NLO Monte Carlo predictions for heavy-quark production (pp collisions @ ALICE)

KAROL KOVAŘÍK

INSTITUT FÜR THEORETISCHE PHYSIK WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

in collaboration with M.Klasen, G.Kramer, Ch.Klein-Bösing, J.Wessels based on JHEP 1408 (2014) 109 <u>±</u>

Outline

1. Heavy quark production pp-baseline @ ALICE

2. GM-VFNS, FONLL, POWHEG methods

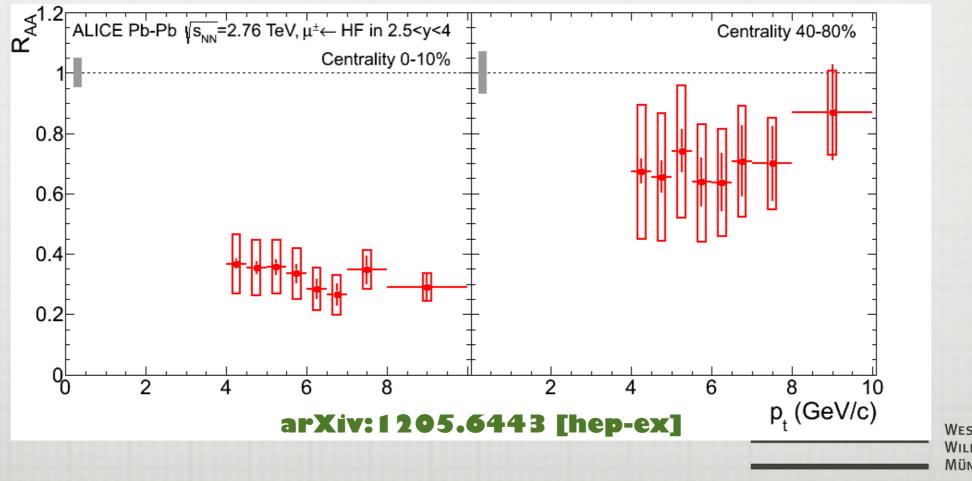
3. Results and comparison of the methods with ALICE data

Motivation

Goal:

- Heavy quarks sensitive to nuclear medium used @ ALICE to study the suppression factor in PbPb collisions
- For isolation of nuclear medium effects understanding of pp baseline needed

$$R_{\rm AA}(p_{\rm t}) = \frac{1}{\langle T_{\rm AA} \rangle} \cdot \frac{\mathrm{d}N_{\rm AA}/\mathrm{d}p_{\rm t}}{\mathrm{d}\sigma_{\rm pp}/\mathrm{d}p_{\rm t}}$$



2. GM-VFNS, FONLL, POWEHG methods

GM-VFNS

Main goal

- Sonstruct single inclusive cross-section valid in a wide p⊤ range
- \bullet Combine the massive calculation valid for small p_T with massless calculation valid for large p_T

• **GM-VFNS** \rightarrow **ZM-VFNS** for $p_T >> m$

(this is the case by construction)

• GM-VFNS \rightarrow FFNS for $p_T \sim m$

(formally this can be shown; numerically problematic in the S-ACOT scheme)

GM-VFNS

List of subprocesses

hep-ph/0502194

Only light lines	Heavy quark initiated ($m_Q = 0$)	Mass effects: $m_Q \neq 0$
$f gg \to qX$	1 -	$f gg \to QX$
$ 2 gg \to gX $	2 -	2 -
$\textbf{3} qg \to gX$	$ 3 Qg \rightarrow gX $	3 -
		4 -
5 $q\bar{q} \rightarrow gX$		5 -
$f g \bar{q} \rightarrow q X$	6 $Q\bar{Q} \rightarrow QX$	6 -
		7 -
8 $qg \rightarrow \bar{q}' X$	8 $Qg \rightarrow \bar{q}X$	8 $qg \rightarrow \bar{Q}X$
	9 $Qg \rightarrow qX$	9 $qg \rightarrow QX$
$\textcircled{0} qq \rightarrow gX$	$\textcircled{0} QQ \rightarrow gX$	① -
$\textcircled{1} qq \rightarrow qX$	$\textcircled{1} QQ \rightarrow QX$	① -
		$\textcircled{p} q\bar{q} \rightarrow QX$
$f $ $q \bar{q}' ightarrow g X$	$igodol B \ Qar q o gX$, $qar Q o gX$	() -
	igodelta Q ar q o Q X, $q ar Q o q X$	•
(b $qq' \rightarrow gX$	$\textcircled{5} Qq \rightarrow gX, qQ \rightarrow gX$	() -
$ \begin{array}{c} $		() -

