

in collaboration with A. Bacchetta, M Radici and M. Guagnelli in Pavia

State-of-the-art: Extractions of transversity

- TMD extraction [Anselmino et al, Kang et al]
- Collinear extraction [Pavia]
- GPD extraction [Goldstein et al]

State-of-the-art: Extractions of transversity

- TMD extraction [Anselmino et al, Kang et al]
- Collinear extraction [Pavia]
- GPD extraction [Goldstein et al]

Pavia 15
1503.03495

Submitted to JHEP

Processes

Exclusive processes

Processes

$\Rightarrow \quad$ COMPASS data for identified pions
=
Two Values for $\alpha_{s}\left(\mathrm{M}_{\mathrm{z}}{ }^{2}\right)$
= Replica methods for both pol. DiFF \& transversity

Pavia Fit: What's new?

C. Braun

EPJ Web Conf. 85 (2015)

+ COMPASS 2003/2004 deuteron data

Pavia fitter: 2 steps' approach

SIDIS production of pion pairs

$$
A_{\mathrm{DIS}}\left(x, z, M_{h}^{2}, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) \frac{|\bar{R}|}{M_{h}} H_{1, s p}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}, Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) D_{1}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}, Q^{2}\right)}
$$

Pavia fitter: 2 steps' approach

SIDIS production of pion pairs

$$
\begin{aligned}
& A_{\mathrm{DIS}}\left(x, z, M_{h}^{2}, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2}}{\sum_{q} e_{q}^{2} \underbrace{h_{1}^{q}\left(x, Q^{2}\right.}_{1},}, \frac{|\bar{R}|}{\bar{f}_{h}^{q}\left(x, Q^{2}\right.} H_{1, s p}^{q \rightarrow \pi^{+} \pi^{-}\left(z, M_{h}^{2}, Q^{2}\right)} \\
& D_{1}^{q \rightarrow \pi^{+} \pi^{-}\left(z, M_{h}^{2}, Q^{2}\right)} \\
& \text { Knowledge on DiFFs leads to } \mathbf{h}_{1}\left(\mathbf{x}, \mathbf{Q}^{2}\right)
\end{aligned}
$$

Pavia fitter: 2 steps' approach

SIDIS production of pion pairs

$$
\begin{aligned}
& A_{\mathrm{DIS}}\left(x, z, M_{h}^{2}, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right.}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right.}, \frac{|\bar{R}|}{M_{h} H_{1, s p}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}, Q^{2}\right)} \\
& D_{1}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}, Q^{2}\right) \\
& \text { Knowledge on DiFFs leads to } \mathrm{h} \mid\left(\mathbf{x}, \mathbf{Q}^{2}\right)
\end{aligned}
$$

[Bacchetta, A.C., Radici, PRL 107 (2011)]

Choose error treatment and
functional form

Reminder: Functional Form biases

Only constrained by Soffer bound
$\mathbf{2 0 1 3} \Rightarrow$ Replica method to make up for small errors at low- and large-x

Pavia fitter: 2 steps' approach

1. SIDIS production of pion pairs

Knowledge on DiFFs leads to $h_{1}\left(x, a^{2}\right)$
2. SI pion pairs production in $\mathrm{e}+\mathrm{e}$ - annihilation @ Belle

$$
A_{e^{+} e^{-}}\left(z, M_{h}^{2}, \bar{z}, \bar{M}_{h}^{2}\right) \propto \frac{\sum_{q} e_{q}^{2} H_{1, s p}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}\right) \bar{H}_{1, s p}^{q \rightarrow \pi^{+} \pi^{-}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}\right) \bar{D}_{1}^{q \rightarrow \pi^{+} \pi^{-}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}
$$

Pavia fitter: 2 steps' approach

1. SIDIS production of pion pairs

$$
A_{\mathrm{DIS}}\left(x, z, M_{h}^{2}, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right.}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right.} \frac{\left\lvert\, \frac{\bar{R} \mid}{M_{h}} H_{1, s p}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}, Q^{2}\right)\right.}{D_{1}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}, Q^{2}\right)}
$$

