Solving the NLO BK equation in coordinate space

T. Lappi

University of Jyväskylä, Finland

DIS 2015, Dallas, TX

1/15 《 ロ > 《 문 > 《 문 > 《 문 > 문 법 도 ' 이 < @

Outline

This talk describes the results of the paper "Direct numerical solution of the coordinate space Balitsky-Kovchegov equation at next to leading order," T. L., **H. Mäntysaari**, Phys. Rev. D **91** (2015) 7, 074016, [arXiv:1502.02400 [hep-ph]]

Outline of the talk:

- NLO BK equation
- Numerical result: In r divergence
- Conformal dipole

Approach

Brute force solution of the coordinate space equation as it is written down by Balitsky & Chirilli in

Phys. Rev. D 77 (2008) 014019, [arXiv:0710.4330 [hep-ph]].

Motivation

Many ingredients available for NLO small-x calculation

- NLO BK equation
- NLO JIMWLK equation
- NLO γ^* impact factor for DIS
- NLO single inclusive cross section for forward pA

Want to start doing NLO phenomenology with these! But first need to solve the equations and calculate the cross sections!

The equation

Equation

$$\partial_{Y}S(r) = \frac{\alpha_{s}N_{c}}{2\pi^{2}}K_{1}\otimes[S(X)S(Y)-S(r)] + \frac{\alpha_{s}^{2}N_{F}N_{c}}{8\pi^{4}}K_{f}\otimes S(Y)[S(X')-S(X)] + \frac{\alpha_{s}^{2}N_{c}^{2}}{8\pi^{4}}K_{2}\otimes[S(X)S(z-z')S(Y')-S(X)S(Y)]$$

Notations & approximations $S(x - y) \equiv \langle \operatorname{Tr} U^{\dagger}(x)U(y) \rangle$ $\otimes = \int d^{2}z / \int d^{2}z d^{2}z'$

- Large N_c
- Mean field:

 $\langle \operatorname{Tr} U^{\dagger} U \operatorname{Tr} U^{\dagger} U \rangle \rightarrow \langle \operatorname{Tr} U^{\dagger} U \rangle \langle \operatorname{Tr} U^{\dagger} U \rangle$

· ロ > ・ A 目 > ・ A 目 > ・ A 目 > ・ A 目 > ・ A 目 >

4/15

Expressions are frightening, the derivation even more.

$$\begin{split} \mathcal{K}_{1} &= \frac{r^{2}}{X^{2}Y^{2}} \left[1 + \frac{\alpha_{s}N_{c}}{4\pi} \left(\frac{\beta}{N_{c}} \ln r^{2}\mu^{2} - \frac{\beta}{N_{c}} \frac{X^{2} - Y^{2}}{r^{2}} \ln \frac{X^{2}}{Y^{2}} \right. \\ &+ \frac{67}{9} - \frac{\pi^{2}}{3} - \frac{10}{9} \frac{N_{F}}{N_{c}} - \ln \frac{X^{2}}{r^{2}} \ln \frac{Y^{2}}{r^{2}} \right) \right] \\ \mathcal{K}_{2} &= -\frac{2}{(z - z')^{4}} + \left[\frac{X^{2}Y'^{2} + X'^{2}Y^{2} - 4r^{2}(z - z')^{2}}{(z - z')^{4}(X^{2}Y'^{2} - X'^{2}Y^{2})} \right. \\ &+ \frac{r^{4}}{X^{2}Y'^{2}(X^{2}Y'^{2} - X'^{2}Y^{2})} + \frac{r^{2}}{X^{2}Y'^{2}(z - z')^{2}} \right] \ln \frac{X^{2}Y'^{2}}{X'^{2}Y^{2}} \\ \mathcal{K}_{f} &= \frac{2}{(z - z')^{4}} - \frac{X'^{2}Y^{2} + Y'^{2}X^{2} - r^{2}(z - z')^{2}}{(z - z')^{4}(X^{2}Y'^{2} - X'^{2}Y^{2})} \ln \frac{X^{2}Y'^{2}}{X'^{2}Y^{2}} \end{split}$$

5/15 《 다 》 《 쿱 》 《 클 》 《 클 》 옷 클 놀 《 클 》 의 (오

Expressions are frightening, the derivation even more.