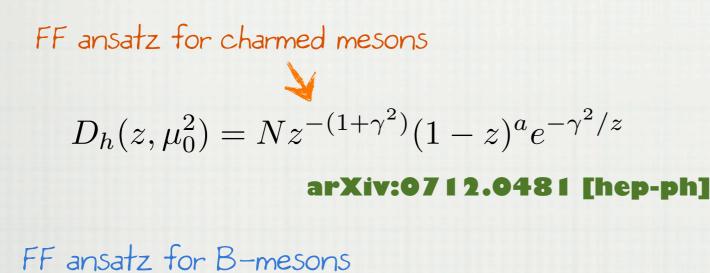
GM-VFNS

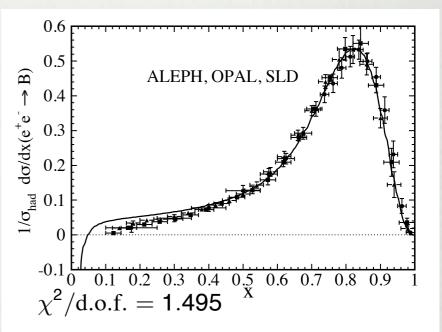
Fragmentation functions

 $D_h(z,\mu_0^2) = N z^{\alpha} (1-z)^{\beta}$

Fragmentation approach in GM-VFNS - treat heavy quark fragmentation as any other FF

Scale dependent FF determined from a fit to LEP data





arXiv:0705.4392 [hep-ph]

FONLL

FONLL approach to combination of massive & massless

Master formula

with

hep-ph/9803400

$$\sigma_{FONLL} = \sigma_{FO} + (\sigma_{RS} - \sigma_{FOm0}) \times G(m, p_T)$$
fixed order massive calculation
with 4 massless quarks
resummed massless result
with massless HQ

 \circ Suppression factor to regulate a divergence in σ_{RS} for small p_T

$$G(m, p_T) = \frac{p_T^2}{p_T^2 + a^2 m^2}$$

Small modification to fixed-order result so that PDFs and strong coupling constant with $n_f = 5$ can be used

Add to $q\bar{q}$ - channel

$$-\alpha_s \frac{2T_F}{3\pi} \log \frac{\mu^2}{m^2} \,\sigma_{q\bar{q}}^{(0)}$$

Add to gg - channel

 $-\alpha_s \frac{2T_F}{3\pi} \log \frac{\mu^2}{\underline{\mu}_f^2} \,\sigma_{gg}^{(0)}$

ESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

FONLL

FONLL approach to combination of massive & massless

Fragmentation approach in FONLL

$D_i^H(z,\mu_F') = D_i^Q(z,\mu_F') \otimes D_Q^H(z)$ perturbative FF satisfying DGLAP evolution in the scale

9

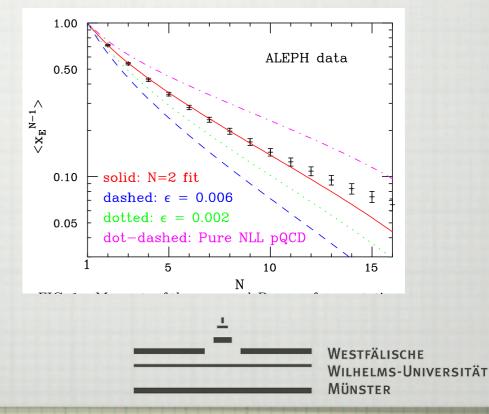
non-perturbative part describes hadronisation of heavy quark into heavy hadron (fitted from LEP data)

