ATO), in the sense that the lifetime 
of the hard gluon is shorter than that of the soft one (to DLA, at 
least). Topologically, the class includes two types of diagrams: (i)
real–virtual graphs where the hard gluon is virtual and overlaps 
in time with the soft gluon which is real (some examples are the 
graphs 1a, 1b, 2a, 3a, 3b, 4a, and 4b in Fig. 3); (ii) real–real 
graphs where the hard gluon is emitted after, and absorbed be-
fore, the soft one (see graph 2b in Fig. 3). To these genuinely ATO 
diagrams, one must add the ATO pieces of the virtual–real graphs 
without overlap in time (see graphs 1c, 1d, 3c, and 3d in Fig. 3, 
which represent the ATO part of graphs like that in Fig. 2b, left 
over from the earlier calculations), to cancel UV divergences and 
introduce an effective short-distance cutoff equal to r (cf. the dis-
cussion after Eq. (11)).

When evaluating graphs of the type (i) and (ii) above men-
tioned, one finds that the time integrations over the overlapping 
region produce a factor like

p−

p− + k− = τk

τp + τk
� 	(τk − τp) , (14)

where the theta-function approximation in the r.h.s. holds in the 
double-logarithmic region. This theta-function cuts off the rapid-
ity phase-space at the scale ρ (with ρ < Y ) and thus produces a 
contribution ∝ ρ2, as anticipated:

z̄2∫
r2

dū2

ū2

k+ z̄2

ū2∫
k+

dp+

p+ =
z̄2∫

r2

dū2

ū2
ln

z̄2

ū2
= ρ2

2
. (15)

However, double logs cancel in the sum of all ATO diagrams. This
also explains the peculiar way double logs arise in [Balitsky & Chirilli ’08].
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DLA Evolution for the Scattering Amplitude and the
Lifetime Ordering Constraint

We conclude that perturbative corrections enhanced by double
logarithms Y ρ or ρ2 can be resummed to all orders by solving a
modified DLA equation involving manifest time-ordering

A(q+, r2) = A(0, r2) + ᾱs

∫ 1/Q2
0

r2

dz2

z2

∫ q+ r2

z2

q+
0

dk+

k+
A(k+, z2)

As it stands, this equation is non-local in rapidity

∂YA(Y, ρ) = ᾱs

∫ ρ

0

dρ1A(Y − ρ+ ρ1, ρ)
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Resummed Kernel for DLA, BFKL, and
BK Evolutions
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Towards a Resummed Rapidity-Independent Kernel

• By direct iteration of the modified DLA equation, we get

A(Y, ρ) =

∫ ρ

0

dρ1f(Y, ρ− ρ1)A(0, ρ1),

f(Y, ρ) = δ(ρ) + Θ(Y − ρ)

∞∑

k=1

ᾱks (Y − ρ)kρk−1

k!(k − 1)!
︸ ︷︷ ︸

=
√
ᾱs(Y−ρ)

ρ I1(2
√
ᾱs(Y−ρ)ρ)

• This can be written in integral representation:
f(Y, ρ) = Θ(Y − ρ)f̃(Y, ρ);

f̃(Y, ρ) =

∫ 1
2 +i∞

1
2−i∞

dξ

2πi
exp

[
ᾱs

1− ξ (Y − ρ) + (1− ξ)ρ
]
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The Local Kernel within DLA Approximation
A change of variables brings this as usual Mellin representation

f̃(Y, ρ) =

∫
C

dγ

2πi
J(γ) exp[ᾱsχDLA(γ)Y + (1− γ)ρ]

ᾱsχDLA(γ) =
1

2

[
−(1− γ) +

√
(1− γ)2 + 4ᾱs

]
=

ᾱs
(1− γ)

− ᾱ2
s

(1− γ)3
+ · · ·

J(γ) = 1− ᾱsχ′DLA(γ) = 1− ᾱs
(1− γ)2

+ · · ·

Mellin representation and exponentiation in Y ensures the existence of an

evolution equation for f (and thus for A) with an energy- independent

kernel KDLA(ρ) defined as inverse Mellin of χDLA(γ)