$$\begin{split} \mathcal{K}_{1} &= \frac{r^{2}}{X^{2}Y^{2}} \left[1 + \frac{\alpha_{s}N_{c}}{4\pi} \left(\frac{\beta}{N_{c}} \ln r^{2}\mu^{2} - \frac{\beta}{N_{c}} \frac{X^{2} - Y^{2}}{r^{2}} \ln \frac{X^{2}}{Y^{2}} \right. \\ &+ \frac{67}{9} - \frac{\pi^{2}}{3} - \frac{10}{9} \frac{N_{F}}{N_{c}} - \ln \frac{X^{2}}{r^{2}} \ln \frac{Y^{2}}{r^{2}} \right) \right] \\ \mathcal{K}_{2} &= -\frac{2}{(z - z')^{4}} + \left[\frac{X^{2}Y'^{2} + X'^{2}Y^{2} - 4r^{2}(z - z')^{2}}{(z - z')^{4}(X^{2}Y'^{2} - X'^{2}Y^{2})} \right. \\ &+ \frac{r^{4}}{X^{2}Y'^{2}(X^{2}Y'^{2} - X'^{2}Y^{2})} + \frac{r^{2}}{X^{2}Y'^{2}(z - z')^{2}} \right] \ln \frac{X^{2}Y'^{2}}{X'^{2}Y^{2}} \\ \mathcal{K}_{f} &= \frac{2}{(z - z')^{4}} - \frac{X'^{2}Y^{2} + Y'^{2}X^{2} - r^{2}(z - z')^{2}}{(z - z')^{4}(X^{2}Y'^{2} - X'^{2}Y^{2})} \ln \frac{X^{2}Y'^{2}}{X'^{2}Y^{2}} \end{split}$$

Leading order

Expressions are frightening, the derivation even more.

$$\begin{split} \mathcal{K}_{1} &= \frac{r^{2}}{X^{2}Y^{2}} \bigg[1 + \frac{\alpha_{s}N_{c}}{4\pi} \bigg(\frac{\beta}{N_{c}} \ln r^{2}\mu^{2} - \frac{\beta}{N_{c}} \frac{X^{2} - Y^{2}}{r^{2}} \ln \frac{X^{2}}{Y^{2}} \\ &+ \frac{67}{9} - \frac{\pi^{2}}{3} - \frac{10}{9} \frac{N_{F}}{N_{c}} - \ln \frac{X^{2}}{r^{2}} \ln \frac{Y^{2}}{r^{2}} \bigg) \bigg] \\ \mathcal{K}_{2} &= -\frac{2}{(z - z')^{4}} + \bigg[\frac{X^{2}Y'^{2} + X'^{2}Y^{2} - 4r^{2}(z - z')^{2}}{(z - z')^{4}(X^{2}Y'^{2} - X'^{2}Y^{2})} \\ &+ \frac{r^{4}}{X^{2}Y'^{2}(X^{2}Y'^{2} - X'^{2}Y^{2})} + \frac{r^{2}}{X^{2}Y'^{2}(z - z')^{2}} \bigg] \ln \frac{X^{2}Y'^{2}}{X'^{2}Y^{2}} \\ \mathcal{K}_{f} &= \frac{2}{(z - z')^{4}} - \frac{X'^{2}Y^{2} + Y'^{2}X^{2} - r^{2}(z - z')^{2}}{(z - z')^{4}(X^{2}Y'^{2} - X'^{2}Y^{2})} \ln \frac{X^{2}Y'^{2}}{X'^{2}Y^{2}} \end{split}$$

Leading order

• Running coupling (Terms with β function coefficient)

Expressions are frightening, the derivation even more.

$$\begin{split} \mathcal{K}_{1} &= \frac{r^{2}}{X^{2}Y^{2}} \bigg[1 + \frac{\alpha_{s}N_{c}}{4\pi} \bigg(\frac{\beta}{N_{c}} \ln r^{2}\mu^{2} - \frac{\beta}{N_{c}} \frac{X^{2} - Y^{2}}{r^{2}} \ln \frac{X^{2}}{Y^{2}} \\ &+ \frac{67}{9} - \frac{\pi^{2}}{3} - \frac{10}{9} \frac{N_{F}}{N_{c}} - \ln \frac{X^{2}}{r^{2}} \ln \frac{Y^{2}}{r^{2}} \bigg) \bigg] \\ \mathcal{K}_{2} &= -\frac{2}{(z - z')^{4}} + \bigg[\frac{X^{2}Y'^{2} + X'^{2}Y^{2} - 4r^{2}(z - z')^{2}}{(z - z')^{4}(X^{2}Y'^{2} - X'^{2}Y^{2})} \\ &+ \frac{r^{4}}{X^{2}Y'^{2}(X^{2}Y'^{2} - X'^{2}Y^{2})} + \frac{r^{2}}{X^{2}Y'^{2}(z - z')^{2}} \bigg] \ln \frac{X^{2}Y'^{2}}{X'^{2}Y^{2}} \\ \mathcal{K}_{f} &= \frac{2}{(z - z')^{4}} - \frac{X'^{2}Y^{2} + Y'^{2}X^{2} - r^{2}(z - z')^{2}}{(z - z')^{4}(X^{2}Y'^{2} - X'^{2}Y^{2})} \ln \frac{X^{2}Y'^{2}}{X'^{2}Y^{2}} \end{split}$$