Knowledge on DiFFs leads to $h_{1}\left(x, Q^{2}\right)$
2. SI pion pairs production in e+e-annihilal

Now
 both $\mathbf{h}_{\mathbf{1}}$ and $\mathbf{H}_{\mathbf{1}}<$ with replica method!

$$
A_{e^{+} e^{-}}\left(z, M_{h}^{2}, \bar{z}, \bar{M}_{h}^{2}\right) \propto \frac{\sum_{q} e_{q}^{2} H_{1, s p}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}\right) \bar{H}_{1, s p}^{q \rightarrow \pi^{+} \pi^{-}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}\right) \bar{D}_{1}^{q \rightarrow \pi^{+} \pi^{-}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}
$$

The Replica Approach

Too small errors w.r.t. ABSENCE of data

- generate n sets of data with gaussian noise $(@ 1 \sigma) \rightarrow n$ replicas
- redo the fit \boldsymbol{n} times
- keep the 1σ distributed resulting "transversities", at each data point
- the error band is now made by 68% of the n replica point by point

The Replica Approach

Too small errors w.r.t. ABSENCE of data

- generate \boldsymbol{n} sets of data with gaussian noise (@1б) $\rightarrow \boldsymbol{n}$ replicas
- redo the fit n times
- keep the 1σ distributed resulting "transversities", at each data point
- the error band is now made by 68% of the n replica point by point

The Replica Approach

Too small errors w.r.t. ABSENCE of data

- generate \boldsymbol{n} sets of data with gaussian noise (@1б) $\rightarrow \boldsymbol{n}$ replicas
- redo the fit n times
- keep the 1σ distributed resulting "transversities", at each data point
- the error band is now made by 68% of the n replica point by point

$$
R\left(z, M_{h}\right)=\frac{|\mathbf{R}|}{M_{h}} \frac{H_{1, s p}^{\varangle u}\left(z, M_{h} ; Q_{0}^{2}\right)}{D_{1}^{u}\left(z, M_{h} ; Q_{0}^{2}\right)}
$$

D_{1} unchanged (good statistics)

Tiny effects on

- the Chi2 distribution
- the value of $\mathrm{n}_{\mathrm{q}}{ }^{\dagger}$

$$
n_{q}^{\uparrow}\left(Q^{2}\right)=\int d z d M_{h} \frac{|\mathbf{R}|}{M_{h}} H_{1, s p}^{\varangle q}\left(z, M_{h} ; Q^{2}\right)
$$

SIDIS production of pion pairs

TRIPTIC plot

Deuteron Data

Proton Data

COMPASS range: $0.2<z<1 \& 0.29<\mathrm{M}_{\mathrm{h}}<1.29 \mathrm{GeV}$

SIDIS production of pion pairs

TRIPTIC plot

COMPASS range: $0.2<z<1 \& 0.29<\mathrm{M}_{\mathrm{h}}<1.29 \mathrm{GeV}$

SIDIS production of pion pairs

TRIPTIC plot

x-dependence only from
Transversity

SIDIS production of pion pairs

TRIPTIC plot

x-dependence only from
Transversity

$$
A_{\mathrm{DIS}}\left(x, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) n_{q}^{\uparrow}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) n_{q}\left(Q^{2}\right)}
$$

Transversity from $A_{u t} \sin \left(\Phi_{R}+\Phi_{S}\right) \sin \theta$

$$
A_{\mathrm{DIS}}^{\stackrel{\mathrm{i}}{ }}\left(x, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) n_{q}^{\uparrow i}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) n_{q}\left(Q^{2}\right)}
$$

$$
\begin{gathered}
\mathrm{i}=1, . ., \mathrm{n} \\
\text { \# repl. }
\end{gathered}
$$