Ã(Y, ρ) = Ã(0, ρ) + ᾱs

∫ Y

0

dY1

∫ ρ

0

dρ1KDLA(ρ− ρ1)Ã(Y1, ρ1), Y > ρ

KDLA(ρ) =
J1(2

√
ᾱsρ2)√

ᾱsρ2
= 1− ᾱsρ

2

2
+

(ᾱsρ
2)2

12
+ · · ·

Coincides with momentum-space kernel proposed by [Sabio Vera ’05];
compare with non-local approaches in [Salam ’98; Motyka & Staśto ’09; Beuf ’14].
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The Change in the Initial Condition

Jacobian of Mellin transform induces also resummation in the initial
condition (∼ impact factor):

Ã(0, ρ) =

∫ ρ

0

dρ1f̃(0, ρ− ρ1)A(0, ρ1),

f̃(0, ρ) = δ(ρ)−√ᾱsJ1(2
√
ᾱsρ2).

[Ã(Y, ρ) coincides with physical amplitude A(Y, ρ) for Y > ρ]

(J1 is the Bessel function) and the initial condition f̃(0, ρ) obtained as the limit of Eq. (23) at the
unphysical point Y = 0 :

f̃(0, ρ) = δ(ρ)−√ᾱs J1

(
2
√
ᾱsρ2

)
. (28)

To summarize, the solution to Eq. (26) with the kernel (27) and the initial condition (28) exists
for any positive values Y and ρ. For Y > ρ it reduces, by construction, to the original function
f(Y, ρ) in Eq. (21). The importance of this construction is that it can be immediately generalized
to the evolution of the dipole amplitude, which can be thus rewritten as a local equation in Y .
First, we define the analytic continuation of A(Y, ρ) according to (cf. Eq. (19))

Ã(Y, ρ) ≡
∫ ρ

0
dρ1 f̃(Y, ρ− ρ1)A(0, ρ1). (29)

This new function coincides with the physical amplitude A(Y, ρ) for Y > ρ. For general, positive,
values of Y and ρ, it obeys an equation similar to Eq. (26), that is,

Ã(Y, ρ) = Ã(0, ρ) + ᾱs

∫ Y

0
dY1

∫ ρ

0
dρ1KDLA(ρ− ρ1)Ã(Y1, ρ1) , (30)

with an initial condition Ã(0, ρ) which follows from Eqs. (29) and (28). For illustration, consider
two interesting initial conditions, namely A(0, ρ) = 1, which has the advantage of simplicity,
and A(0, ρ) = ρ, which is the limit of the McLerran-Venugopalan (MV) model for dipole-nucleus
scattering in the single scattering approximation [25]. One easily finds

Ã(0, ρ) =





1

2

[
1 + J0

(
ρ̄
)]

for A(0, ρ) = 1,

ρ

2

[
1 + J0

(
ρ̄
)

+
π

2
H0

(
ρ̄
)
J1

(
ρ̄
)
− π

2
H1

(
ρ̄
)
J0

(
ρ̄
)]

for A(0, ρ) = ρ,
(31)

where we have temporarily used the notation ρ̄ = 2
√
ᾱsρ2 and where Hα is the Struve function.

Eq. (30) is the sought-after local version of the DLA equation for the dipole amplitude: for
Y > ρ, its solution coincides, by construction, with the respective physical amplitude, i.e. with the
solution to the non-local equation (17). Notice that this rewriting of the DLA evolution in local
form is tantamount to a complete reshuffling of the perturbation series: both the kernel in Eq. (30)
and the initial condition in Eq. (31) resum double-collinear terms of the type (ᾱsρ

2)n for any n.
For instance, the very first iteration of this equation generates all the terms linear in ᾱsY , i.e.
the terms of the type ᾱsY ρ(ᾱsρ

2)n with n ≥ 0, that would be produced by iterating the original
equation (17) to all orders. Remarkably, even though both the kernel and the initial condition
exhibit oscillations as functions of ρ, their combined effect within equations like (30) or (26) yields
a solution which is positive definite in the physical region Y > ρ, order by order in ᾱs (e.g., this
produces the perturbative solution (20) for f(Y, ρ)).