Leading order

- Running coupling (Terms with β function coefficient)
- Conformal logs \implies vanish for r = 0 (X = Y & X' = Y')

Expressions are frightening, the derivation even more.

$$\begin{split} \mathcal{K}_{1} &= \frac{r^{2}}{X^{2}Y^{2}} \bigg[1 + \frac{\alpha_{s}N_{c}}{4\pi} \bigg(\frac{\beta}{N_{c}} \ln r^{2}\mu^{2} - \frac{\beta}{N_{c}} \frac{X^{2} - Y^{2}}{r^{2}} \ln \frac{X^{2}}{Y^{2}} \\ &+ \frac{67}{9} - \frac{\pi^{2}}{3} - \frac{10}{9} \frac{N_{F}}{N_{c}} - \ln \frac{X^{2}}{r^{2}} \ln \frac{Y^{2}}{r^{2}} \bigg) \bigg] \\ \mathcal{K}_{2} &= -\frac{2}{(z - z')^{4}} + \bigg[\frac{X^{2}Y'^{2} + X'^{2}Y^{2} - 4r^{2}(z - z')^{2}}{(z - z')^{4}(X^{2}Y'^{2} - X'^{2}Y^{2})} \\ &+ \frac{r^{4}}{X^{2}Y'^{2}(X^{2}Y'^{2} - X'^{2}Y^{2})} + \frac{r^{2}}{X^{2}Y'^{2}(z - z')^{2}} \bigg] \ln \frac{X^{2}Y'^{2}}{X'^{2}Y^{2}} \\ \mathcal{K}_{f} &= \frac{2}{(z - z')^{4}} - \frac{X'^{2}Y^{2} + Y'^{2}X^{2} - r^{2}(z - z')^{2}}{(z - z')^{4}(X^{2}Y'^{2} - X'^{2}Y^{2})} \ln \frac{X^{2}Y'^{2}}{X'^{2}Y^{2}} \end{split}$$

- Leading order
- Running coupling (Terms with β function coefficient)
- Conformal logs \implies vanish for r = 0 ($X = Y \otimes X' = Y'$)
- ▶ Nonconformal double log \implies blows up for r = 0 5/15

Running coupling

Absorb the β -terms into

- "Balitsky" running for LO term
- Parent dipole running for NLO terms Now:

$$\frac{\alpha_{\rm s}N_{\rm c}}{2\pi^2}K_1 = \frac{\alpha_{\rm s}(r)N_{\rm c}}{2\pi^2} \left[\frac{r^2}{X^2Y^2} + \frac{1}{X^2}\left(\frac{\alpha_{\rm s}(X)}{\alpha_{\rm s}(Y)} - 1\right) + \frac{1}{Y^2}\left(\frac{\alpha_{\rm s}(Y)}{\alpha_{\rm s}(X)} - 1\right)\right] \\ + \frac{\alpha_{\rm s}(r)^2N_{\rm c}^2}{8\pi^3}\frac{r^2}{X^2Y^2}\left[\frac{67}{9} - \frac{\pi^2}{3} - \frac{10}{9}\frac{N_{\rm F}}{N_{\rm c}} - 2\ln\frac{X^2}{r^2}\ln\frac{Y^2}{r^2}\right]$$

6/15 아오만 리트 〈문〉〈토〉〈문〉 · (15

Initial condition

$$N(r) \equiv 1 - S(r) = 1 - \exp\left[-\frac{(r^2 Q_{s0}^2)^{\gamma}}{4} \ln\left(\frac{1}{r \Lambda_{QCD}} + e\right)\right],$$

2 tunable parameters

- $\frac{Q_{s0}}{\Lambda_{QCD}} \implies$ basically determines value of α_s
- > γ : anomalous dimension: shape
 - LO phenomenology prefers $\gamma \gtrsim 1$
 - This eventually evolves into $\gamma \sim$ 0.8 (running $\alpha_{\rm s}$)

