ALICE results on ultra-peripheral p-Pb and Pb-Pb collisions

Jaroslav Adam
On behalf of the ALICE Collaboration

Faculty of Nuclear Sciences and Physical Engineering
Czech Technical University in Prague

April 27 - May 1, 2015

DIS 2015
XXIII. International Workshop on Deep-Inelastic Scattering and Related Subjects
Ultra-peripheral collisions (UPC)

- Impact parameter \(b \) is larger than sum of nuclear radii
- Hadronic interactions are suppressed, only interactions mediated by the strong electromagnetic field behaving as a flux of virtual photons possible
- Field intensity is proportional to \(Z^2 \)
- LHC is used as a photon collider
- Study of saturation phenomena and nuclear gluon shadowing in \(\gamma p \) and \(\gamma Pb \) interactions

ALICE results on p-Pb \(J/\psi \) photoproduction
- PRL 113 (2014) 232504

ALICE results on Pb-Pb \(J/\psi \) photoproduction
- Eur. Phys. J. C73, 2617 (2013) central rapidities, also \(\gamma\gamma \rightarrow l^+l^- \) cross section

ALICE results on Pb-Pb \(\rho^0 \) photoproduction
- arXiv:1503.09177 [nucl-ex], submitted to JHEP
Central detectors
- Tracking in ITS+TPC
- Acceptance $|\eta| < 0.9$
- Trigger from SPD and TOF

Muon spectrometer
- $-4.0 < \eta < -2.5$
- Tracking (MWPC), trigger (RPC)

- VZERO scintillator arrays: VZERO-C ($-3.7 < \eta < -1.7$) on the muon arm side and VZERO-A ($2.8 < \eta < 5.1$) opposite to the muon arm
- Zero Degree Calorimeters (ZDC): detection of very forward neutrons ($|\eta| > 8.8$) and protons ($6.5 < |\eta| < 7.5$ and $-9.7^\circ < \phi < 9.7^\circ$)
J/ψ in ultra-peripheral p-Pb collisions
J/ψ photoproduction on a proton target

- Photoproduction cross section is a probe to gluon distribution in the proton at low-x with scale q^2, allows to search for saturation effects
 \[
 \frac{d\sigma}{dt}(\gamma^* p \rightarrow J/\psi p)|_{t=0} \propto [xg(x, q^2)]^2
 \]

- Smaller x probed by higher photon-proton energy $W_{\gamma p}$
 \[
 x = (M_{J/\psi}/W_{\gamma p})^2
 \]

- Cross section of $\gamma p \rightarrow J/\psi p$ parametrized as power law of energy
 \[
 \sigma \propto W_{\gamma p}^\delta
 \]

- Empirical parametrization found at HERA (ep)

- Solutions of photon-proton cross section by LHCb (pp), power law had to be assumed due to ambiguity on photon source
ALICE measurement of J/ψ photoproduction on a proton target

- In p-Pb collisions the lead-ion is most likely (\sim95%) the photon source
- Power law proportionality, $\sigma \propto W_\gamma^\delta p$, implies more gluons at lower x
- Any change in gluon behavior starting at some $W_\gamma p$ may affect the proportionality law
- Energy $W_\gamma p$ is given by J/ψ rapidity y measured vs. direction of proton beam of energy E_p

$$W_\gamma^2 = 2E_pM_{J/\psi}e^{-y}$$

- LHC switched the direction of the beams: for the MUON spectrometer $y > 0$ ($y < 0$) in p-Pb (Pb-p), yielding lower (higher) $W_\gamma p$
- Energy range of HERA extended by factor of \sim2, important connection between HERA and future facilities like LHeC

arXiv:1211.4831 (LHeC Study Group)
Possible ALICE configurations for $J/\psi \rightarrow l^+l^-$ in UPC

- Analysis criteria: *just two tracks in an otherwise empty detector*
- J/ψ at low-p_T; different laboratory rapidity intervals

Forward
- Both tracks in muon arm
- J/ψ rapidity $2.5 < |y| < 4.0$ GeV
- $W_{\gamma p} \in [21, 45]$ GeV (p-Pb) and [577, 952] (Pb-p)