As we now explain, it is rather straightforward to promote this local DLA equation into a more
complete equation, which includes the right BFKL and BK physics to NLL accuracy. To that aim,
and starting with Eq. (30), we shall make backwards the steps leading from the LO BFKL equation
(1) to the ‘näıve’ DLA equation (3), that is:

(i) we use the full expression for the dipole scattering amplitude, and more precisely its analytic
continuation T̃ (Y, ρ) ≡ e−ρÃ(Y, ρ) (which coincides with the physical amplitude for Y > ρ);

12
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Resummed Kernel for BFKL/BK Evolution

We can now easily promote our local DLA equation to easily include NLL
BFKL/BK:

1 T̃ (Y, ρ) = e−ρÃ(Y, ρ)

2 Return to transverse coordinates: ρ = ln(1/r2Q2
0); ρ− ρ1 =

ln(z2/r2); T̃ (Y, ρ) = T̃xy(Y ); 2T̃ (Y, z2)→ T̃xz(Y ) + T̃zy(Y )

3 Restore full dipole kernel r2

z4 dz2 → 1
π
Mxyzd2z

4 Introduce the virtual term and temove IR and UV cutoffs in the z
integration

5 Replace the argument of KDLA by ln z2

r2
→
√
LxzrLyzr, with

Lxzr ≡ ln[(x− z)2/(x− y)2]
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∂ T̃xy(Y )

∂Y
= ᾱs

2π

∫
d2zMxyz KDLA

(√
Lxzr L yzr

)

×
[
T̃xz(Y ) + T̃ z y(Y ) − T̃xy(Y ) − T̃xz(Y )T̃ z y(Y )

]
∂ T̃xy(Y )

∂Y
= ᾱs

2π

∫
d2zMxyz KDLA

(√
Lxzr L yzr

)

×
[
T̃xz(Y ) + T̃ z y(Y ) − T̃xy(Y ) − T̃xz(Y )T̃ z y(Y )

]]
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Numerical Results
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Identity of Local and Non-Local Solutions
300 E. Iancu et al. / Physics Letters B 744 (2015) 293–302

Fig. 4. Left: the DLA solutions for A(Y , ρ), cf. Eq. (17) (full lines), and respectively Ã(Y , ρ), cf. Eq. (30) (short-dashed lines), for various rapidities and (physical) initial 
condition A(0, ρ) = 1. The black, long-dashed, curve shows the boundary between ρ < Y and ρ > Y . Right: the characteristic function ᾱsχ(γ ) as numerically extracted from 
the kernel in Eq. (32) vs. its LO (BFKL) and ‘NLO’ approximations. (For interpretation of the references to color in this figure, the reader is referred to the web version of this 
article.)

where we have also added the non-linear term familiar from the 
BK equation, to account for multiple scattering and thus ensure 
unitarization. Eq. (32) improves over the LO BK equation by resum-
ming the double-collinear logs, i.e. the perturbative corrections of 
the form (ᾱsρ

2)n , to all orders. Importantly, this resummation af-
fects both the kernel and the initial conditions.

So far, the initial condition at Y = 0 has been specified only 
in the weak scattering regime where T̃ � 1 and the precise nor-
malization of T̃ (Y = 0, r) was unessential (since the respective 
evolution was linear). For the purposes of the non-linear equation 
(32), however, we need to fix this normalization. To that aim, it is 
convenient to use the MV model [35], which amounts to exponen-
tiating the amplitude for a single scattering: T̃ (0, r) = 1 − e−T̃0(r) , 
where T̃0(r) = e−ρÃ(0, ρ), with ρ = ln(1/r2 Q 2

0 ) and Ã(0, ρ) as 
shown in the second line in Eq. (31).

To fully motivate Eq. (32), we still need to explain our choice 
for the argument of KDLA in this equation. Clearly, the replace-
ment made at point (v) above is irrelevant at the present interest 
(improved LLA), but has two important virtues: (a) it switches off 
the effect of the collinear resummation for small daughter dipole 
sizes, |x − z| � r, or |y − z| � r, where this resummation should 
indeed play no role, and (b) when expanded to second order, i.e. 
KDLA(ρ) � 1 − ᾱsρ

2/2, it precisely matches the double-logarithmic 
term contained in the full NLO BK result [9]. The last feature makes 
it straightforward to formally extend Eq. (32) to full NLL accuracy: 
it is sufficient to add to its r.h.s. all the NLO BK corrections com-
puted in [9], except for the double-log term that has already been 
included in the kernel.