Evolution speed at initial condition

In r divergence

 $\gamma = 1$ (MV model)

- Small Q_s/A_{QCD} ⇒ large α_s NLO corrections big, amplitude decreases at all r
- For smaller α_s region around r ~ 1/Q_s is ok.
- For small dipoles $\partial_y N/N \sim \ln r$

N < 0 as a practical problem

LO equation

$$\partial_{Y}S(r) = \frac{\alpha_{s}N_{c}}{2\pi^{2}}\int_{z}\frac{r^{2}}{X^{2}Y^{2}}[N(X) + N(Y) - N(r) - N(X)N(Y)]$$

Consider a small but finite dy (as in a numerical solution) A diverging $\partial_y N/N$ makes N < 0 in one rapidity step Convergence of the z-integral on the r.h.s. of the (LO!) BK equation requires $N(r) \rightarrow 0$ for $r \rightarrow 0$ (Limit $X \rightarrow 0, Y \rightarrow r$ in integral)

 \implies If N < 0 for $r \rightarrow 0$:

- The equation blows up mathematically
- Solution is inconsistent with the definition $N(\mathbf{x}_T \mathbf{y}_T) = 1 \frac{1}{N_c} \operatorname{Tr} U^{\dagger}(\mathbf{x}_T) U(\mathbf{y}_T)$

In the numerics, we enforce $N(r) \ge 0$ by hand.

Origin of the negativity

In r behavior caused by the nonconformal double log term

Changing the initial condition

Decrease γ

0.25 $Q_{s,0}/\Lambda_{OCD} = 4$ $Q_{s,0}/\Lambda_{OCD} = 19$ 0.20 $Q_{s,0}/\Lambda_{OCD} = 13$ $Q_{s,0}/\Lambda_{OCD} = 26$ 0.15 $\partial_y N)/N$ 0.100.050.00-0.05-0.10 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10 $r\Lambda_{QCD}$

 $\gamma = 0.8$

- Initally looks ok, if α_s small enough
- But γ gradually increases, blows up by $y \gtrsim 20$

 $\gamma = 0.6$

- Requires α_s small enough
- Solution behaves ok at least up to y = 30

Interpreting the $\partial_y N/N$ plot

Parametrizing $N(r) \sim (Q_s r)^{2\gamma(y)} \quad \partial_y N/N \sim c \ln r \implies \gamma(y) \sim y$ \implies front gets steeper \implies eventually $N(r) \sim \theta(r - 1/Q_s)$ (This is assuming c = const, but in numerics c grows \implies divergence worse)

Plot $\gamma(r) \equiv d \ln N(r) / d \ln r^2$:

Conformal composite dipole

Proposal by Balitsky & Chirilli,

Nucl. Phys. B 822 (2009) 45 [arXiv:0903.5326 [hep-ph]] : absorb logarithm into redefinition of dipole operator:

$$S(r)^{\text{conf}} = S(r) - \frac{\alpha_{\text{s}}N_{\text{c}}}{4\pi^2} \int d^2 z \frac{r^2}{\chi^2 \gamma^2} \ln \frac{\alpha r^2}{\chi^2 \gamma^2} [S(X)S(Y) - S(r)].$$

- a: dimensionful constant, cancels out in the end
- Double log $\ln \frac{\chi^2}{r^2} \ln \frac{\gamma^2}{r^2}$ drops out from K_1
- New term $\frac{2r^2}{X^2Y'^2(z-z')^2} \ln \frac{r^2(z-z')^2}{X'^2Y^2}$ appears in kernel K_2

Evolution speed at y = 0: conformal dipole

 $\gamma = 1$ (MV model)

- r ~ 1/Q_s ok, even for large α_s
- ► For small dipoles ∂_yN/N ~ ln r still

As expected: reason is new In *r* term:

 $\gamma < 1$ similar as for original equation.

14/15 《 다 > 《 큔 > 《 큰 > 《 큰 > - 콘 | = · · 이 Q @

Conclusions

- NLO corrections mostly negative: slow down evolution
 - This is good for phenomenology
- Divergence $\sim \ln r$ for small r problematic
 - Makes solving the equation for $\gamma \sim 1$ impossible
 - ▶ Problem at small $r \implies$ presumably related to large Q^2 logs \implies resummation needed?

Changing the initial condition

Decrease γ

Evolving instability for $\gamma = 0.8$

Changing the initial condition: conformal dipole

Decrease γ

3/3