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Motivation
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RAA(pt) =
1

hTAAi
· dNAA/dpt
d�pp/dpt

 Goal:

arXiv:1205.6443 [hep-ex]

 Heavy quarks sensitive to nuclear medium - used @ ALICE to study the suppression factor    
   in PbPb collisions

 For isolation of nuclear medium effects - understanding of pp baseline needed



2. GM-VFNS, FONLL, POWEHG methods

4



GM-VFNS
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 Main goal
 Construct single inclusive cross-section valid in a wide pT range
 Combine the massive calculation valid for small pT with massless calculation valid for large pT 

• GM-VFNS → ZM-VFNS for pT >> m
(this is the case by construction)

• GM-VFNS → FFNS for pT ~ m
(formally this can be shown; numerically 
problematic in the S-ACOT scheme)



GM-VFNS
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 List of subprocessesLIST OF SUBPROCESSES: GM-VFNS

Only light lines
1 gg → qX
2 gg → gX
3 qg → gX
4 qg → qX
5 qq̄ → gX
6 qq̄ → qX
7 qg → q̄X
8 qg → q̄′X
9 qg → q′X
10 qq → gX
11 qq → qX
12 qq̄ → q′X
13 qq̄′ → gX
14 qq̄′ → qX
15 qq′ → gX
16 qq′ → qX

Heavy quark initiated (mQ = 0)
1 -
2 -
3 Qg → gX
4 Qg → QX
5 QQ̄ → gX
6 QQ̄ → QX
7 Qg → Q̄X
8 Qg → q̄X
9 Qg → qX
10 QQ → gX
11 QQ → QX
12 QQ̄ → qX
13 Qq̄ → gX , qQ̄ → gX
14 Qq̄ → QX , qQ̄ → qX
15 Qq → gX , qQ → gX
16 Qq → QX , qQ → qX

Mass effects: mQ "= 0
1 gg → QX
2 -
3 -
4 -
5 -
6 -
7 -
8 qg → Q̄X
9 qg → QX
10 -
11 -
12 qq̄ → QX
13 -
14 -
15 -
16 -

⊕ charge conjugated processes

[1] Aversa, Chiappetta, Greco, Guillet, NPB327(1989)105

I. Schienbein (LPSC Grenoble) D and B production in the GM-VFNS July 11–15, 2011 27 / 58

hep-ph/0502194



GM-VFNS
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 Fragmentation functions
FFS INTO B MESONS [1] FROM LEP1/SLC DATA [2]

Petersen Kartvelishvili-Likhoded

D(x , µ2
0) = N x(1− x)2
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[1] Kniehl,Kramer,IS,Spiesberger,PRD77(2008)014011
[2] ALEPH, PLB512(2001)30; OPAL, EPJC29(2003)463; SLD, PRL84(2000)4300;
PRD65(2002)092006

I. Schienbein (LPSC Grenoble) D and B production in the GM-VFNS July 11–15, 2011 38 / 58

 Fragmentation approach in GM-VFNS - treat heavy quark fragmentation as any other FF

 Scale dependent FF determined from a fit to LEP data

FF ansatz for charmed mesons

Dh(z, µ
2
0) = Nz�(1+�2)(1� z)ae��2/z

Dh(z, µ
2
0) = Nz↵(1� z)�

FF ansatz for B-mesons

arXiv:0705.4392 [hep-ph]

arXiv:0712.0481 [hep-ph]



FONLL
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�FONLL = �FO +
�
�RS � �FOm0

�
⇥G(m, pT )

 FONLL approach to combination of massive & massless
 Master formula

fixed order massive calculation
with 4 massless quarks resummed massless result 

with massless HQ  

massless limit of the 
massive result

G(m, pT ) =
p2T

p2T + a2m2

 Suppression factor to regulate a divergence in         for small  �RS pT

 Small modification to fixed-order result so that PDFs and strong coupling constant 
   with nf = 5 can be used

�↵s
2TF

3⇡
log

µ2

m2
�(0)
qq̄ �↵s

2TF

3⇡
log

µ2

µ2
f

�(0)
gg

Add to
    - channelqq̄

Add to
    - channelgg

hep-ph/9803400
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FONLL
 FONLL approach to combination of massive & massless

DH
i (z, µ0

F ) = DQ
i (z, µ

0
F )⌦DH

Q (z)

 Fragmentation approach in FONLL

perturbative FF satisfying
DGLAP evolution in the scale non-perturbative part describes 

hadronisation of heavy quark into 
heavy hadron (fitted from LEP data)

DN ⌘
Z

DH
Q (z) zN

dz

z

assessed clearly and unambiguously.
In Ref. [10] the CDF Collaboration compares its data

to a theoretical prediction obtained by convoluting the
NLO cross section for bottom quarks with a Peterson
fragmentation function. They use ε = 0.006 ± 0.002,
which is the traditional value proposed in Ref. [20]. They
claim that their data is a factor of 2.9 higher than the
QCD calculation.