Let us finally remind that, strictly speaking, the solution to 
Eq. (32) can be trusted only for sufficiently small values of ρ � Y
(which in turn requires Y to be large enough, ᾱsY � 1, in order to 
significantly evolve away from the ‘unphysical’ initial condition). In 
practice though, we expect the BFKL evolution encoded in Eq. (32)
to eventually wash out the oscillations introduced by the initial 
condition at large ρ and thus progressively built a physical tail in-
cluding at ρ > Y . This will be checked via numerical calculations 
in the next section.

5. Numerical tests

In this section we present a brief selection of first numerical 
studies which illustrate some subtle issues previously discussed 
(like the interplay between local and non-local evolution equa-
tions) and also some physical consequences of the resummation.

Consider first the double-logarithmic approximation. In the left-
hand plot of Fig. 4, we show the function A(Y , ρ), which we recall 
is related to the dipole amplitude T (Y , ρ), as obtained from two 
different approaches11: (a) by directly solving the non-local equa-
tion (17) with initial condition A(0, ρ) = 1, and (b) by solving 
the local equation (30) with the initial condition shown in the 
first line of Eq. (31) (which, strictly speaking, truly yields the ana-
lytic continuation Ã(Y , ρ)). The respective solutions are supposed 
to coincide only at ρ < Y , where they both represent the actual 
physical result. This is indeed confirmed by the numerical sim-
ulations. On top of that, for ρ > Y , we see that the (physical) 
solution to Eq. (17) is independent of ρ and equal to A(Y , ρ) =
cosh

√
ᾱs Y [38], whereas its analytic continuation Ã(Y , ρ) shows 

(non-physical) oscillations which are inherited from the initial con-
dition.

We now move to the collinearly-improved BK equation (32). 
Numerically, we solve the evolution equation following a strat-
egy similar to the one described in the Appendix of Ref. [37]. 
By acting with the kernel in this equation on the power-like test 
function r2γ , one can numerically extract the characteristic func-
tion ᾱsχ(γ ) (the would-be Mellin transform of the resummed 
kernel). In the right-hand plot of Fig. 4, we compare the function 
ᾱsχ(γ ) thus obtained for the particular value ᾱs = 0.25 (black tri-
angles) with the respective LO (BFKL) approximation ᾱsχ0(γ ) (red 
squares) and with a ‘NLO’ approximation,12 ᾱsχNLO(γ ), obtained 
by keeping only the ᾱs term in the expansion of KDLA, that is, 
KDLA → KNLO(ρ) ≡ 1 − ᾱsρ

2/2. The solid lines show the expected 
analytic results for the LO and NLO curves and their agreement 
with the numerical results is a powerful check that the numerical 
procedure is under control. As manifest on this figure, the behavior 
near γ = 1 is strongly influenced by the higher order corrections. 
This can also be understood by inspection of the DLA approxima-
tion χDLA(γ ) in Eq. (24). At NLO accuracy, χDLA(γ ) exhibits a cubic 
pole at γ = 1, the second term in the r.h.s. of Eq. (24), with a neg-
ative residue which makes the function χNLO(γ ) unstable in the 
collinear limit γ → 1 (in particular, there is no saddle point on 
the real axis). By contrast, the all-order resummation ensures a 
smooth behavior near γ = 1, as already noticed after Eq. (24). For 
ᾱs = 0.25, the function χ(γ ) is seen to be almost flat for γ � 0.5.

11 In both cases, we found that a simple discretization of the integral and a Eu-
ler method to solve the rapidity evolution was sufficient to reach good numerical 
accuracy.
12 In this section, by ‘NLO’ we refer to the inclusion of the NLO corrections which 

are enhanced by double collinear logarithms, finite NLO corrections being neglected.