hep-ph/0204025

Non-perturbative fragmentation fitted using moments

$$D_N \equiv \int D_Q^H(z) \, z^N \, \frac{dz}{z}$$

$$\frac{d\sigma}{dp_T} = \int dz d\hat{p}_T D_Q^H(z) \frac{A}{\hat{p}_T^N} \,\delta(p_T - z\hat{p}_T) = \frac{A}{p_T^N} \,D_N$$



NLO and NLL

which order is included in GM-VFNS or FONLL

Resummed

 $L = \ln (m/p_T)$ $a = \alpha_s / (2\pi)$

Fixed Order ->

	LL	NLL	NNLL	•••
LO	I			
NLO	aL	а		
NNLO	(aL) ²	a(aL)	a ²	
	•••	•••	•••	•••

Westfälische Wilhelms-Universität Münster

1

NLO and NLL

which order is included in GM-VFNS or FONLL

Resummed

 $L = \ln (m/p_T)$ $a = \alpha_s / (2\pi)$

Fixed Order ->

	LL	NLL	NNLL	
LO	I			
NLO	aL	а		
NNLO	(aL) ²	a(aL)	a ²	

NLO and NLL

which order is included in GM-VFNS or FONLL

Resummed

 $L = \ln (m/p_T)$ $a = \alpha_s / (2\pi)$

Fixed Order ->

	LL	NLL	NNLL	•••
LO	I			
NLO	aL	а		
NNLO	(aL) ²	a(aL)	a ²	
	•••	•••		•••

NLO and NLL

which order is included in GM-VFNS or FONLL

Resummed

 $L = \ln (m/p_T)$ $a = \alpha_s / (2\pi)$

Fixed Order ->

	LL	NLL	NNLL	•••
LO	 m≠0			
NLO	aL m≠0	a m≠0		
NNLO	(aL) ² _{m=0}	a(aL) _{m=0}	a ²	
	 m=0	 m=0	•••	•••

• POWHEG & MC generators

- Complicated machinery needed to go from QFT to simulating real exclusive events
- A lot of moving parts
 - hard matrix element
 - QFT calculations using Feynman diagrams
 - most rigorous part of MC

parton showers

- generating soft & collinear radiation
- makes ME more realistic

hadronisation

- using color information to turn partons into hadrons
- very model dependent
- underlying event

NLO cross-sections

NLO cross-sections complicated objects - combining 2 types of processes

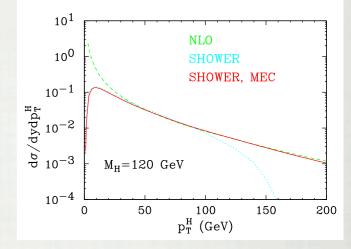
virtual (loop) corrections - containing UV & IR divergence

- same phase-space as tree-level Φ_B

real emission corrections - containing IR divergence

- phase-space with n+1 particles Φ_R

$$d\sigma = \left(B(\Phi_B) + \hat{V}(\Phi_B)\right)d\Phi_B + R(\Phi_R)d\Phi_R$$



- Cancellation of UV divergence 'simple' through renormalization of couplings constants etc.
- Cancellation of IR divergence only in sufficiently inclusive quantities (!)
- To cancel IR singularities in each part separately, one introduces auxiliary subtraction terms & one has to factorize the phase-space $\Phi_R(\Phi_B, \Phi_{rad})$

$$\sigma = \int d\Phi_B \Big[B(\Phi_B) + \hat{V}(\Phi_B) + \int d\Phi_{\rm rad} C(\Phi_R(\Phi_B, \Phi_{\rm rad})) \Big] + \int d\Phi_R \Big[R(\Phi_R) - C(\Phi_R) \Big] \Big]$$

Imperfect cancellation of singularities for exclusive quantities e.g. in a Monte Carlo -