Using symmetries for DiFFs:

$$
H_{1}^{\varangle, u}=-H_{1}^{\varangle, d}=-\bar{H}_{1}^{\varangle, u}=\bar{H}_{1}^{\varangle, d}
$$

$$
\begin{aligned}
& D_{1}^{u}=D_{1}^{d}=\bar{D}_{1}^{u}=\bar{D}_{1}^{d} \\
& D_{1}^{s}=\bar{D}_{1}^{s}, \quad D_{1}^{c}=\bar{D}_{1}^{c}
\end{aligned}
$$

Proton

$$
x h_{1}^{u_{v}}\left(x, Q^{2}\right)-\left.\frac{1}{4} x h_{1}^{d_{v}}\left(x, Q^{2}\right)\right|_{i} ^{\propto}-A_{\mathrm{DIS}}^{\mathrm{i}}\left(x, Q^{2}\right) \frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\uparrow}\left(Q^{2}\right)} \sum_{q=u, d, s} \frac{e_{q}^{2}}{e_{u}^{2}} x f_{1}^{q+\bar{q}}\left(x, Q^{2}\right)
$$

Deuteron

$$
x h_{1}^{u_{v}}\left(x, Q^{2}\right)+\left.x h_{1}^{d_{v}}\left(x, Q^{2}\right)\right|_{i} ^{\propto}-\frac{5}{3} A_{\mathrm{DIS}}^{\mathrm{i}}\left(x, Q^{2}\right) \frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\uparrow i}\left(Q^{2}\right)} x\left(f_{1}^{u+\bar{u}}+f_{1}^{d+\bar{d}}+\frac{2}{5} f_{1}^{s+\bar{s}}\right)
$$

and combinations of both ...

Transversity from $A_{u t} \sin \left(\Phi_{R}+\Phi_{S}\right) \sin \theta$

$$
A_{\mathrm{DIS}}^{\mathrm{i}}\left(x, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) n_{q}^{\uparrow i}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) n_{q}\left(Q^{2}\right)}
$$

$$
\begin{aligned}
& \mathrm{i}=1, . ., \mathrm{n} \\
& \text { \# repl. }
\end{aligned}
$$

Using symmetries for DiFFs:

$$
H_{1}^{\varangle, u}=-H_{1}^{\varangle, d}=-\bar{H}_{1}^{\varangle, u}=\bar{H}_{1}^{\varangle, d}
$$

$$
\begin{aligned}
& D_{1}^{u}=D_{1}^{d}=\bar{D}_{1}^{u}=\bar{D}_{1}^{d} \\
& D_{1}^{s}=\bar{D}_{1}^{s}, \quad D_{1}^{c}=\bar{D}_{1}^{c}
\end{aligned}
$$

Proton

$$
x h_{1}^{u_{v}}\left(x, Q^{2}\right)-\left.\frac{1}{4} x h_{1}^{d_{v}}\left(x, Q^{2}\right)\right|_{i} ^{\propto}-A_{\mathrm{DIS}}^{\mathrm{i}}\left(x, Q^{2}\right) \frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\uparrow 1}\left(Q^{2}\right)} \sum_{q=u, d, s} \frac{e_{q}^{2}}{e_{u}^{2}} x f_{1}^{q+\bar{q}}\left(x, Q^{2}\right)
$$

Deuteron

$$
x h_{1}^{u_{v}}\left(x, Q^{2}\right)+\left.x h_{1}^{d_{v}}\left(x, Q^{2}\right)\right|_{i} ^{\propto}-\frac{5}{3} A_{\mathrm{DIS}}^{\mathrm{i}}\left(x, Q^{2}\right) \frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\uparrow}\left(Q^{2}\right)} x\left(f_{1}^{u+\bar{u}}+f_{1}^{d+\bar{d}}+\frac{2}{5} f_{1}^{s+\bar{s}}\right)
$$

The Functional Form

$$
x h_{1}^{q_{V}}(x)=\tanh \left(x^{1 / 2}\left(A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}\right)\right)\left(x \mathrm{SB}^{q}(x)+x \mathrm{SB}^{\bar{q}}(x)\right)
$$