A(Y, ρ): full lines; Ã(Y, ρ): dashed lines

For Y > ρ both funcions coincide; for Y < ρ, Ã(Y, ρ) shows
unphysical oscillations
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Fig. 4. Left: the DLA solutions for A(Y , ρ), cf. Eq. (17) (full lines), and respectively Ã(Y , ρ), cf. Eq. (30) (short-dashed lines), for various rapidities and (physical) initial 
condition A(0, ρ) = 1. The black, long-dashed, curve shows the boundary between ρ < Y and ρ > Y . Right: the characteristic function ᾱsχ(γ ) as numerically extracted from 
the kernel in Eq. (32) vs. its LO (BFKL) and ‘NLO’ approximations. (For interpretation of the references to color in this figure, the reader is referred to the web version of this 
article.)

where we have also added the non-linear term familiar from the 
BK equation, to account for multiple scattering and thus ensure 
unitarization. Eq. (32) improves over the LO BK equation by resum-
ming the double-collinear logs, i.e. the perturbative corrections of 
the form (ᾱsρ

2)n , to all orders. Importantly, this resummation af-
fects both the kernel and the initial conditions.

So far, the initial condition at Y = 0 has been specified only 
in the weak scattering regime where T̃ � 1 and the precise nor-
malization of T̃ (Y = 0, r) was unessential (since the respective 
evolution was linear). For the purposes of the non-linear equation 
(32), however, we need to fix this normalization. To that aim, it is 
convenient to use the MV model [35], which amounts to exponen-
tiating the amplitude for a single scattering: T̃ (0, r) = 1 − e−T̃0(r) , 
where T̃0(r) = e−ρÃ(0, ρ), with ρ = ln(1/r2 Q 2

0 ) and Ã(0, ρ) as 
shown in the second line in Eq. (31).

To fully motivate Eq. (32), we still need to explain our choice 
for the argument of KDLA in this equation. Clearly, the replace-
ment made at point (v) above is irrelevant at the present interest 
(improved LLA), but has two important virtues: (a) it switches off 
the effect of the collinear resummation for small daughter dipole 
sizes, |x − z| � r, or |y − z| � r, where this resummation should 
indeed play no role, and (b) when expanded to second order, i.e. 
KDLA(ρ) � 1 − ᾱsρ

2/2, it precisely matches the double-logarithmic 
term contained in the full NLO BK result [9]. The last feature makes 
it straightforward to formally extend Eq. (32) to full NLL accuracy: 
it is sufficient to add to its r.h.s. all the NLO BK corrections com-
puted in [9], except for the double-log term that has already been 
included in the kernel.

Let us finally remind that, strictly speaking, the solution to 
Eq. (32) can be trusted only for sufficiently small values of ρ � Y
(which in turn requires Y to be large enough, ᾱsY � 1, in order to 
significantly evolve away from the ‘unphysical’ initial condition). In 
practice though, we expect the BFKL evolution encoded in Eq. (32)
to eventually wash out the oscillations introduced by the initial 
condition at large ρ and thus progressively built a physical tail in-
cluding at ρ > Y . This will be checked via numerical calculations 
in the next section.

5. Numerical tests

In this section we present a brief selection of first numerical 
studies which illustrate some subtle issues previously discussed 
(like the interplay between local and non-local evolution equa-
tions) and also some physical consequences of the resummation.

Consider first the double-logarithmic approximation. In the left-
hand plot of Fig. 4, we show the function A(Y , ρ), which we recall 
is related to the dipole amplitude T (Y , ρ), as obtained from two 
different approaches11: (a) by directly solving the non-local equa-
tion (17) with initial condition A(0, ρ) = 1, and (b) by solving 
the local equation (30) with the initial condition shown in the 
first line of Eq. (31) (which, strictly speaking, truly yields the ana-
lytic continuation Ã(Y , ρ)). The respective solutions are supposed 
to coincide only at ρ < Y , where they both represent the actual 
physical result. This is indeed confirmed by the numerical sim-
ulations. On top of that, for ρ > Y , we see that the (physical) 
solution to Eq. (17) is independent of ρ and equal to A(Y , ρ) =
cosh

√
ᾱs Y [38], whereas its analytic continuation Ã(Y , ρ) shows 

(non-physical) oscillations which are inherited from the initial con-
dition.