NLO cross-sections & parton shower

- How to use NLO cross-sections in parton showers ?
- In parton shower language an equivalent of a NLO cross-section is a cross-section with one emission

$$d\sigma = d\Phi_B B(\Phi_B) \left(\Delta_i(t_I, t_0) + \sum_{(j,k)} \Delta_i(t_I, t) \frac{\alpha_s(t)}{2\pi} P_{i,jk}(z) \frac{dt}{t} dz \frac{d\phi}{2\pi} \right)$$
no emission
one emission
one emission

$ullet$
 Expanding in $lpha_s$ we get

$$d\sigma = d\Phi_B B(\Phi_B) \left(1 - \sum_{(j,k)} \int \frac{dt'}{t'} \int dz \frac{\alpha_s(t')}{2\pi} P_{i,jk}(z) + \sum_{(j,k)} \frac{\alpha_s(t)}{2\pi} P_{i,jk}(z) \frac{dt}{t} dz \frac{d\phi}{2\pi} \right)$$
virtual corrections
real corrections

Shower cross-section contains approximate virtual & real corrections in the collinear limit NOTE: Sudakov form-factor resums universal part of the virtual(!) correction

Goal of NLO Monte Carlos is to recover exact NLO cross-sections when we expand the parton shower cross-section in α_s

POWHEG method

 Main idea - replace the parton shower approximation for no radiation and the first (hardest) emission by the full NLO calculation

Separate the real emission into singular and regular part

$$R = R^S + R^F$$

POWHEG cross-section with the hardest emission

$$d\sigma = d\Phi_B \bar{B}^S(\Phi_B) \left(\Delta_{t_0}^S + \Delta_t^S \frac{R^S(\Phi)}{B(\Phi_B)} d\Phi_{\rm rad} \right) + R^F d\Phi_R$$

where the modified Born contains also the virtual corrections

$$\bar{B}^S = B + V + \int R^S d\Phi_{\rm rad}$$

 Modified Sudakov form-factor & modified shower generating emission only with lower p⊤ than the first emission

$$\Delta_t^S = \exp\left[-\int \theta(t_r - t) \frac{R^S(\Phi_B, \Phi_{\rm rad})}{B(\Phi_B)} d\Phi_{\rm rad}\right]$$

17

POWHEG with heavy flavor

arXiv:0707.3088 [hep-ph]

 NLO matrix element based on FFNS massive calculation (with 4 active flavors for bottom production)

 Parton shower in the initial state resums only LL via the splittings in the Sudakov form-factor as opposed to NLL provided by NLO PDFs

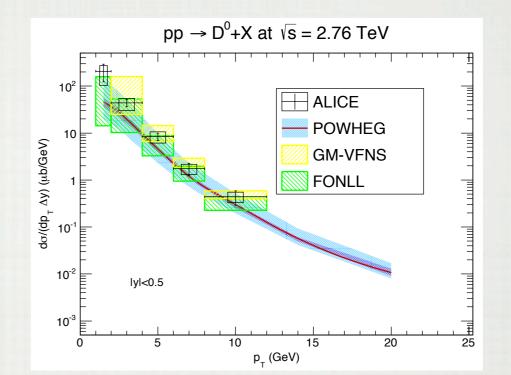
 Parton shower in the final state together with the hadronisation model provides a different (exclusive) information equivalent to the fragmentation function approach (inclusive)