1st order polynomial

$$
A_{q}+B_{q} x
$$

2nd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}
$$

Flexible version

3rd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}
$$

The Functional Form

$$
x h_{1}^{q_{V}}(x)=\tanh \left(x^{1 / 2}\left(A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}\right)\right)\left(x \mathrm{SB}^{q}(x)+x \mathrm{SB}^{\bar{q}}(x)\right)
$$

1st order polynomial

$$
A_{q}+B_{q} x
$$

2nd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}
$$

Flexible version

3rd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}
$$

The Functional Form

$$
x h_{1}^{q_{V}}(x)=\tanh \left(x^{1 / 2}\left(A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}\right)\right)\left(x \mathrm{SB}^{q}(x)+x \mathrm{SB}^{\bar{q}}(x)\right)
$$

1st order polynomial

$$
A_{q}+B_{q} x
$$

2nd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}
$$

Flexible version

3rd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}
$$

Old and New Fits

Flexible version
NEW 1σ error band from replicas @2.4 GeV^{2}

$$
\alpha_{s}\left(M_{z}^{2}\right)=0.125 \quad \alpha_{s}\left(M_{z} z^{2}\right)=0.139
$$

Comparison with Single-hadron extr.

1σ error band from replicas @2.4 GeV ${ }^{2}$ flexible scenario 0.125

Discrepancy in the distribution
New proton data don't change that!

Comparison with Single-hadron extr.

1σ error band from replicas @2.4 GeV ${ }^{2}$ flexible scenario 0.125

Discrepancy in the d distribution
New proton data don't change that!

Tensor Charge

where we have data

1. Kang et al Phys.Rev. D91
2. rigid 0.125
3. flexible 0.125
4. extraflexible 0.125
5. rigid 0.139
6. flexible 0.139
7. extraflexible 0.139

$$
\delta q=\int_{6.4 \times 10^{-3}}^{0.28} d x h_{1}^{q_{v}}(x)
$$

Tensor Charge

full range $10^{-10}-1$

1. Anselmino et al Phys.Rev. D87
2. rigid old
3. flexible old
4. extraflexible old
5. rigid 0.125
6. flexible 0.125
7. extraflexible 0.125

$$
\delta q=\int_{\sim 0}^{1} d x h_{1}^{q_{v}}(x)
$$

Tensor Charge's Application

Probe New Fundamental Interactions from Beta Decay

$$
N\left(p_{n}\right) \longrightarrow P\left(p_{p}\right) e^{-}\left(p_{e}\right) \bar{\nu}_{e}\left(p_{\nu}\right)
$$

Tensor Charge's Application

Probe New Fundamental Interactions from Beta Decay

$$
N\left(p_{n}\right) \longrightarrow P\left(p_{p}\right) e^{-}\left(p_{e}\right) \bar{\nu}_{e}\left(p_{\nu}\right)
$$

can be sketched as

$$
"\left[d \xrightarrow{\Gamma} u e^{-}\left(p_{e}\right) \bar{\nu}_{e}\left(p_{\nu}\right)\right] \otimes[\langle P| \bar{u} \Gamma d|N\rangle] "
$$

Tensor Charge's Application

Probe New Fundamental Interactions from Beta Decay

$$
N\left(p_{n}\right) \longrightarrow P\left(p_{p}\right) e^{-}\left(p_{e}\right) \bar{\nu}_{e}\left(p_{\nu}\right)
$$

can be sketched as

EW: V-A
Standard Model
Structural: gv_{v} g g_{A}

$$
M=-i \frac{G_{F}}{\sqrt{2}} \bar{u}_{e} \gamma_{\mu}\left(1-\gamma^{5}\right) v_{\nu}\langle p| \bar{u} \gamma^{\mu}\left(1-\gamma^{5}\right) d|n\rangle \cos \theta_{c}
$$