We now move to the collinearly-improved BK equation (32). 
Numerically, we solve the evolution equation following a strat-
egy similar to the one described in the Appendix of Ref. [37]. 
By acting with the kernel in this equation on the power-like test 
function r2γ , one can numerically extract the characteristic func-
tion ᾱsχ(γ ) (the would-be Mellin transform of the resummed 
kernel). In the right-hand plot of Fig. 4, we compare the function 
ᾱsχ(γ ) thus obtained for the particular value ᾱs = 0.25 (black tri-
angles) with the respective LO (BFKL) approximation ᾱsχ0(γ ) (red 
squares) and with a ‘NLO’ approximation,12 ᾱsχNLO(γ ), obtained 
by keeping only the ᾱs term in the expansion of KDLA, that is, 
KDLA → KNLO(ρ) ≡ 1 − ᾱsρ

2/2. The solid lines show the expected 
analytic results for the LO and NLO curves and their agreement 
with the numerical results is a powerful check that the numerical 
procedure is under control. As manifest on this figure, the behavior 
near γ = 1 is strongly influenced by the higher order corrections. 
This can also be understood by inspection of the DLA approxima-
tion χDLA(γ ) in Eq. (24). At NLO accuracy, χDLA(γ ) exhibits a cubic 
pole at γ = 1, the second term in the r.h.s. of Eq. (24), with a neg-
ative residue which makes the function χNLO(γ ) unstable in the 
collinear limit γ → 1 (in particular, there is no saddle point on 
the real axis). By contrast, the all-order resummation ensures a 
smooth behavior near γ = 1, as already noticed after Eq. (24). For 
ᾱs = 0.25, the function χ(γ ) is seen to be almost flat for γ � 0.5.

11 In both cases, we found that a simple discretization of the integral and a Eu-
ler method to solve the rapidity evolution was sufficient to reach good numerical 
accuracy.
12 In this section, by ‘NLO’ we refer to the inclusion of the NLO corrections which 

are enhanced by double collinear logarithms, finite NLO corrections being neglected.

All-orders resummation ensures smooth behavior near γ = 1. For
ᾱs = 0,25, χ(γ) is essentially flat for γ & 0,5
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Fig. 5. Numerical solutions to the BK equation for the dipole amplitude at strict LO (i.e. Eq. (32) with KDLA → 1), NLO (meaning with kernel KDLA → KNLO), and after 
resummation (i.e. with the full kernel KDLA of Eq. (27)). The long-dashed (black) line in figure (c) indicate the transition between Y < ρ and Y > ρ; short-dashed, colorful, 
lines are the direct result of the numerical simulation, while solid lines have been matched to the expected physical behavior for ρ > Y , i.e. T ∝ e−ρ . (For interpretation of 
the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 6. The rapidity-dependence of the target saturation momentum Q 2
s (Y ) as obtained by numerically solving the BK equation (32) with either the LO (BFKL) kernel, or the 

fully resummed one, and with ᾱs = 0.25. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

A crude estimate of the saturation line13 based on the DLA re-
sult in Eq. (21) yields [38]

ρs(Y ) ≡ ln
Q 2

s (Y )

Q 2
0

� λsY , with λs = 4ᾱs

1 + 4ᾱs
, (33)

which is significantly smaller than the respective LO result (no re-
summation) λBFKL � 4.88ᾱs [35]. This suggests that the reduction 
of the longitudinal phase-space coming from time-ordering and 
giving rise to collinear double logs leads to a considerable reduc-
tion in the speed of the evolution.

This expectation is indeed confirmed by the numerical solutions 
to Eq. (32). In Fig. 5, we show the results for ᾱs = 0.25 and for 
an initial condition of the MV type, with A(0, ρ) = 1 (and hence 
Ã(0, ρ) as given in the first line of Eq. (31)). As before, the results 
with all-order resummation (cf. Fig. 5c) are compared to the re-
spective predictions of LO BFKL (cf. Fig. 5a) and to the ‘NLO’ results 
obtained by using KNLO(ρ) = 1 − ᾱsρ

2/2 (cf. Fig. 5b). The latter are 
highly unstable and physically meaningless — the evolution rapidly 
leads to a negative scattering amplitude — as it could have been 
anticipated in view of the pathological behavior of the correspond-
ing characteristic function χNLO(γ ) in Fig. 4. Similar instabilities 
have been recently observed [28] in numerical simulations of the 
full NLO BK equation and they have been traced back to the large 
double-logarithmic terms ∼ ᾱsρ