3. Results and comparison of the methods with ALICE data

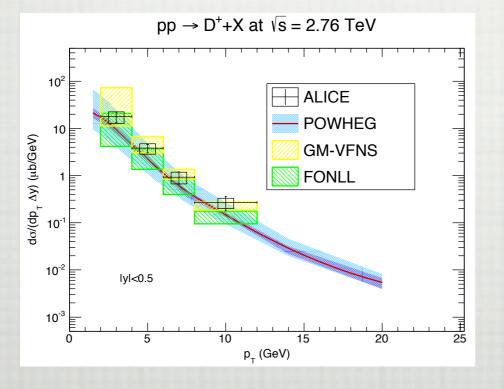
19

Comparison with ALICE data

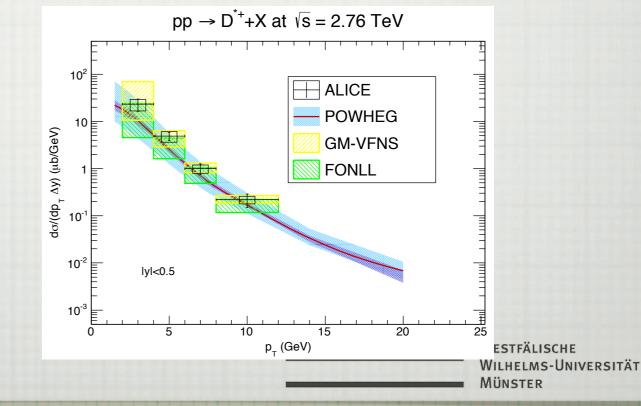
- $^{\diamond}$ Single inclusive production @ $\sqrt{s}=2.76~{\rm TeV}$ and central rapidity |y|<0.5
- Scales are chosen as $\mu = \mu_f = \sqrt{m^2 + p_T^2}$
- Dominant theoretical uncertainty
 scale uncertainty



arXiv:1205.4007 [hep-ex]

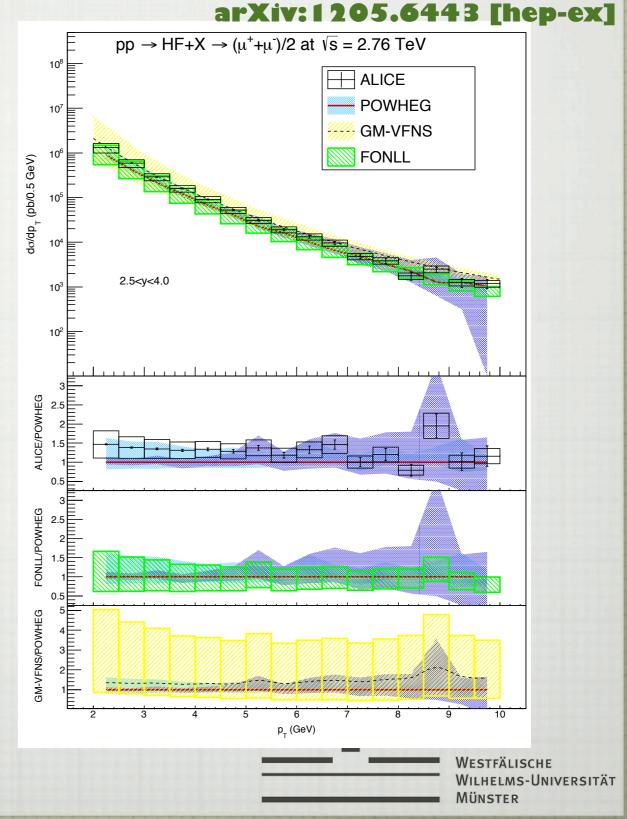


20



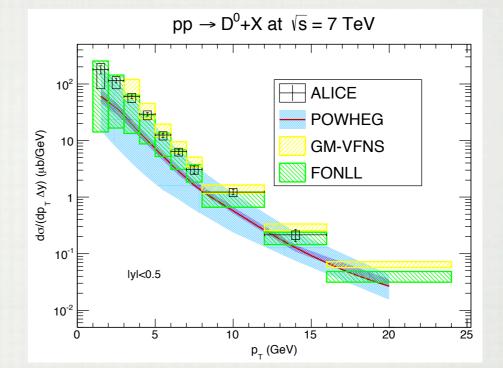
Comparison with ALICE data

- ${}^{\diamond}$ Heavy flavor decay into muons @ $\sqrt{s} = 2.76~{\rm TeV}$ and forward rapidity $\ 2.5 < y < 4.0$
- heavy flavor (bottom & charm channels combined) decaying into muons
- Dominant theoretical uncertainty
 PDF uncertainty (included in the POWHEG)