Tensor Charge's Application

Probe New Fundamental Interactions from Beta Decay

$$
N\left(p_{n}\right) \longrightarrow P\left(p_{p}\right) e^{-}\left(p_{e}\right) \bar{\nu}_{e}\left(p_{\nu}\right)
$$

can be sketched as

EW: V-A
Standard Model
Structural: gv_{v} g g_{A}

$$
M=-i \frac{G_{F}}{\sqrt{2}} \bar{u}_{e} \gamma_{\mu}\left(1-\gamma^{5}\right) v_{\nu}\langle p| \bar{u}^{\mu}\left(1-\gamma^{5}\right) d|n\rangle \cos \theta_{c}
$$

New: S, T, P

4-fermion interaction BSM

Structural: $\mathrm{g}_{\mathrm{s}}, \mathrm{g}_{\mathrm{T}} \& \mathrm{~g}_{\mathrm{P}}$

Isovector Tensor Charge

$$
g_{T}=\delta u_{v}-\delta d_{v}
$$

Isovector Tensor Charge

$$
g_{T}=\delta u_{v}-\delta d_{v}
$$

New Pavia flexible 0.125
[Courtoy, Baessler, Gonzalez-

Alonso, Liuti, 1503.06814]
[Radici, Courtoy, Bacchetta, Guagnelli, 1503.03495]

Various Lattice QCD results

Can it constrain New Physics interaction?

Effective theories approach

$$
\Delta \mathcal{L}_{\mathrm{eff}}=-\frac{G_{F} V_{u d}}{\sqrt{2}} \epsilon_{T} \bar{u} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) d \cdot \bar{e} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) \nu_{e}
$$

Nucleon effective coupling from Beta Decay Exp.

$$
C_{T}=\frac{4 G_{F} V_{u d}}{\sqrt{2}} g_{T} \epsilon_{T} \quad \Rightarrow \quad\left|g_{T} \epsilon_{T}\right|<6 \cdot 10^{-4}
$$

Can it constrain New Physics interaction?

Effective theories approach

$$
\Delta \mathcal{L}_{\text {eff }}=-\frac{G_{F} V_{u d}}{\sqrt{2}} \epsilon_{T} \bar{u} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) d \cdot \bar{e} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) \nu_{e}
$$

Nucleon effective coupling from Beta Decay Exp.

$$
C_{T}=\frac{4 G_{F} V_{u d}}{\sqrt{2}} g_{T} \epsilon_{T} \quad \Rightarrow \quad\left|g_{T} \epsilon_{T}\right|<6 \cdot 10^{-4}
$$

Can it constrain New Physics interaction?

Effective theories approach

$$
\Delta \mathcal{L}_{\text {eff }}=-\frac{G_{F} V_{u d}}{\sqrt{2}} \epsilon_{T} \bar{u} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) d \cdot \bar{e} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) \nu_{e}
$$

Nucleon effective coupling from Beta Decay Exp.

$$
C_{T}=\frac{4 G_{F} V_{u d}}{\sqrt{2}} g_{T} \epsilon_{T} \quad \Rightarrow \quad\left|g_{T} \epsilon_{T}\right|<6 \cdot 10^{-4}
$$

GGL
Torino 2013
Bhattacharya et al Lattice

Bali et al lattice

[Courtoy, Baessler, GonzalezAlonso, Liuti, 1503.06814]

Dotted curves:
Projection of NEW error after JLab@12

Conclusion

Extraction of valence transversities from collinear framework

- NEW fit in the REPLICA method for
- $\mathrm{H}_{1}<$
- h_{1}
- NEW COMPASS data on proton + identified pions
$=$ lower distribution for uv , no drastic change for dv
- Two values for $\alpha_{s}\left(\mathrm{Mz}^{2}\right)$
- no/mild dependence from the output

Conclusion

Extraction of valence transversities from collinear framework

- NEW fit in the REPLICA method for
- $\mathrm{H}_{1}{ }^{<}$
- h_{1}
- NEW COMPASS data on proton + identified pions
$=$ lower distribution for uv, no drastic change for dv
Waiting for data from CLAS12 and SoLID (JLab@12)!
- Two values for $\alpha_{s}\left(M_{z}{ }^{2}\right)$
- no/mild dependence from the output

Conclusion

Extraction of valence transversities from collinear framework

- NEW fit in the REPLICA method for
- $\mathrm{H}_{1}{ }^{<}$
- h_{1}
- NEW COMPASS data on proton + identified pions
$=$ lower distribution for uv, no drastic change for dv
Waiting for data from CLAS12 and SoLID (JLab@12)!
- Two values for $\alpha_{s}\left(\mathrm{Mz}^{2}\right)$
- no/mild dependence from the output

Beyond the fit...
= Impact of tensor charge on New Physics?