2 in the NLO kernel, in agreement 
with our present findings. By contrast, the evolution with the fully 

13 We recall the saturation line ρs(Y ) is defined by the condition that T (Y , ρ) ∼ 1
when ρ = ρs(Y ).

resummed kernel, shown in Fig. 5c, is perfectly smooth. We also 
see in Fig. 5c that the non-physical oscillations at ρ > Y intro-
duced by resummation in the initial condition tend to disappear 
at larger rapidities. Finally, by comparing the LO results in Fig. 5a
to the resummed ones in Fig. 5c, one clearly sees the anticipated 
reduction in the evolution speed.

To more precisely characterize this reduction, we have numer-
ically computed the target saturation momentum Q 2

s (Y ) for both 
the LO BFKL kernel and the fully resummed kernel, with results 
shown in Fig. 6 (for ᾱs = 0.25 once again). Clearly, the growth 
of the saturation scale with Y is considerably reduced by the re-
summation: for sufficiently large Y , the saturation exponent λs ≡
dρs/dY approaches a value which is smaller by, roughly, a factor 
of 2 for the resummed kernel as compared to LO one. Remark-
ably, the asymptotic value which is thus obtained in the presence 
of resummation, namely λs � 0.55, agrees quite well with the re-
spective DLA estimate in Eq. (33). We leave more detailed studies 
to a subsequent publication [38].
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Initial condition of MV type A(0, ρ) = 1

Reduction of phase-space coming from time-ordering and giving rise
to collinear double logs leads to a considerable reduction in the speed
of the evolution

For ρ > Y , expected physical behavior T ∝ e−ρ
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Saturation Momentum
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Fig. 5. Numerical solutions to the BK equation for the dipole amplitude at strict LO (i.e. Eq. (32) with KDLA → 1), NLO (meaning with kernel KDLA → KNLO), and after 
resummation (i.e. with the full kernel KDLA of Eq. (27)). The long-dashed (black) line in figure (c) indicate the transition between Y < ρ and Y > ρ; short-dashed, colorful, 
lines are the direct result of the numerical simulation, while solid lines have been matched to the expected physical behavior for ρ > Y , i.e. T ∝ e−ρ . (For interpretation of 
the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 6. The rapidity-dependence of the target saturation momentum Q 2
s (Y ) as obtained by numerically solving the BK equation (32) with either the LO (BFKL) kernel, or the 

fully resummed one, and with ᾱs = 0.25. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

A crude estimate of the saturation line13 based on the DLA re-
sult in Eq. (21) yields [38]

ρs(Y ) ≡ ln
Q 2

s (Y )

Q 2
0

� λsY , with λs = 4ᾱs

1 + 4ᾱs
, (33)

which is significantly smaller than the respective LO result (no re-
summation) λBFKL � 4.88ᾱs [35]. This suggests that the reduction 
of the longitudinal phase-space coming from time-ordering and 
giving rise to collinear double logs leads to a considerable reduc-
tion in the speed of the evolution.

This expectation is indeed confirmed by the numerical solutions 
to Eq. (32). In Fig. 5, we show the results for ᾱs = 0.25 and for 
an initial condition of the MV type, with A(0, ρ) = 1 (and hence 
Ã(0, ρ) as given in the first line of Eq. (31)). As before, the results 
with all-order resummation (cf. Fig. 5c) are compared to the re-
spective predictions of LO BFKL (cf. Fig. 5a) and to the ‘NLO’ results 
obtained by using KNLO(ρ) = 1 − ᾱsρ

2/2 (cf. Fig. 5b). The latter are 
highly unstable and physically meaningless — the evolution rapidly 
leads to a negative scattering amplitude — as it could have been 
anticipated in view of the pathological behavior of the correspond-
ing characteristic function χNLO(γ ) in Fig. 4. Similar instabilities 
have been recently observed [28] in numerical simulations of the 
full NLO BK equation and they have been traced back to the large 
double-logarithmic terms ∼ ᾱsρ

2 in the NLO kernel, in agreement 
with our present findings. By contrast, the evolution with the fully 

13 We recall the saturation line ρs(Y ) is defined by the condition that T (Y , ρ) ∼ 1
when ρ = ρs(Y ).

resummed kernel, shown in Fig. 5c, is perfectly smooth. We also 
see in Fig. 5c that the non-physical oscillations at ρ > Y intro-
duced by resummation in the initial condition tend to disappear 
at larger rapidities. Finally, by comparing the LO results in Fig. 5a
to the resummed ones in Fig. 5c, one clearly sees the anticipated 
reduction in the evolution speed.

