Physics Prospects with the Upgraded ATLAS Detector

Flera Rizatdinova (Oklahoma State University) for the ATLAS Collaboration

Overview

- Introduction
- Prospects for Higgs physics
- Prospects for searches for SuperSymmetry
- Exotic physics search potential
- Conclusions

Physics motivation for LHC upgrade

- Priorities after Higgs discovery:
 - precise measurements of the properties of the new particle
 - search for Higgs rare decays (e.g. $H \rightarrow \mu \mu$)
 - search for partners of the 125 GeV Higgs particle
- Open questions:
 - dark matter candidates
 - naturalness of the Higgs boson
- LHC has been recognized as a natural facility to perform these studies

Luminosity baseline

- Run 2 ATLAS upgrade: IBL and trigger
- HL ATLAS upgrade: Inner Tracker will replace the whole current tracking system (expect ~140 pileup events)

Methodology of evaluation of prospects

- Prospects in all areas of ATLAS physics program are studied by refining the current analyses and by starting design of new analyses
- Strategy:
 - evaluate the performance using full-simulation studies
 - using smearing functions applied to the truth-level objects
 - consider different scenarios related to the systematic uncertainties (which ones can be reduced)
- Parameterization functions obtained using full simulations:
 - Resolution and reconstruction efficiency for e, μ , γ , τ , jets and E^{miss}_t
 - Rates for light, c and b-quark jets to pass b-tagging criteria

ATLAS performance under HL LHC conditions

SM Higgs boson: current status

• M_H= 125.09±0.24 GeV

Prospects of observation of Higgs→ ZZ final state at HL

• Experimentally, very clean signal

$\Delta \mu / \mu$	Total	Stat.	Expt. syst.	Theory		
Production mode	300 fb ⁻¹					
ggF	0.152	0.066	0.053	0.124		
VBF	0.625	0.545	0.233	0.226		
WH	1.074	1.064	0.061	0.085		
ttH	0.535	0.516	0.038	0.120		
Combined	0.125	0.042	0.044	0.108		
	3000 fb ⁻¹					
ggF	0.131	0.025	0.040	0.124		
VBF	0.371	0.187	0.225	0.226		
WH	0.390	0.375	0.061	0.085		
ZH	0.532	0.526	0.038	0.073		
tīH	0.224	0.184	0.034	0.120		
Combined	0.100	0.016	0.036	0.093		

Higgs measurements in yy final state

- Important for tH Yukawa coupling measurements
- ATLAS studied different channels; theoretical uncertainties are leading
- Combined signal strength uncertainty is ~3.5% (if drop theoretical uncertainties)

	$\Delta\mu/\mu$ (%)									
Production mode	Total	Statistical	Experimental	Theoretical						
ttH	+21 –17	+13 –12	+5 -4	+17 –11						
WH	+26 –25	+21 -20	+13 –12	+10 -8						
ZH	+35 –31	+32 –29	+7 -7	+12 -8						
ggF	+19 –14	+3 –3	+1 -1	+19 –14						
VBF	+29 –29	+18 –18	+1 -1	+23 –23						

Rare Higgs boson decays

- H→Zγ is sensitive to potential new particles in the loop. ATLAS expects to observe H→Zγ decay at ~4σ level on 3000 fb⁻¹ dataset.
- Expected uncertainty on signal strength: 0.46 at 300 fb⁻¹ →0.30 at 3000 fb⁻¹

ATL-PHYS-PUB-2014-006

- H→μμ is sensitive to
 the 2nd generation
 coupling
- Expect to see at 7σ level

Higgs signal strengths

- Signal strength μ=σxBR/(σxBR)_{SM}
- Separation by production modes
 - Important for coupling measurements
- Projection assumptions:
 - 300/fb: μ=60, 3000/fb: μ=140
 - Used dedicated 14 TeV samples
- Systematics:
 - Conservative estimation (including propagation of the large statistics in control regions)
 - Large impact from theory uncertainties (shown by dashed areas), like QCD scale, PDFs

ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$

Higgs coupling ratios

• Ratios:

- $\lambda_{ij} = k_i/k_j; k_{ij} = k_i k_j/k_h$
- k_i are modifiers of the SM couplings, k_h is the width scale factor
- Overall, ~5% accuracy is achievable
 - don't rely on assumptions on total width
 - Free couplings to SM particles
 - Allow for BSM in loops and undetected final states
- Expected precision of couplings (assuming that theoretical uncertainties will be reduced by factor of 2)

k(%)	k _z	k _w	k _t	k _b	k _τ	k _μ	k _g	k γ	k _{zγ}
300 fb ⁻¹	8	9	21	22	14	21	14	9	24
3000 fb ⁻¹	4	4.5	9	11	9	7	7	4	14

ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$

BSM Higgs searches

- Invisible Higgs: ZH→II+X
 - sensitivity Br(H→invisible): 20-30% at 300/fb, 10% at 3000/fb
 - similar to sensitivity from couplings
- Top rare decays t \rightarrow cH (FCNC)
 - SM: 3×10^{-15} , BSM: up to 10^{-5}
 - expected sensitivity at 3000/fb: 1.5×10^{-4}

BSM Higgs couplings

• Additional electroweak singlet (H)

- precision on $\kappa_{\rm H}$: 2.5% at 300/fb, 1.6% at 3000/fb (w/o theor. uncertainties)

 $\kappa_h^2 + \kappa_H^2 = 1$

SM-like Higgs (125 GeV)

• 2HDM for Type I and Type 2

 α – angle between 2 CP-even Higgs states.

Type 1: One Higgs doublet couples to vector bosons, the other – to fermions.

Type 2: One Higgs doublet couples to up-type quarks, the other – to down-type quarks.