The purpose of this Letter is precisely to implement
correctly the effect of heavy quark fragmentation in the
QCD calculation. Several ingredients are necessary in
order to do this:

• A calculation with resummation of large transverse
momentum logarithms at the next-to-leading level
(NLL) should be used for heavy quark production
[21], in order to correctly account for scaling viola-
tion in the fragmentation function.

• A formalism for merging the NLL resummed results
with the NLO fixed order calculation (FO) should
be used, in order to account properly for mass ef-
fects [22]. This calculation will be called FONLL
in the following.

• A NLL formalism should be used to extract the
non-perturbative fragmentation effects from e+e−

data [23–29].

We begin by pointing out that, as shown in Refs. [27,28],
the value ε = 0.006 is appropriate only when a leading-log
(LL) calculation of the spectrum is used, as is the case in
shower Monte Carlo programs. When NLL calculations
are used, smaller values of ε are needed to fit the data.
It must further be pointed out that, as noted in [30,31],
it is not the detailed knowledge of the whole spectrum
of D(z) in z ∈ [0, 1] to be relevant for the calculation of
hadronic cross sections. For the steeply falling differen-
tial distributions dσ/dpT, that have usually a power law
behaviour, the knowledge of some specific moment of the
fragmentation function

DN ≡

∫

D(z)zN dz

z
(2)

is sufficient to obtain the hadronic cross section. In fact,
assuming that dσ̂/dp̂T = Ap̂−n

T
in the neighborhood of

some p̂T value, one immediately finds

dσ

dpT

=

∫

dzdp̂T D(z)
A

p̂n
T

δ(pT − zp̂T) =
A

pn
T

Dn . (3)

Thus, the hadronic cross section is given by the product
of the partonic cross section times the nth moment of the
fragmentation function, where n is the power behaviour
of the cross section in the neighborhood of the value of pT

being considered. In Ref. [31] it is also shown that this
is an excellent approximation to the exact integral in the
cases of interest. The value of n for the pT spectrum in

the region of interest ranges from 3 to 5. It is therefore
clear that, when fitting e+e− data, getting a good deter-
mination of the moments of the non-perturbative frag-
mentation function between 3 and 5 is more important
than attempting to describe the whole z spectrum.

FIG. 1. Moments of the measured B meson fragmentation
function, compared with the perturbative NLL calculation
supplemented with different D(z) non-perturbative fragmen-
tation forms. The solid line is obtained using a one-parameter
form fitted to the second moment.

Fig. 1 shows the moments calculated from the xE (the
B meson energy fraction with respect to the beam en-
ergy) distribution data for weakly decaying B mesons
in e+e− collisions published by the ALEPH Collabora-
tion [32]. The experimental error bars shown in the plot
have been evaluated by taking into account the full bin-
to-bin correlation matrix [33]. Four curves are superim-
posed to the data. All of them have been obtained with
an underlying NLL perturbative description [23,29]. The
bottom quark mass m has been taken equal to 4.75 GeV
and the QCD scale has been fixed to Λ(5) = 0.226 GeV.
Sudakov resummation has not been included, since its
effect is negligible in the low-moment region [29]. These
are the default values of the parameters that we shall use
in this work for the computation of the hadronic cross
section.

The dot-dashed line represents the purely perturbative
part. The dashed line represents the convolution of the
perturbative part described above with a Peterson form
with ε = 0.006. It is evident that this produces a poor
description of even the lowest moments. The dotted line
is obtained using ε = 0.002, a value known to produce
good fits of the xE distribution when used together with
a NLL perturbative calculation [27,28]. The description
of the moments improves, but the line still cannot fall
within the error bars. There is thus a problem in obtain-
ing a good fit of the low moments of the fragmentation
function using the Peterson parametrization. The prob-
lem can be traced back to the need to fit points with very

2

 Non-perturbative fragmentation fitted using moments

d�

dpT
=

Z
dzdp̂TD

H
Q (z)

A

p̂NT
�(pT � zp̂T ) =

A

pNT
DN

hep-ph/0204025



10

GM-VFNS & FONLL
 NLO and NLL

 which order is included in GM-VFNS or FONLL

LL NLL NNLL ...