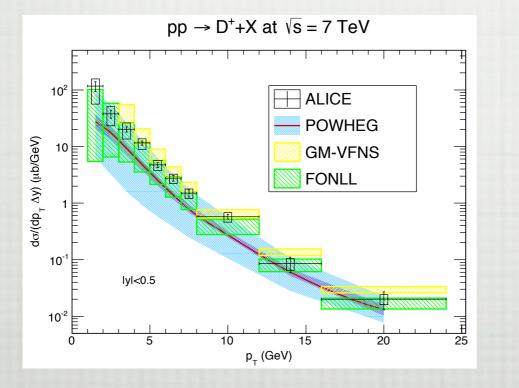


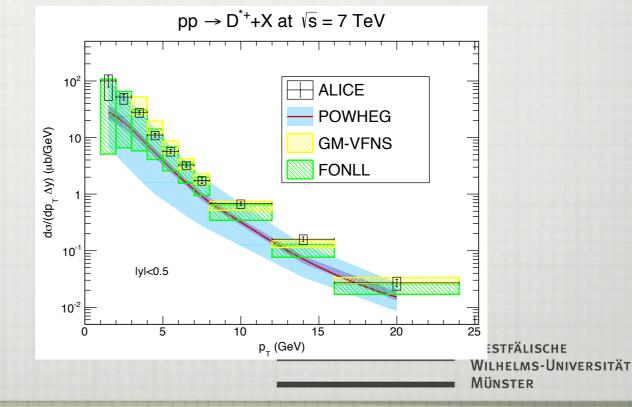
Comparison with ALICE data

- $^{\diamond}$ Single inclusive production @ $\sqrt{s}=7~{\rm TeV}$ and central rapidity |y|<0.5
- Dominant theoretical uncertainty
 - scale uncertainty



arXiv:1111.1553 [hep-ex]