SUSY: Current Status

ATLAS SUSY Searches* - 95% CL Lower Limits Status: Feb 2015

ATLAS Preliminary $\sqrt{s} = 7, 8 \text{ TeV}$

	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	¹] Mass limit	Reference
	MSUGBA/CMSSM	0	2-6 iets	Yes	20.3	<i>ā.</i> ἔ 17 TeV m(∂)=m(ξ)	1405 7875
hes	$\tilde{a}\tilde{a} \tilde{a} \rightarrow a\tilde{\chi}_{1}^{0}$	0	2-6 jets	Yes	20.3	\tilde{q} 850 GeV $m(\tilde{k}^0) = 0$ GeV $m(\tilde{k}^0) = m(2^{nd} \operatorname{gen} \tilde{a}) = m(2^{nd} \operatorname{gen} \tilde{a})$	1405.7875
	$\tilde{a}\tilde{a}\gamma, \tilde{a} \rightarrow a\tilde{\chi}_{1}^{0}$ (compressed)	1γ	0-1 jet	Yes	20.3	ĝ 250 GeV (r) = 0.00 m(g) m(g) = 0.00 m(g) (r) = 0.00 m(g) (r) = 0.00 m(g)	1411.1559
	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{a}\tilde{\chi}_{1}^{0}$	0	2-6 jets	Yes	20.3	ž 1.33 TeV m(č ⁰)=0 GeV	1405.7875
arc	$\tilde{\rho}\tilde{\rho}, \tilde{\rho} \rightarrow aa\tilde{\chi}_{1}^{\pm} \rightarrow aaW^{\pm}\tilde{\chi}_{1}^{0}$	$1 e, \mu$	3-6 jets	Yes	20	\tilde{k} 1.2 TeV $m(\tilde{k}_1^0) < 300 \text{ GeV}, m(\tilde{k}_2^0) + m(\tilde{\ell})$	1501.03555
Se	$\tilde{e}\tilde{e}, \tilde{e} \rightarrow aa(\ell\ell/\ell v/vv)\tilde{\chi}_{1}^{0}$	2 e, µ	0-3 jets	-	20	ž 1.32 TeV m(\tilde{k}_{1}^{0})=0 GeV	1501.03555
e,	GMSB (Ĩ NLSP)	$1-2\tau + 0-1\ell$	0-2 jets	Yes	20.3	$\frac{1}{6}$ TeV $\tan\beta > 20$	1407.0603
siv	GGM (bino NLSP)	2γ	-	Yes	20.3	ž 1.28 TeV m(ξ ²)>50 GeV	ATLAS-CONF-2014-001
-n	GGM (wino NLSP)	$1 e, \mu + \gamma$	-	Yes	4.8	ž 619 GeV m(X ⁰)>50 GeV	ATLAS-CONF-2012-144
lnc	GGM (higgsino-bino NLSP)	γ	1 <i>b</i>	Yes	4.8	ξ 900 GeV m(ξ ⁰)>220 GeV	1211.1167
	GGM (higgsino NLSP)	$2 e, \mu (Z)$	0-3 jets	Yes	5.8	ž 690 GeV m(NLSP)>200 GeV	ATLAS-CONF-2012-152
	Gravitino LSP	0	mono-jet	Yes	20.3	$F^{1/2}$ scale 865 GeV m(\tilde{G})>1.8 × 10 ⁻⁴ eV, m(\tilde{g})=m(\tilde{q})=1.5 TeV	1502.01518
	$\tilde{a} \rightarrow b \bar{b} \tilde{Y}_{i}^{0}$	0	3 h	Yes	20.1		1407 0600
en ed.	$\tilde{a} \rightarrow t \tilde{t} \tilde{\chi}_{0}^{0}$	Ő	7-10 iets	Yes	20.3		1308 1841
^d	$\tilde{a} \rightarrow t \tilde{t} \tilde{Y}^{0}$	0-1 e. u	3 h	Yes	20.1		1407.0600
32 500	$\tilde{a} \rightarrow h \tilde{t} \tilde{X}_{1}^{+}$	0-1 e. µ	3 h	Yes	20.1		1407 0600
	~ ~ ~ ~ 0	, , ,					
S E	$b_1b_1, b_1 \rightarrow b\chi_1$	0	20	Yes	20.1	b_1 100-620 GeV m(χ_1)<90 GeV	1308.2631
art	$b_1b_1, b_1 \rightarrow t\chi_1^-$	2 e, µ (55)	0-3 b	Yes	20.3	b_1 275-440 GeV $m(\chi_1^*)=2 m(\chi_1^*)$	1404.2500
and	$t_1 t_1, t_1 \rightarrow b \chi_1^-$	1-2 e, µ	1-2 b	Yes	4.7	t_1 110-167 GeV 230-460 GeV $m(x_1^-) = 2m(x_1^-), m(x_1^-) = 55$ GeV	1209.2102, 1407.0583
^S .	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb\chi_1^\circ \text{ or } t\chi_1^\circ$	2 e, µ	0-2 jets	Yes	20.3	<i>t</i> ₁ 90-191 GeV 215-530 GeV m(<i>X</i> [*])=1 GeV	1403.4853, 1412.4742
en t p	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \chi_1^\circ$	0-1 <i>e</i> , µ	1-2 <i>b</i>	Yes	20	t_1 210-640 GeV $m(\chi_1^*)=1$ GeV	1407.0583,1406.1122
ec	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^{\circ}$	0 n	nono-jet/c-1	tag Yes	20.3	t₁ 90-240 GeV m(t̄₁)-@5 GeV	1407.0608
dir dir		$2 e, \mu (Z)$	1 6	Yes	20.3	<i>t</i> ₁ 150-580 GeV m(<i>k</i> [*] ₁)>150 GeV	1403.5222
	$t_2 t_2, t_2 \rightarrow t_1 + Z$	$3 e, \mu (Z)$	1 b	Yes	20.3	<i>I</i> ₂ 290-600 GeV m(<i>K</i> [*] ₁)<200 GeV	1403.5222
	$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 e, µ	0	Yes	20.3	<i>τ</i> 90-325 GeV m(ℓ ₁ ⁰)=0 GeV	1403.5294
	$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu})$	$2 e, \mu$	0	Yes	20.3	$\tilde{\chi}_{1}^{+}$ 140-465 GeV $m(\tilde{\chi}_{1}^{0})=0$ GeV, $m(\tilde{\zeta}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{+})+m(\tilde{\chi}_{1}^{0}))$	1403.5294