To more precisely characterize this reduction, we have numer-
ically computed the target saturation momentum Q 2

s (Y ) for both 
the LO BFKL kernel and the fully resummed kernel, with results 
shown in Fig. 6 (for ᾱs = 0.25 once again). Clearly, the growth 
of the saturation scale with Y is considerably reduced by the re-
summation: for sufficiently large Y , the saturation exponent λs ≡
dρs/dY approaches a value which is smaller by, roughly, a factor 
of 2 for the resummed kernel as compared to LO one. Remark-
ably, the asymptotic value which is thus obtained in the presence 
of resummation, namely λs � 0.55, agrees quite well with the re-
spective DLA estimate in Eq. (33). We leave more detailed studies 
to a subsequent publication [38].
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The growth of the saturation scale with Y is considerably reduced by
the resummation: for sufficiently large Y , the saturation exponent
λs ≡ dρs

dY smaller by factor 2 compared to LO BFKL (asymptotically,
λs ∼ 0,55).
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Conclusions

1 We established clearly through a diagrammatic analysis the
origin of double logs as coming from reduction of phase space due
to time ordering

2 We were able to give an evolution equation with all-orders
resummation of double logs in terms of an energy-independent
kernel very convenient for numerical implementation

3 Our resummation is formulated directly in coordinate space
allowing us its application to BK equation

4 Collinear resummation stabilizes and slows down the evolution.
Very important phenomenological consequences expected
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Outlook

• Applications to phenomenology

• Study and resummation of single logs

• Consequences of resummation for initial condition/impact factor
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Collinear Resummation à la Salam

Double Mellin Representation for BFKL Green’s function

G(k, k0, Y ) =
1

k2

∫ a+i∞

a−i∞

dω

2πi

∫ 1
2 +i∞

1
2−i∞

dγ

2πi

(
s

kk0

)ω
eγρ

1

ω − κ(ω, γ)
,

ρ = ln(k2/k2
0); κ(ω, γ) = ᾱsχ(γ) + ᾱ2

sχ1(ω, γ) + · · ·

Matching with DGLAP through identification of relevant evolution
variable for k2 > k2

0 and viceversa: ω-shift

G(k, k0, Y ) =
1

k2

∫ a+i∞

a−i∞

dω

2πi

∫ 1
2 +i∞

1
2−i∞

dγ

2πi

( s
k2

)ω
e(γ+ω/2)ρ 1

ω − κ(γ, ω)

=
1

k2
0

∫ a+i∞

a−i∞

dω

2πi

∫ 1
2 +i∞

1
2−i∞

dγ

2πi

(
s

k2
0

)ω
e(1−γ+ω/2)(−ρ) 1

ω − κ(ω, γ)
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Dipole Scattering Amplitude

Glauber-Mueller Formula for Dipole S-Matrix

S(r, Y ) = exp

[
−r

2Q2
s(Y )

4

]

(T (r) ∼ 1 for r � 1
Qs

(black disk limit); T (r) ∼ 0 for r � 1
Qs

(color

transparency)

GBW Model for Dipole Cross Section

σdip = σ0

[
1− exp

(
−r

2Q2
s(x)

4

)]
; Q2

s(x) = Q2
0

(x0

x

)λ

AAMQS Parametrization

T (r, b) = 1− exp

[
− (r2Q2

s0(b))γ

4
ln

(
1

Λr
+ e

)]
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Saturation Momentum

Gribov-Levin-Ryskin Estimate

Qs ∼ α2
sΛQCD

(
1

x

)αP−1

DLA Estimate of Rapidity Dependence of Dipole Scattering

Amplitude (r � 1/Qs0)

T (r, Y ) ∼ (rQs0)2(ᾱsY )1/4ρ−3/4 exp[2
√

2ᾱsY ρ]
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