Mid-rapidity
- Both muons or electrons in central barrel
- J/ψ rapidity $|y| < 0.9$
- $W_{\gamma p} \in [100, 246]$ GeV (p-Pb and Pb-p)

Semi-forward
- One muon in muon arm, one in central barrel
- J/ψ rapidity $1.2 < |y| < 2.7$
- $W_{\gamma p} \in [41, 86]$ GeV (p-Pb) and [287, 549] (Pb-p)
Two unlike-sign tracks in the muon spectrometer, tracks quality selection

Activity in VZERO-C compatible with expected muons from beam-beam interaction

No activity in SPD, VZERO-A and ZDCs

Trigger inputs from VZEROs and muon trigger

Selection on dimuon rapidity for a specific $\langle W_{\gamma p} \rangle$
Invariant mass distribution of the forward dimuons

- Dimuons passing the selection criteria
- Fit by Crystal-Ball (J/ψ) and exponential function (dimuon continuum)
- Parameters of the fit compatible with MC simulations
- Events within the J/ψ mass peak are still a mixture of elastic or dissociative production of J/ψ or $\gamma\gamma \rightarrow \mu^+\mu^-$:
 - The processes have different shapes of p_T, allowing one to separate the number of exclusive events from all J/ψ candidates
Fit to the p_T distribution

- Extraction of signal of exclusive J/ψ in p-Pb
- p_T of selected dimuons with inv. mass around the mass of J/ψ
- Spectrum of p_T described by templates of the processes
 - Exclusive J/ψ in γp
 - Elastic $\gamma \gamma \rightarrow \mu^+ \mu^-$
 - Non-exclusive J/ψ and $\gamma \gamma \rightarrow \mu^+ \mu^-$

The shapes for exclusive J/ψ and $\gamma \gamma \rightarrow \mu^+ \mu^-$ were generated using STARLIGHT* and folded by detector simulation

Non-exclusive J/ψ and $\gamma \gamma \rightarrow \mu^+ \mu^-$ contribution estimated from data, special sample of events with increased energy deposition in VZERO or in ZDC in the direction of proton beam

Cross section of exclusive J/ψ photoproduction in the forward p-Pb

- Differential cross section $\frac{d\sigma}{dy}(p + Pb)$ is measured to get the cross section of $\gamma p \rightarrow J/\psi p$

$$\frac{d\sigma}{dy} = \frac{N_{J/\psi}^{exc}}{(A \times \varepsilon) \times BR \times \mathcal{L} \times \Delta y}$$

- $N_{J/\psi}^{exc}$ = yield of exclusive J/ψ
 - p-Pb: $N_{J/\psi}^{exc} = N_{J/\psi}/(1 + f_D)$, where $N_{J/\psi}$ was obtained using the p_T fit and f_D is feed-down from ψ'
 - Pb-p: $N_{J/\psi}^{exc}$ taken by event counting followed by subtraction of the $\gamma\gamma$, γPb and f_D components

- f_D: feed-down from ψ', estimated using STARLIGHT, based on ratio of efficiency of J/ψ from ψ' and efficiency of prompt J/ψ and corresponding cross sections and branching ratios. Numerical values are $f_D = 7.9^{+2.4}_{-1.9} \%$ (p-Pb) and $11^{+3.6}_{-2.8} \%$ (Pb-p)

- $A \times \varepsilon$ = detector acceptance and efficiency, calculated using MC
- $BR = $ branching ratio of $J/\psi \rightarrow \mu^+\mu^-$
- $\mathcal{L} = $ luminosity for a given UPC trigger
- $\Delta y = $ width of the rapidity bin
Relation of measured $\frac{d\sigma}{dy}(p + Pb)$ and photon-proton cross section

To get the cross section of $\gamma p \rightarrow J/\psi p$, we need to extract the photon-proton cross section $\sigma(\gamma+p)$ from the measured differential cross section $\frac{d\sigma}{dy}(p + Pb)$.