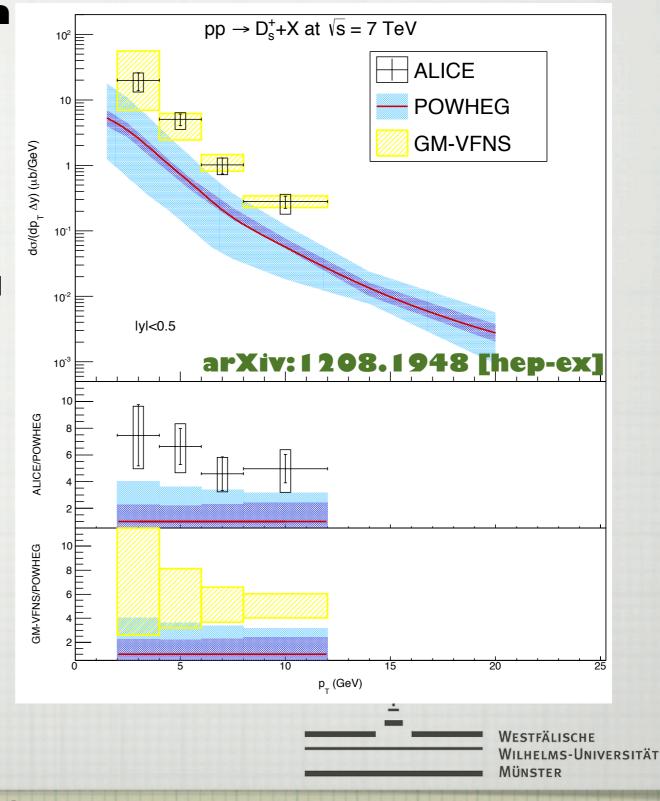




22

Comparison with ALICE data

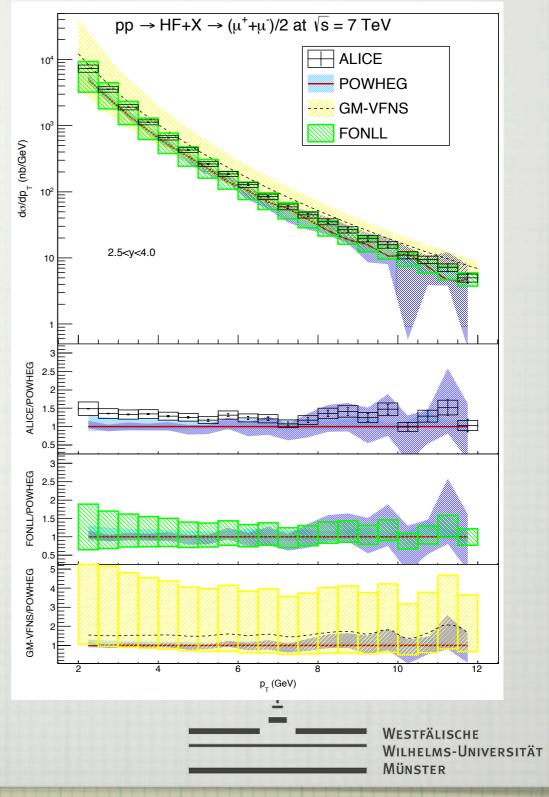
- $^{\diamond}$ Single inclusive production @ $\sqrt{s}=7~{\rm TeV}$ and central rapidity |y|<0.5
- Dominant theoretical uncertainty
 - scale uncertainty
- Problem with the PYTHIA hadronization model in the presence of strange quark ?



Comparison with ALICE data

- ${}^{\diamond}$ Heavy flavor decay into muons @ $\sqrt{s}=7~{\rm TeV}$ and forward rapidity 2.5 < y < 4.0
- heavy flavor (bottom & charm channels combined) decaying into muons
- Dominant theoretical uncertainty
 PDF uncertainty (included in the POWHEG)

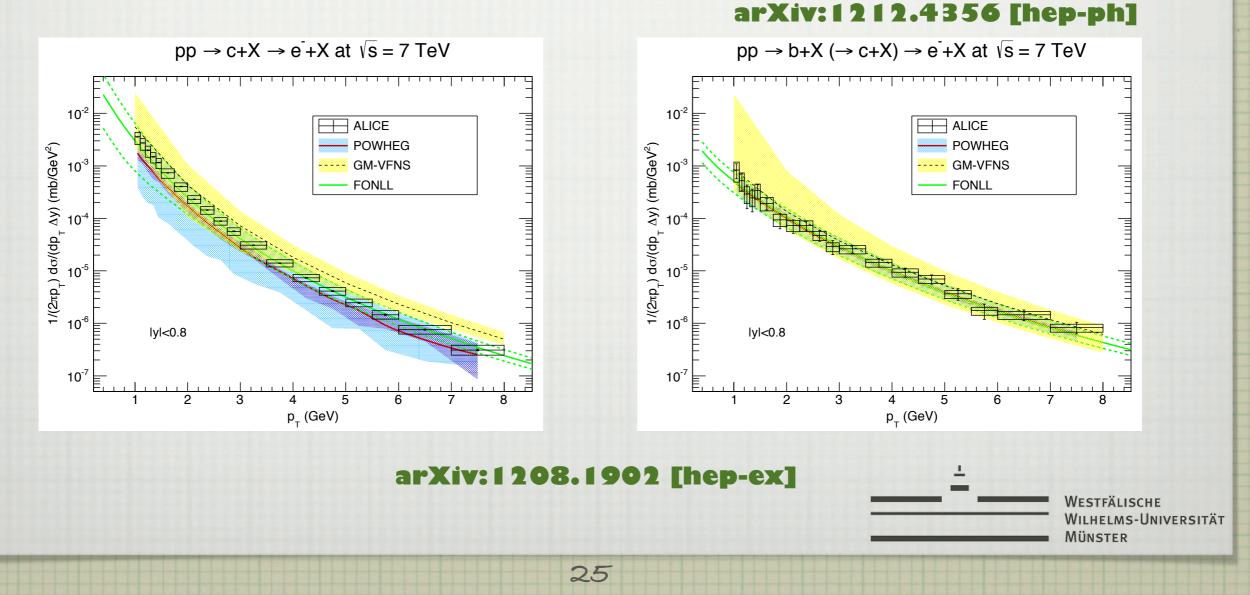
arXiv:1201.3791 [hep-ex]