5 ~	$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu})$	2 τ	-	Yes	20.3	$\tilde{\chi}_{\pm}^{\pm}$ 100-350 GeV $m(\tilde{\chi}_{1}^{0})=0$ GeV, $m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_{\pm}^{1})+m(\tilde{\chi}_{1}^{0}))$	1407.0350
ire	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu}\nu)$	3 e, µ	0	Yes	20.3	$\tilde{\chi}_{1}^{*}, \tilde{\chi}_{2}^{0}$ 700 GeV $m(\tilde{\chi}_{1}^{*})=m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{*})=0, m(\tilde{\chi}_{1}^{*})=0.5(m(\tilde{\chi}_{1}^{*})+m(\tilde{\chi}_{1}^{0}))$	1402.7029
9	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 Z \tilde{\chi}_1^0$	2-3 e, µ	0-2 jets	Yes	20.3	$\tilde{\chi}_1^*, \tilde{\chi}_2^0$ 420 GeV $m(\tilde{\chi}_1^+)=m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0)=0$, sleptons decoupled	1403.5294, 1402.7029
4	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 h \tilde{\chi}_1^0, h \rightarrow b \bar{b} / W W / \tau \tau /$	$\gamma \gamma e, \mu, \gamma$	0-2 b	Yes	20.3	$\tilde{\chi}_{+}^{*}, \tilde{\chi}_{2}^{0}$ 250 GeV $m(\tilde{\chi}_{+}^{*})=m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{+}^{0})=0$, sleptons decoupled	1501.07110
	$\tilde{\chi}_2^0 \tilde{\chi}_3^0, \tilde{\chi}_{2,3}^0 \to \tilde{\ell}_{\mathrm{R}} \ell$	$4 e, \mu$	0	Yes	20.3	$\tilde{\chi}_{2,3}^{0} \qquad \qquad$	1405.5086
	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	Yes	20.3	$\tilde{\chi}_{1}^{\pm}$ 270 GeV m $(\tilde{\chi}_{1}^{\pm})$ -m $(\tilde{\chi}_{1}^{0})$ =160 MeV, $\tau(\tilde{\chi}_{1}^{\pm})$ =0.2 ns	1310.3675
bed ss	Stable, stopped g R-hadron	0	1-5 jets	Yes	27.9	\tilde{g} 832 GeV m($\tilde{\chi}_1^0$)=100 GeV, 10 μ s< $\tau(\tilde{g})$ <1000 s	1310.6584
Cle	Stable \tilde{g} R-hadron	trk	-	-	19.1	ž 1.27 TeV	1411.6795
artin	GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \tilde{\mu})$, μ) 1-2 μ	-	-	19.1	$\tilde{\chi}_1^0$ 537 GeV 10 <table 10<table="" 250<="" td=""><td>1411.6795</td></table>	1411.6795
på l	GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$	2γ	-	Yes	20.3	$\tilde{\chi}_1^0$ 435 GeV $2 < \tau(\tilde{\chi}_1^0) < 3$ ns, SPS8 model	1409.5542
	$\tilde{q}\tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow qq\mu$ (RPV)	1 μ , displ. vt:	x -	-	20.3	φ 1.0 TeV 1.5 <cr<156 br(μ)="1," gev<="" m(\tilde{k}_1^0)="108" mm,="" th=""></cr<156>	ATLAS-CONF-2013-092
	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu$	2 e,µ	-	-	4.6	ν _τ 1.61 TeV λ'_{311} =0.10, λ_{132} =0.05	1212.1272
	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau$	$1 e, \mu + \tau$	-	-	4.6	\bar{v}_r 1.1 TeV $\lambda'_{111}=0.10, \lambda_{1(2)33}=0.05$	1212.1272
	Bilinear RPV CMSSM	2 e, µ (SS)	0-3 b	Yes	20.3	$\tilde{q}. \tilde{g}$ 1.35 TeV $m(\tilde{q})=m(\tilde{g}), c\tau_{LSP} < 1$ mm	1404.2500
D	$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow e e \tilde{\nu}_u, e \mu \tilde{\nu}_e$	4 e, µ	-	Yes	20.3	$\tilde{\chi}_{\pm}^{\pm}$ 750 GeV $m(\tilde{\chi}_{\pm}^{0}) > 0.2 \times m(\tilde{\chi}_{\pm}^{0}) \neq 0$	1405.5086
Œ	$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tau \tau \tilde{\nu}_e, e \tau \tilde{\nu}_\tau$	$3 e, \mu + \tau$	-	Yes	20.3	$\tilde{\chi}_1^{\pm}$ 450 GeV $m(\tilde{\chi}_1^0) > 0.2 \times m(\tilde{\chi}_1^0), \lambda_{133} \neq 0$	1405.5086
	$\tilde{g} \rightarrow q \bar{q} q$	0	6-7 jets	-	20.3	ğ 916 GeV BR(t)=BR(b)=BR(c)=0%	ATLAS-CONF-2013-091
	$\tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs$	2 <i>e</i> , <i>µ</i> (SS)	0-3 <i>b</i>	Yes	20.3	<i>š</i> 850 GeV	1404.250
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	<i>č</i> 490 GeV m(<i>λ</i> ⁰)<200 GeV	1501.01325
	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} =$	8 TeV	4	<u>, , , , , , , , , , , , , , , , , , , </u>	1
	full data	partial data	full	data		Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

