Solving the NLO BK equation in coordinate space

T. Lappi

University of Jyväskylä, Finland

DIS 2015, Dallas, TX
This talk describes the results of the paper
“Direct numerical solution of the coordinate space
Balitsky-Kovchegov equation at next to leading order,”

Outline of the talk:
- NLO BK equation
- Numerical result: \(\ln r \) divergence
- Conformal dipole

Approach
Brute force solution of the coordinate space equation as it is
written down by Balitsky & Chirilli in
Motivation

Many ingredients available for NLO small-x calculation

- NLO BK equation
- NLO JIMWLK equation
- NLO γ^* impact factor for DIS
- NLO single inclusive cross section for forward pA

Want to start doing NLO phenomenology with these!

But first need to solve the equations and calculate the cross sections!
The equation

Equation

\[
\partial_y S(r) = \frac{\alpha_s N_C}{2\pi^2} K_1 \otimes [S(X)S(Y) - S(r)] + \frac{\alpha_s^2 N_F N_C}{8\pi^4} K_f \otimes S(Y)[S(X') - S(X)] \\
+ \frac{\alpha_s^2 N_C^2}{8\pi^4} K_2 \otimes [S(X)S(z - z') S(Y') - S(X)S(Y)]
\]

Notations & approximations

\[S(x - y) \equiv \langle \text{Tr} \, U^\dagger(x) U(y) \rangle\]

\[\otimes = \int d^2 z / \int d^2 z \, d^2 z'\]

- Large \(N_c\)
- Mean field:

\[\langle \text{Tr} \, U^\dagger U \, \text{Tr} \, U^\dagger U \rangle \rightarrow \langle \text{Tr} \, U^\dagger U \rangle \langle \text{Tr} \, U^\dagger U \rangle\]

Coordinates
Kernels

Expressions are frightening, the derivation even more.

\[K_1 = \frac{r^2}{X^2 Y^2} \left[1 + \frac{\alpha_s N_C}{4\pi} \left(\frac{\beta}{N_c} \ln r^2 \mu^2 - \frac{\beta}{N_c} \frac{X^2 - Y^2}{r^2} \ln \frac{X^2}{Y^2} \right. \right. \]
\[\left. \left. + \frac{67}{9} - \frac{\pi^2}{3} - \frac{10 N_F}{9 N_C} - \ln \frac{X^2}{r^2} \ln \frac{Y^2}{r^2} \right) \right] \]

\[K_2 = -\frac{2}{(Z - Z')^4} + \left[\frac{X^2 Y'^2 + X'^2 Y^2 - 4r^2(Z - Z')^2}{(Z - Z')^4(X^2 Y'^2 - X'^2 Y^2)} \right. \]
\[\left. + \frac{r^4}{X^2 Y'^2(X^2 Y'^2 - X'^2 Y^2)} + \frac{r^2}{X^2 Y'^2(Z - Z')^2} \right] \ln \frac{X^2 Y'^2}{X'^2 Y^2} \]

\[K_f = \frac{2}{(Z - Z')^4} - \frac{X'^2 Y^2 + Y'^2 X^2 - r^2(Z - Z')^2}{(Z - Z')^4(X^2 Y'^2 - X'^2 Y^2)} \ln \frac{X^2 Y'^2}{X'^2 Y^2} \]
Kernels

Expressions are frightening, the derivation even more.

\[K_1 = \frac{r^2}{X^2 Y^2} \left[1 + \frac{\alpha_s N_C}{4\pi} \left(\frac{\beta}{N_C} \ln r^2 \mu^2 - \frac{\beta}{N_C} \frac{X^2 - Y^2}{r^2} \ln \frac{X^2}{Y^2} \right)
+ \frac{67}{9} - \frac{\pi^2}{3} - \frac{10 N_F}{9 N_C} - \ln \frac{X^2}{r^2} \ln \frac{Y^2}{r^2} \right] \]

\[K_2 = -\frac{2}{(Z - Z')^4} + \left[\frac{X^2 Y'^2 + X'^2 Y^2 - 4r^2(Z - Z')^2}{(Z - Z')^4(X^2 Y'^2 - X'^2 Y^2)} \right.
\left. r^4 \frac{X^2 Y'^2}{X'^2 Y^2} + \frac{r^2}{X^2 Y'^2(Z - Z')^2} \right] \ln \frac{X^2 Y'^2}{X'^2 Y^2} \]

\[K_f = \frac{2}{(Z - Z')^4} - \frac{X'^2 Y^2 + Y'^2 X^2 - r^2(Z - Z')^2}{(Z - Z')^4(X^2 Y'^2 - X'^2 Y^2)} \ln \frac{X^2 Y'^2}{X'^2 Y^2} \]