Comparison with ALICE data

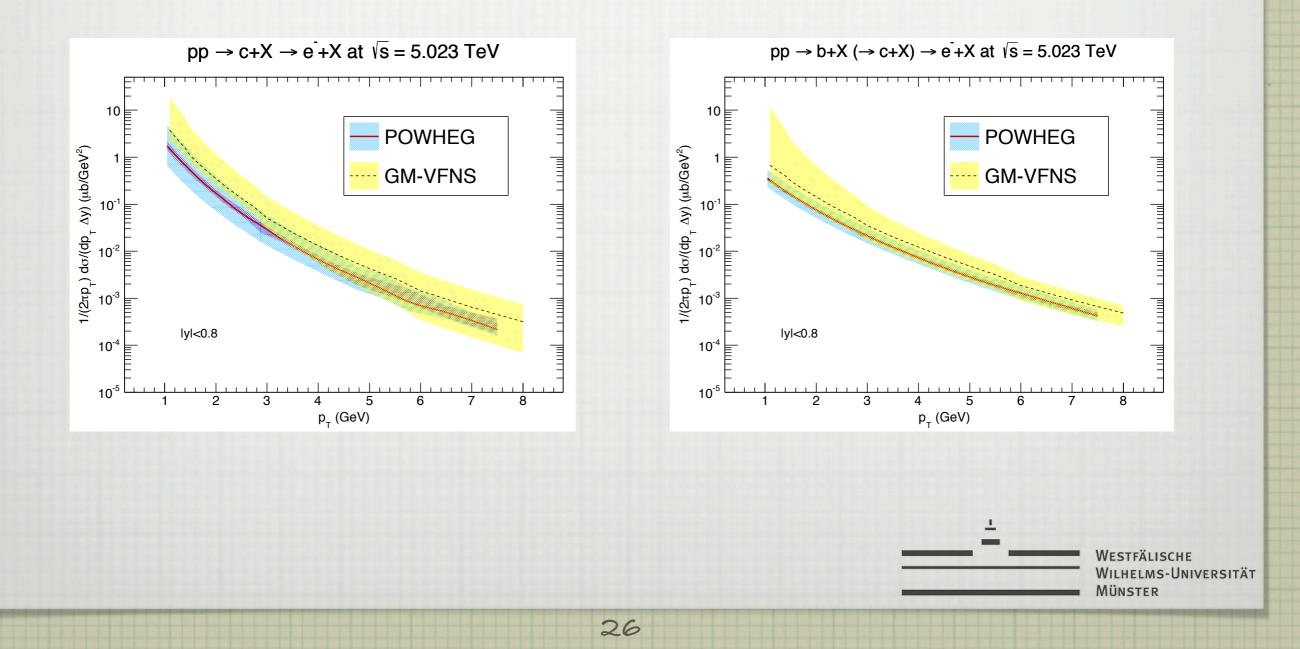
- $^{\circ}$ Heavy flavor decay into electrons @ $\sqrt{s}=7$ TeV and central rapidity |y|<0.8
- In GM-VFNS the decay of a B-hadron into lepton parametrized as a "lepton fragmentation"

$$D_{i \to l}(x, \mu_F) = \int_x^1 \frac{dz}{z} D_{i \to B}\left(\frac{x}{z}, \mu_F\right) \frac{1}{\Gamma_B} \frac{d\Gamma}{dz}(z, P_B).$$



Comparison with ALICE data

- $^{\circ}$ Heavy flavor decay into electrons @ $\sqrt{s} = 5.023$ TeV and central rapidity |y| < 0.8
- Possible baseline for future heavy quark production measurements in pPb collisions



Conclusions

 All three methods describe the data within experimental and theoretical errors

 Different treatment of fragmentation functions might explain small discrepancies

27