LO

NLO

NNLO

...

1

aL a

(aL)2 a(aL) a2

... ... ... ...

L = ln (m/pT)
a = αs /(2π)

Fixed Order

Resummed
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GM-VFNS & FONLL
 NLO and NLL

 which order is included in GM-VFNS or FONLL

LL NLL NNLL ...

LO

NLO

NNLO

...

1

aL a

(aL)2 a(aL) a2
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Fixed Order
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m=0 m=0

m=0m=0

m≠0 m≠0

m≠0



1.2 Outline of this thesis 11

Figure 1.1: Pictorial representation of an event in a hadron–hadron collisions, according

to the factorization approach as realized in SHERPA.

• Initial- and final state parton showers, realized in APACIC++ [38].

• Underlying event / multiple parton interactions (violet blob in Fig 1.1), provided by

AMISIC++.

• Hadronization (light green blobs in Fig 1.1), provided by AHADIC++ [39] or PYTHIA’s

Lund string fragmentation [6].

• Decays of unstable primary hadrons and QED bremsstrahlung, provided by the mod-

ules HADRONS++ and PHOTONS++, respectively.

The overall coordination is performed by the SHERPA framework.

1.2 Outline of this thesis

This thesis concerns with the automation of fixed order perturbative calculations.

In Part I methods and implementations dealing with leading order calculations are discussed.

Therein, in chapter 2, a number of extensions for the matrix element generator AMEGIC++

are presented. This includes the implementation of several effective interaction models, as

well as some technical extensions up to an alternative method to compute matrix elements,

based on the Cachazo-Svrĉek-Witten recursion relation [40]. Further, the implementation

of the new matrix element generator COMIX is presented, which, based on Berends-Giele

 POWHEG & MC generators
 Complicated machinery needed to go from QFT

   to simulating real exclusive events

 A lot of moving parts 

 underlying event

 parton showers

- generating soft & collinear radiation

- makes ME more realistic

 hard matrix element
- QFT calculations using Feynman diagrams 

- most rigorous part of MC

 hadronisation

- using color information to turn partons into hadrons

- very model dependent

POWHEG
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 NLO cross-sections

A shower Monte Carlo program alone will generate a transverse momentum distribution
that is accurate only for small transverse momenta, since dσ(MC) is reliable only in the
collinear approximation. For small transverse momenta, however, rather than having the
singular behaviour of an NLO calculation, it is well behaved, with the Sudakov form factor
damping the small pT singularity of the tree level result. Many event generators are capable
of adding a matrix-element correction (MEC), such that for large transverse momentum the
shower result matches the fixed-order result [10]. This is achieved, in essence, by replacing
σ(MC) with σ(NLO) in Equation 10. Assuming, for the moment, that we are dealing with a
shower algorithm ordered in transverse momentum, the generation of the first emission in
MEC is given by

dσ(MEC) = BdΦB

[

∆(Q0) +∆(pT)
R

B
dΦrad

]

, ∆(pT) = exp

[

−

∫

R

B
δ(pT(ΦR)− pT)dΦrad

]

.

(13)
The notation used in Equation 13 deserves some explanation. We write in a compact nota-
tion a fully differential cross section that can have different final states as a single formula.
The first term in the square bracket represents the production of an event with the Born
kinematics, and phase space ΦB. In the Higgs example, it represents a Higgs boson with zero
transverse momentum. The second term represents the full real process, with production of
a Higgs and a parton, balanced in transverse momentum. The above formula represents the
probability that either event is produced.