Strong production of gluinos/squarks

- Search in 0 lepton + multiple b-jets + Etmiss channel
- Current lower limit on gluino mass (1.4 TeV) can be extended to 2.3 TeV with 300 fb⁻¹ and 3 TeV with 3000 fb⁻¹

ATL-PHYS-PUB-2014-010

Strong production of stop quarks

- Naturalness requires stop/sbottom mass to be < ~1 TeV
- Studies performed only for standard cases t+LSP
- Final state: 0/1 lepton + $\ge 6/4$ jets + $\ge 2/1$ b-jets + Etmiss
- 5σ discovery potential up to 1 TeV with 300 fb⁻¹ and 1.2 TeV with 3000 fb⁻¹.

Strong production of sbottom quarks

- Feasibility studies performed for direct production and decay (b+LSP)
- Discriminator between signal and main background (ttbar): boost-corrected contransverse mass $m_{CT} = \frac{m^2(\tilde{b}) - m^2(\tilde{\chi}_1^0)}{(\tilde{c})}$
- 5σ discovery potential up to 1.1 TeV with 300 fb⁻¹ and 1.3 TeV with 3000 fb⁻¹.
 ATL-PHYS-PUB-2014-010

F. Rizatdinova (Oklahoma State U.), DIS 2015

Electroweak production of charginos/ neutralinos

• Increase of integrated luminosity from 300/fb to 3000/fb extends the sensitivity potential of $\chi_1^{\pm}\chi_2^{0}$ production by 300—350 GeV