The cross sections are related via the photon spectrum $\frac{dN_\gamma}{dk}$ (distribution of photons carrying a momentum k)

$$\frac{d\sigma}{dy}(p+Pb \rightarrow p+Pb + J/\psi) = k \frac{dN_\gamma}{dk} \sigma(\gamma+p \rightarrow J/\psi+p)$$

The average photon flux has been calculated from STARLIGHT.

Procedure is based on Weizsäcker-Williams method and integration over impact parameter.

Corresponding energy $W_{\gamma p}$ given by rapidity of the J/ψ, the mean $\langle W_{\gamma p} \rangle$ for a given rapidity interval computed by weighting with photon flux and STARLIGHT cross section of $\gamma p \rightarrow J/\psi p$.
ALICE cross section of exclusive J/ψ photoproduction off protons

- A fit by power law $\sigma \propto W_{\gamma p}^{\delta}$ to the cross section as a function of energy $W_{\gamma p}$

<table>
<thead>
<tr>
<th></th>
<th>ZEUS</th>
<th>H1</th>
<th>ALICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>0.69 \pm 0.04</td>
<td>0.67 \pm 0.03</td>
<td>0.68 \pm 0.06</td>
</tr>
</tbody>
</table>

- Parameter of ALICE fit in agreement with HERA, errors are (stat + syst)
- Models based on VDM, standard pQCD (LO and NLO like) and including saturation describe ALICE data
- LHCb solutions consistent with the power-law fit obtained from ALICE results
J/ψ and $\psi(2S)$ in ultra-peripheral Pb-Pb collisions
Exclusive photoproduction of J/ψ on heavy-ion target probes the nuclear gluon distribution. Momentum fraction carried by probed gluons varies with y the rapidity of J/ψ:

$$x = \frac{M_{J/\psi}}{\sqrt{s_{NN}}} \exp(\pm y)$$

Ambiguity in x by $\pm y$: each nucleus can act as photon source or target. At first approximation the nuclear density would scale with number of nucleons:

$$G^A(x, q^2) = A \cdot g(x, q^2)$$

Coherent photon coupling to the nucleus leads to coherent photoproduction, coupling to a single nucleon described as incoherent photoproduction. Coherently produced J/ψ mesons characterized by very low p_T. Nuclear gluon shadowing: observed partial depletion of nuclear (w.r.t. nucleon) gluon density. Coherent production is sensitive to it.
Coherent J/ψ results in Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV

- **AB**: Adeluyi, Bertulani, PRC85 (2012) 044904
 LO pQCD scaled by an effective constant to correct for missing contributions. MSTW assumes no nuclear effects, the other incorporate nuclear effects according different nuclear PDFs

- **CSS**: Cisek, Szczurek, Schäfer, PRC86 (2012) 014905
 Color dipole model based on unintegrated gluon distribution of the proton

- **STARLIGHT**: Klein, Nystrand, PRC60 (1999) 014903
 VDM coupled to a Glauber approach and using Hera data to fix the γp cross section

- **GM**: Gonçalves, Machado, PRC84 (2011) 011902
 Color dipole model, where the dipole nucleon cross section is from the IIM saturation model

- **RSZ**: Rebyakova, Strikman, Zhalov, PLB 710 (2012) 252
 Based on LO pQCD amplitude for two gluon exchange where the gluon density incorporates shadowing computed in leading twist approximation

- **LM**: Lappi, Mäntysaari, PRC87 (2013) 032201
 color dipole model + saturation

Nuclear suppression in Pb at small x

Best agreement with the model which incorporates nuclear gluon shadowing according to the EPS09 parameterization (AB-EPS09)
Coherent \(\psi(2S) \) photoproduction in Pb-Pb

- First measurement of \(\psi(2S) \) coherent photoproduction
- Tagging via decays (mid-rapidity)
 - \(\psi(2S) \to l^+ l^- \)
 - \(\psi(2S) \to J/\psi \pi^+ \pi^- \) and \(J/\psi \to l^+ l^- \)
- Clean signal despite moderate statistics

\[
\psi(2S) \to l^+ l^-
\]

\[
\psi(2S) \to J/\psi \pi^+ \pi^-
\]
Cross section of coherent $\psi(2S)$ photoproduction in Pb-Pb