- Leading order
Kernels

Expressions are frightening, the derivation even more.

\[
K_1 = \frac{r^2}{X^2 Y^2} \left[1 + \frac{\alpha_s N_C}{4\pi} \left(\frac{\beta}{N_C} \ln r^2 \mu^2 - \frac{\beta}{N_C} \frac{X^2 - Y^2}{r^2} \ln \frac{X^2}{Y^2} \right) \right.
\]

\[
\left. \quad + \frac{67}{9} - \frac{\pi^2}{3} - \frac{10}{9} \frac{N_F}{N_C} - \ln \frac{X^2}{r^2} \ln \frac{Y^2}{r^2} \right) \]

\[
K_2 = -\frac{2}{(Z - Z')^4} + \left[\frac{X^2 Y'^2 + X'^2 Y^2 - 4 r^2 (Z - Z')^2}{(Z - Z')^4 (X^2 Y'^2 - X'^2 Y^2)} \right.
\]

\[
\left. \quad + \frac{r^4}{X^2 Y'^2 (X^2 Y'^2 - X'^2 Y^2)} + \frac{r^2}{X^2 Y'^2 (Z - Z')^2} \right] \ln \frac{X^2 Y'^2}{X'^2 Y^2}
\]

\[
K_f = \frac{2}{(Z - Z')^4} - \frac{X'^2 Y^2 + Y'^2 X^2 - r^2 (Z - Z')^2}{(Z - Z')^4 (X^2 Y'^2 - X'^2 Y^2)} \ln \frac{X^2 Y'^2}{X'^2 Y^2}
\]

▶ Leading order
▶ Running coupling (Terms with \(\beta \) function coefficient)
Kernels

Expressions are frightening, the derivation even more.

\[K_1 = \frac{r^2}{X^2 Y^2} \left[1 + \frac{\alpha_s N_C}{4\pi} \left(\frac{\beta}{N_C} \ln r^2 \mu^2 - \frac{\beta}{N_C} \frac{X^2 - Y^2}{r^2} \ln \frac{X^2}{Y^2} \right)
+ \frac{67}{9} - \frac{\pi^2}{3} - \frac{10 N_F}{9 N_C} - \ln \frac{X^2}{r^2} \ln \frac{Y^2}{r^2} \right] \]

\[K_2 = -\frac{2}{(z - z')^4} + \left[\frac{X^2 Y'^2 + X'^2 Y^2 - 4r^2(z - z')^2}{(z - z')^4(X^2 Y'^2 - X'^2 Y^2)} \right.
+ \frac{r^4}{X^2 Y'^2(X^2 Y'^2 - X'^2 Y^2)} + \frac{r^2}{X^2 Y'^2(z - z')^2} \left] \ln \frac{X^2 Y'^2}{X'^2 Y^2} \right] \]

\[K_f = \frac{2}{(z - z')^4} - \frac{X'^2 Y^2 + Y'^2 X^2 - r^2(z - z')^2}{(z - z')^4(X^2 Y'^2 - X'^2 Y^2)} \ln \frac{X^2 Y'^2}{X'^2 Y^2} \]

▶ Leading order
▶ Running coupling (Terms with β function coefficient)
▶ Conformal logs \Rightarrow vanish for $r = 0 (X = Y \& X' = Y')$
Kernels

Expressions are frightening, the derivation even more.