ATL-PHYS-PUB-2014-010

F. Rizatdinova (Oklahoma State U.), DIS 2015

Exotic physics: current status

ATLAS Exotics Searches* - 95% CL Exclusion

Status: March 2015

 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

_	Model	ℓ,γ	Jets	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	-1] Mass limit	Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \ell\ell \\ \text{ADD QBH} \to \ell q \\ \text{ADD QBH high } N_{\ell r k} \\ \text{ADD BH high } N_{\ell r k} \\ \text{ADD BH high multiget} \\ \text{RSI } G_{KK} \to \ell\ell \\ \text{RSI } G_{KK} \to \ell\ell \\ \text{RSI } G_{KK} \to \ell\ell \\ \text{Bulk } \text{RS } G_{KK} \to ZZ \to qq\ell\ell \\ \text{Bulk } \text{RS } G_{KK} \to HH \to b\bar{b}b\bar{b} \\ \text{Bulk } \text{RS } g_{KK} \to HH \to b\bar{b}b\bar{b} \\ \text{Bulk } \text{RS } g_{KK} \to t\bar{t} \\ \text{2UED } / \text{RPP} \end{array}$	$\begin{array}{c} - & \\ 2e, \mu & \\ 1 & e, \mu & \\ - & \\ 2\mu(\text{SS}) \\ \geq 1 & e, \mu & \\ 2e, \mu & \\ 2e, \mu & \\ 2e, \mu & \\ 2e, \mu & \\ 1 & e, \mu & \\ 1 & e, \mu & \\ 1 & e, \mu & \\ 2e, \mu(\text{SS}) & \\ \end{array}$	$\geq 1 j$ - 1 j 2 j - 2 j / 1 J 2 j / 1 J 2 j / 1 J 4 b . b, $\geq 1 J J$	Yes - Yes - Yes j Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Mo 5.25 TeV n = 2 Ms 4.7 TeV n = 3 HLZ Min 5.2 TeV n = 6 Minh 5.2 TeV n = 6 Minh 5.2 TeV n = 6 Minh 5.8 TeV n = 6, M _D = 3 TeV, non-rot BH Minh 5.8 TeV n = 6, M _D = 3 TeV, non-rot BH Minh 5.8 TeV n = 6, M _D = 3 TeV, non-rot BH Minh 5.8 TeV n = 6, M _D = 3 TeV, non-rot BH Minh 5.8 TeV n = 6, M _D = 10 TeV, non-rot BH K/K mass 740 GeV k/M _R = 0.1 K/K mass 740 GeV k/M _R = 1.0 K/M _R = 1.0 k/M _R = 1.0 K/M _R = 1.0 k/M _R = 1.0 K/K mass 590-710 GeV BR = 0.925 KK mass 960 GeV BR = 0.925	1502.01518 1407.2410 1311.2006 1407.1376 1308.4075 1405.4254 Preliminary 1405.4123 Preliminary 1409.6190 1508.04677 ATLAS-CONF-2014-005 AFLAS-CONF-2015-009 Preliminary
Gauge bosons	$\begin{array}{c} \text{SSM } Z' \rightarrow \ell\ell \\ \text{SSM } Z' \rightarrow \tau\tau \\ \text{SSM } W' \rightarrow \ell\nu \\ \text{EGM } W' \rightarrow WZ \rightarrow \ell\nu \ \ell'\ell' \\ \text{EGM } W' \rightarrow WZ \rightarrow qq\ell\ell \\ \text{HVT } W' \rightarrow WH \rightarrow \ell\nu bb \\ \text{LRSM } W'_R \rightarrow t\bar{b} \\ \text{LRSM } W'_R \rightarrow t\bar{b} \end{array}$	$2 e, \mu 2 \tau 1 e, \mu 3 e, \mu 2 e, \mu 1 e, \mu 1 e, \mu 1 e, \mu 2 e,$	- - 2 j / 1 J 2 b 2 b, 0-1 j 1 b, 1 J 2 i	- Yes Yes - Yes I -	20.3 19.5 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Z' mass 2.9 TeV Z' mass 2.02 TeV W' mass 3.24 TeV W' mass 1.52 TeV W' mass 1.59 TeV W' mass 1.59 TeV W' mass 1.79 TeV W' mass 1.92 TeV W' mass 1.76 TeV	1405.4123 1502.07177 1407.7494 1406.4456 1409.6190 Preliminary 1410.4103 1408.0886 Preliminary
<u></u>	Cl qqll Cl uutt	$\begin{array}{llllllllllllllllllllllllllllllllllll$	 1 b, ≥ 1	_ j Yes	20.3 20.3	A 21.0 TeV $\eta_{LL} = -1$ A 21.6 TeV $\eta_{LL} = -1$ A 4.35 TeV $ C_{LL} = 1$	1407.2410 Preliminary
MQ	EFT D5 operator (Dirac) EFT D9 operator (Dirac)	0 e, μ 0 e, μ 1	$\geq 1 \text{ j} \\ \text{J}, \leq 1 \text{ j}$	Yes Yes	20.3 20.3	M. 974 GeV at 90% CL for m(χ) < 100 GeV M. 2.4 TeV at 90% CL for m(χ) < 100 GeV	1502.01518 1309.4017
ΓO	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ, 1 τ	≥ 2 j ≥ 2 j 1 b, 1 j		1.0 1.0 4.7	LO mass 660 GeV $\beta = 1$ LO mass 685 GeV $\beta = 1$ LO mass 534 GeV $\beta = 1$	1112.4828 1203.3172 1303.0526
Heavy	$ \begin{array}{c} \text{VLQ } TT \rightarrow Ht + X, Wb + X \\ \text{VLQ } TT \rightarrow Zt + X \\ \text{VLQ } BB \rightarrow Zb + X \\ \text{VLQ } BB \rightarrow Wt + X \\ \text{T}_{5/3} \rightarrow Wt \end{array} $	$\begin{array}{c c} 1 \ e,\mu & \geq \\ 2l \geq 3 \ e,\mu & \geq \\ 2l \geq 3 \ e,\mu & \geq \\ 1 \ e,\mu & \geq \\ 1 \ e,\mu & \geq \\ \end{array}$	$1 \text{ b,} \ge 3$ $\ge 2/\ge 1 \text{ b}$ $\ge 2/\ge 1 \text{ b}$ $1 \text{ b,} \ge 5$ $1 \text{ b,} \ge 5$	j Yes – j Yes j Yes	20.3 20.3 20.3 20.3 20.3	T mass 785 GeV isospin singlet T mass 735 GeV T in (T,B) doublet B mass 755 GeV B in (B,Y) doublet B mass 640 GeV isospin singlet T _{b/3} mass 840 GeV isospin singlet	ATLAS-CONF-2015-012 1409.5500 1409.5500 Preliminary Preliminary
Excited	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$ Excited lepton $v^* \rightarrow \ell W, vZ$	1 γ 1 or 2 e, μ 1 b 2 e, μ, 1 γ 3 e, μ, τ	1 j 2 j o, 2 j or 1 – –	_ jYes _	20.3 20.3 4.7 13.0 20.3	q' mass 3.5 TeV only u* and d*, A = m(q*) q' mass 4.09 TeV only u* and d*, A = m(q*) b' mass 870 GeV left-handed coupling t' mass 2.2 TeV A = 2.2 TeV v' mass 1.6 TeV A = 1.6 TeV	1309.3230 1407.1376 1301.1583 1308.1364 1411.2921
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$1 e, \mu, 1\gamma 2 e, \mu 2 e, \mu (SS) 3 e, \mu, \tau 1 e, \mu - \sqrt{s} = 71$	_ 2 j _ 1 b _ _ TeV	Yes Yes 	20.3 2.1 20.3 20.3 20.3 20.3 2.0 8 TeV	ar mass 960 GeV N° mass 1.5 TeV M ^{+±} mass 551 GeV H ^{±±} mass 551 GeV H ^{±±} mass 400 GeV spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 GeV monopole mass 862 GeV 10 ⁻¹ 1	1407.8150 1203.5420 1412.0237 1411.2921 1410.5404 Preliminary 1207.6411
						Mass scale [lev]	