The shower unitarity Equation 11 is then written in the general form

∆(Q0) +

∫

∆(pT)
R

B
dΦrad = 1 , (14)

where it is intended that the dΦrad integration is limited to the region where pT(ΦR) ≥ Q0.
In Figure 2 we give a pictorial representation of the distribution of the transverse mo-

Figure 2: Transverse momentum distribution of the Higgs at NLO, in a shower algorithm,
and in a MEC shower.

mentum of the Higgs boson at fixed rapidity at NLO order (i.e. O(α3
S)), from the shower

algorithm, and from a MEC shower algorithm. For the NLO result, one should imagine that
the NLO curve diverges at small pT up to a tiny cutoff, and that a tiny bin with a very
large, negative value is located at pT = 0. The resummation of collinear and soft singulari-
ties performed by the shower algorithm using the exact real emission cross section starts to
differ from the LO one at pT around 40 GeV, and for smaller pT it tames the divergence of
the NLO cross section. The shower approximation has the same behaviour for moderate to
small pT, but it drops rapidly as pT approaches the maximum scale of radiation allowed by
the shower algorithm (an exact implementation of Equation 10 would imply that the cross
section vanishes exactly for pT ≥ Q. Subsequent emissions in the shower process will tend
to smear the region of pT ≈ Q). The area under the two shower curves equals the Born
cross section.

The main objective of a NLO+PS implementation is to improve the shower approxima-
tion, in such away that it achieves NLO accuracy for inclusive quantities. Thus, referring to
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 NLO cross-sections complicated objects - combining 2 types of processes

 virtual (loop) corrections - containing UV & IR divergence

                                        - same phase-space as tree-level �B

d� =
⇣
B(�B) + V̂ (�B)

⌘
d�B +R(�R)d�R

 real emission corrections - containing IR divergence

                                       - phase-space with n+1 particles �R

 Cancellation of UV divergence ‘simple’ through renormalization of couplings constants etc.

 Cancellation of IR divergence only in sufficiently inclusive quantities (!)

� =

Z
d�B

h
B(�B) + V̂ (�B) +

Z
d�radC(�R(�B ,�rad))

i
+

Z
d�R

h
R(�R)� C(�R)

i

 To cancel IR singularities in each part separately, one introduces auxiliary subtraction terms 
   & one has to factorize the phase-space �R(�B ,�rad)

 Imperfect cancellation of singularities for exclusive quantities e.g. in a Monte Carlo

POWHEG
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 NLO cross-sections & parton shower
 How to use NLO cross-sections in parton showers ?

 In parton shower language an equivalent of a NLO cross-section is a cross-section with one emission

d� = d�BB(�B)

0

@�i(tI , t0) +
X

(j,k)

�i(tI , t)
↵s(t)

2⇡
Pi,jk(z)

dt

t
dz

d�

2⇡

1

A

no emission one emission
 Expanding in      we get↵s

d� = d�BB(�B)

0

@1�
X

(j,k)

Z
dt0

t0

Z
dz

↵s(t0)

2⇡
Pi,jk(z) +

X

(j,k)

↵s(t)

2⇡
Pi,jk(z)

dt

t
dz

d�

2⇡

1

A

virtual corrections real corrections
 Shower cross-section contains approximate virtual & real corrections in the collinear limit

   NOTE: Sudakov form-factor resums universal part of the virtual(!) correction 

 Goal of NLO Monte Carlos is to recover exact NLO cross-sections when we expand the parton   
   shower cross-section in  ↵s

POWHEG
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 POWHEG method
 Main idea - replace the parton shower approximation for no radiation and the first (hardest) 

                    emission by the full NLO calculation

�

S
t = exp


�
Z

✓(tr � t)
RS

(�B ,�rad)

B(�B)
d�rad

�

 Modified Sudakov form-factor & modified shower generating emission only with lower pT 
   than the first emission

d� = d�BB̄
S(�B)

✓
�S

t0 +�S
t
RS(�)

B(�B)
d�rad

◆
+RF d�R

B̄S = B + V +

Z
RSd�rad

R = RS +RF

 Separate the real emission into singular and regular part

 POWHEG cross-section with the hardest emission

where the modified Born contains also the virtual corrections

POWHEG
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 POWHEG with heavy flavor

POWHEG

 NLO matrix element based on FFNS massive calculation 
   (with 4 active flavors for bottom production)

 Parton shower in the initial state resums only LL via the 
splittings in the Sudakov form-factor as opposed to NLL 
provided by NLO PDFs 

 Parton shower in the final state together with the 
hadronisation model provides a different (exclusive) information 
equivalent to the fragmentation function approach (inclusive)

arXiv:0707.3088 [hep-ph]



3. Results and comparison of the methods 

with ALICE data
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⌘ 1
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(z, P
B

).

 In GM-VFNS the decay of a B-hadron into lepton parametrized as a “lepton fragmentation”
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Results
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Conclusions

 All three methods describe the data within experimental 

   and theoretical errors

 Different treatment of fragmentation functions might

   explain small discrepancies