\[K_1 = \frac{r^2}{X^2 Y^2} \left[1 + \frac{\alpha_s N_c}{4\pi} \left(\frac{\beta}{N_c} \ln r^2 \mu^2 - \frac{\beta}{N_c} \frac{X^2 - Y^2}{r^2} \ln \frac{X^2}{Y^2} \right) + \frac{67}{9} - \frac{\pi^2}{3} - \frac{10 N_F}{9 N_c} - \ln \frac{X^2}{r^2} \ln \frac{Y^2}{r^2} \right] \]

\[K_2 = -\frac{2}{(Z - Z')^4} + \left[\frac{X^2 Y'^2 + X'^2 Y^2 - 4r^2(Z - Z')^2}{(Z - Z')^4(X^2 Y'^2 - X'^2 Y^2)} \right. \]

\[+ \left. \frac{r^4}{X^2 Y'^2(X^2 Y'^2 - X'^2 Y^2)} + \frac{r^2}{X^2 Y'^2(Z - Z')^2} \right] \ln \frac{X^2 Y'^2}{X'^2 Y^2} \]

\[K_f = \frac{2}{(Z - Z')^4} - \frac{X'^2 Y^2 + Y'^2 X^2 - r^2(Z - Z')^2}{(Z - Z')^4(X^2 Y'^2 - X'^2 Y^2)} \ln \frac{X^2 Y'^2}{X'^2 Y^2} \]

▶ Leading order

▶ Running coupling (Terms with \(\beta \) function coefficient)

▶ Conformal logs \(\Rightarrow \) vanish for \(r = 0 \) (\(X = Y \) & \(X' = Y' \))

▶ Nonconformal double log \(\Rightarrow \) blows up for \(r = 0 \)
Running coupling

Absorb the β-terms into

- “Balitsky” running for LO term
- Parent dipole running for NLO terms

Now:

$$\frac{\alpha_s N_c}{2\pi^2} K_1 = \frac{\alpha_s(r) N_c}{2\pi^2} \left[\frac{r^2}{X^2 Y^2} + \frac{1}{X^2} \left(\frac{\alpha_s(X)}{\alpha_s(Y)} - 1 \right) + \frac{1}{Y^2} \left(\frac{\alpha_s(Y)}{\alpha_s(X)} - 1 \right) \right]$$

$$+ \frac{\alpha_s(r)^2 N_c^2}{8\pi^3} \frac{r^2}{X^2 Y^2} \left[\frac{67}{9} - \frac{\pi^2}{3} - \frac{10 N_F}{9 N_c} - 2 \ln \frac{X^2}{r^2} \ln \frac{Y^2}{r^2} \right]$$
Initial condition

\[N(r) \equiv 1 - S(r) = 1 - \exp \left[-\frac{(r^2 Q_{s0}^2)^\gamma}{4} \ln \left(\frac{1}{r \Lambda_{QCD}} + e \right) \right], \]

2 tunable parameters

- \(\frac{Q_{s0}}{\Lambda_{QCD}} \) \(\implies \) basically determines value of \(\alpha_s \)
- \(\gamma \): anomalous dimension: shape
 - LO phenomenology prefers \(\gamma \gtrsim 1 \)
 - This eventually evolves into \(\gamma \sim 0.8 \) (running \(\alpha_s \))
Evolution speed at initial condition

\[\ln r \] divergence

\[\gamma = 1 \] (MV model)

- Small \(Q_s/\Lambda_{QCD} \)
 \[\implies \] large \(\alpha_s \)
 NLO corrections big, amplitude decreases at all \(r \)

- For smaller \(\alpha_s \) region around \(r \sim 1/Q_s \) is ok.

- For small dipoles
 \[\partial_y N/N \sim \ln r \]
$N < 0$ as a practical problem

LO equation

$$\partial_y S(r) = \frac{\alpha_s N_c}{2\pi^2} \int_z \frac{r^2}{X^2 Y^2} [N(X) + N(Y) - N(r) - N(X)N(Y)]$$

Consider a small but finite Δy (as in a numerical solution)

A diverging $\partial_y N/N$ makes $N < 0$ in one rapidity step

Convergence of the z-integral on the r.h.s. of the (LO!) BK equation requires $N(r) \to 0$ for $r \to 0$ (Limit $X \to 0$, $Y \to r$ in integral)

\implies If $N < 0$ for $r \to 0$:

- The equation blows up mathematically
- Solution is inconsistent with the definition

$$N(x_T - y_T) = 1 - \frac{1}{N_c} \text{Tr} \ U(x_T)^\dagger U(y_T)$$

In the numerics, we enforce $N(r) \geq 0$ by hand.
In r behavior caused by the nonconformal double log term
Changing the initial condition

Decrease γ

$\gamma = 0.8$
- Initially looks ok, if α_s small enough
- But γ gradually increases, blows up by $\gamma \gtrsim 20$

$\gamma = 0.6$
- Requires α_s small enough
- Solution behaves ok at least up to $y = 30$
Interpreting the $\partial_y N/N$ plot

- **LO**: roughly $N(r) \sim (Q_s r)^{2\gamma}$ & $Q_s^2 \sim e^{\lambda y}$
 \[\Rightarrow \partial_y N/N \approx 2\gamma \lambda > 0 \]

- If $\partial_y N/N \to -c < 0$ for $r \to 0$,
 \[\Rightarrow N \sim e^{-cy} \quad \Rightarrow \text{still ok} \]
 (But why would $N(y)$ decrease with y?)

Parametrizing $N(r) \sim (Q_s r)^{2\gamma(y)}$ \[\partial_y N/N \sim c \ln r \quad \Rightarrow \gamma(y) \sim y \]
\[\Rightarrow \text{front gets steeper} \quad \Rightarrow \text{eventually } N(r) \sim \theta(r - 1/Q_s) \]
(This is assuming $c = \text{const}$, but in numerics c grows \Rightarrow divergence worse)

Plot $\gamma(r) \equiv d \ln N(r)/d \ln r^2$:

\[\begin{align*}
\text{LO} & \quad 0.0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0 \quad 1.2 \quad 1.4 \\
\gamma = 0.6 & \quad \gamma = 0.8 & \quad \gamma = 1.0 \\
Q_{s,0}/\Lambda_{\text{QCD}} = 19 & \quad Q_{s,0}/\Lambda_{\text{QCD}} = 19 & \quad Q_{s,0}/\Lambda_{\text{QCD}} = 19
\end{align*} \]

$y = 1$ \quad $y = 5$ \quad $y = 30$
Conformal composite dipole

Proposal by Balitsky & Chirilli,

absorb logarithm into redefinition of dipole operator:

\[
S(r)^{\text{conf}} = S(r) - \frac{\alpha_s N_c}{4\pi^2} \int d^2 z \frac{r^2}{X^2 Y^2} \ln \frac{ar^2}{X^2 Y^2} [S(X)S(Y) - S(r)].
\]

- \(\alpha \): dimensionful constant, cancels out in the end
- Double log \(\ln \frac{X^2}{r^2} \ln \frac{Y^2}{r^2} \) drops out from \(K_1 \)
- New term \(\frac{2r^2}{X^2 Y^2 (z-z')^2} \ln \frac{r^2(z-z')^2}{X'^2 Y'^2} \) appears in kernel \(K_2 \)
Evolution speed at $y = 0$: conformal dipole

$\gamma = 1$ (MV model)

- $r \sim 1/Q_s$ ok, even for large α_s
- For small dipoles $\partial_y N/N \sim \ln r$ still

As expected: reason is new $\ln r$ term:

$\gamma < 1$ similar as for original equation.
Conclusions

- NLO corrections mostly negative: slow down evolution
 - This is good for phenomenology
- Divergence \(\sim \ln r \) for small \(r \) problematic
 - Makes solving the equation for \(\gamma \sim 1 \) impossible
 - Problem at small \(r \) \(\implies \) presumably related to large \(Q^2 \) logs
 \(\implies \) resummation needed?
Changing the initial condition

Decrease γ

$Q_{s,0}/\Lambda_{QCD} = 19$

$\gamma = 0.8$

$\gamma = 0.6$
Evolving instability for $\gamma = 0.8$

$y = 0$

$y = 5$
Changing the initial condition: conformal dipole
Decrease γ

$\gamma = 0.8$
- Kind of ok $y \gtrsim 20$

$\gamma = 0.6$
- Small r ok, large r starts to be erratic