- Agreement with models that include nuclear gluon shadowing consistent with the EPS09 parameterization
- Ratio $\sigma(\psi(2S))/\sigma(J/\psi)$ convenient because many experimental systematic uncertainties cancel
- Possibility of different nuclear effects to the 1S and 2S charmonia states
ρ^0 photoproduction in ultra-peripheral Pb-Pb collisions
ρ^0 photoproduction in ultra-peripheral Pb-Pb collisions

- Light vector meson photoproduction provides a probe to soft interactions at high energies
- ALICE measurement of mid-rapidity decays $\rho^0 \rightarrow \pi^+ \pi^-$
- Pions and electrons separation by dE/dx in TPC
- Fit to the p_T distribution using coherent and incoherent templates, data narrower than MC (same observation by STAR at RHIC)

Invariant mass of $\pi^+ \pi^-$ pairs

Fit to the p_T distribution of ρ_0 candidates

Cross section of ρ^0 photoproduction in ultra-peripheral Pb-Pb collisions

- **GDL:** Glauber-Donnachie-Landshoff
 - Vector Meson Dominance Model in the Gribov-Glauber approach
 - $\sigma_{\rho N}$ using Donnachie-Landshoff model

- **GM:** Gonçalves, Machado
 - Based on the color dipole model in combination with saturation from a CGC-IIM model

- **STARLIGHT:** Klein, Nystrand
 - VDM coupled to a Glauber approach
 - HERA and fixed target data to fix the γp cross section

Prospects for Run 2

- Vector mesons in Run 1 Pb-Pb@2.76 TeV:

<table>
<thead>
<tr>
<th>Meson</th>
<th>Yield</th>
<th>\mathcal{L}_{int}</th>
<th>Error sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_0</td>
<td>$\sim 10^4$</td>
<td>0.26 μb$^{-1}$</td>
<td>stat error \ll sys err</td>
</tr>
<tr>
<td>J/ψ (mid-rapidity)</td>
<td>~ 500</td>
<td>23 μb$^{-1}$</td>
<td>stat error $< sys$ err</td>
</tr>
<tr>
<td>J/ψ (forward)</td>
<td>~ 100</td>
<td>55 μb$^{-1}$</td>
<td>stat error $> sys$ err</td>
</tr>
<tr>
<td>$\psi(2S)$</td>
<td>~ 50</td>
<td>23 μb$^{-1}$</td>
<td>stat error \gg sys err</td>
</tr>
</tbody>
</table>

- Run 2 assumptions:

<table>
<thead>
<tr>
<th>System</th>
<th>\sqrt{s}</th>
<th>\mathcal{L}_{int}</th>
<th>Increase factor in \mathcal{L}_{int}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb-Pb</td>
<td>5.1 TeV</td>
<td>1 nb$^{-1}$</td>
<td>~ 7</td>
</tr>
<tr>
<td>p-Pb</td>
<td>5.1 or 8 TeV</td>
<td>50 nb$^{-1}$</td>
<td>~ 2</td>
</tr>
</tbody>
</table>

- Precision measurements of J/ψ, study of Υ

- New forward scintillators
 - Two layers each, in coincidence
 - ADA: $5.5 < \eta < 7.5$
 - ADC: $-7.5 < \eta < -5.5$
 - Stronger veto to non-UPC events thanks to better coverage extending the range of existing VZEROs
Conclusions

- J/ψ photoproduction in p-Pb
 - No significant change in gluon density behavior going from HERA to LHC energy

- Coherent J/ψ in Pb-Pb
 - Models including nuclear gluon shadowing consistent with the EPS09 parametrization are favored

- Coherent $\psi(2S)$ in Pb-Pb
 - Models with no nuclear effects or with strong gluon shadowing disfavored

- ρ^0 photoproduction in Pb-Pb
 - Consistent with STARLIGHT and about a factor of 2 below the GDL Glauber calculation, similar to what was observed at lower energies by STAR

- Next LHC run
 - More luminosity
 - Higher CM energy of photon-target system
 - New forward detector for cleaner exclusive / coherent samples
 - Stay tuned!