*Only a selection of the available mass limits on new states or phenomena is shown.

ATLAS Preliminary

Searches for WIMP Dark Matter

- Models:
 - contact interactions between SM and DM particles EFT
 - simplified models with mediators (e.g. Z')
 - Higgs portal models weak interaction with SM particles except the Higgs boson
- Signatures: mono-jet + Etmiss

Search for Dilepton/ditop resonances

- Characterization of ATLAS high mass reach
 - strongly produced wide resonances: Kaluza-Klein gluons (g_{KK}) in extra-dimensional models
 - weakly produced narrow resonances: $Z' \rightarrow tt/II$
- With 3000/fb, can probe tt resonances up to 6.7 TeV, dilepton resonances up to 7.8 TeV

shown: dielectrons similar results obtained for dimuons

Search for Dijet resonances

- Benchmark processes: excited quarks q* and Quantum Black Holes (QBH)
 - the signals are expected to surpass the backgrounds by an order of magnitude
- Sensitivity scans show that approx. 1/fb of data is sufficient for 5σ discovery of q* up to 4 TeV and QBH up to 7 TeV

 $-\,$ at 3000/fb discover q* up to 7 TeV and QBH up to 10 TeV $\,$

ATL-PHYS-PUB-2015-004

Conclusions

- ATLAS had very fruitful Run 1, resulted in the Higgs boson discovery, measurements of some of its properties, and wide searched for new physics
- After the HL LHC upgrade and the matching ATLAS upgrade, the ATLAS detector will collect up to 3000 fb⁻¹ of data at higher CM energy, 14 TeV
- High luminosity upgrades will significantly increase achievable parameter measurement precision and enhance the BSM reach
- It will provide the HEP community an opportunity to shed light on the fundamental questions about Dark Matter candidates, hierarchy, and to significantly expand searches for new physics scenarios

Backup

Extension of ATLAS to large n

sFCal with improved

length in 3.1<η<4.9

segmentation and reduced pulse

Muon spectrometer extensions to 2.7<η<4.0

Extend ITK tracker to

2.5<η<4 + L0/L1 Track

All possibilities under study and

being considered piecewise for their performance benefit

Trigger

Recommendation on upgrade actions: document due at the end of April 2015 Segmented timing detectors in front of EMEC/FCAL in 2.5<η<4 (MBTS location) (~100µm;~10ps)

Higgs signal strengths

- Signal strength μ=σxBR/(σxBR)_{SM}
- Separation by production modes
 - Important for coupling measurements
- Projection assumptions:
 - 300/fb: μ=60, 3000/fb: μ=140
 - Used dedicated 14 TeV samples
- Systematics:
 - Same as Run 1
 - Large impact from theory uncertainties (shown by dashed areas), like QCD scale, PDFs

ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$

F. Rizatdinova (Oklahoma State U.)