- DiFF and twist-3 observables: Analysis of BSA at CLAS \& extraction of e(x) [1405.7659]
$-\mathrm{P} \uparrow-\mathrm{P}$ at RHIC (to be considered in the future)

Back-up slides

Comparison with extraction

DEUTERON

Monte Carlo Approach:

Monte Carlo Approach:

some illustrations

Can we find "unforeseen" replica?

Yes, here at $1 \mathrm{GeV}^{2}$

$X^{2} /$ dof
1.56557
1.42199
1.79911
2.07397
1.75523

State-of-the-art:

Extractions of transversity

Anselmino et al [Phys.Rev. D87]
Kang et al [Phys.Rev. D91]

State-of-the-art:
Extractions of transversity

Talk by A. Prokudin

Anselmino et al [Phys.Rev. D87]
Kang et al [Phys.Rev. D91]

State-of-the-art:
Extractions of transversity

Talk by A. Prokudin

This talk

Anselmino et al [Phys.Rev. D87]
Kang et al [Phys.Rev. D91]

State-of-the-art:
Extractions of transversity

Talk by A. Prokudin

This talk

Anselmino et al [Phys.Rev. D87]
Kang et al [Phys.Rev. D91]

State-of-the-art:
Extractions of transversity

Pavia 15
1503.03495

Submitted to JHEP

Two complementary approaches

- partner of Collins FF
- convolution

$$
\int d^{2} \mathbf{p}_{T} d^{2} \mathbf{k}_{T} \delta^{2}\left(\mathbf{k}_{T}+\mathbf{q}_{T}-\mathbf{p}_{T}\right) h_{1}\left(x, k_{T}\right) H_{1}^{\perp}\left(z, p_{T}\right)
$$

- QCD evolution: TMD evolution
- ongoing progresses
[Rogers, Aybat, Prokudin, Bacchetta,...]
- need input Functional Form of the transversity
- partner of chiral-odd DiFF
- simple product

$$
h_{1}(x) H_{1}^{\varangle}\left(z, M_{h}\right)
$$

- QCD evolution: DGLAP evolution
- known
[Bacchetta, Radici, Ceccopieri]
- no need for input Functional Form of the transversity
- direct extraction point by point

Frameworks for DiFFs

Frameworks for DiFFs

Frameworks for DiFFs

Talks by
N. Makke
C. Braun
S. Gliske

Frameworks for DiFFs

Talks by
N. Makke
C. Braun
S. Gliske

Frameworks for DiFFs

Talks by
N. Makke
C. Braun
S. Gliske
$\mathrm{e}^{+} \mathrm{e}^{-}$to pion pairs

Talk by
I. Garzia

Frameworks for DiFFs

SIDIS production of pion pairs

Chiral-odd DiFF:

Distribution of hadrons inside the jet is related to the

Direction of the transverse polarization of the fragmenting quarks

$$
A_{\mathrm{DIS}}\left(x, z, M_{h}^{2}, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) \frac{|\bar{R}|}{M_{h}} H_{1, s p}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}, Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) D_{1}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}, Q^{2}\right)}
$$

SIDIS production of pion pairs

Chiral-odd DiFF:

Distribution of hadrons inside the jet is related to the

Direction of the transverse polarization of the fragmenting quarks

$$
A_{\mathrm{DIS}}\left(x, z, M_{h}^{2}, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right)} \frac{|\bar{R}|}{M_{h}} H_{1, s p}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}, Q^{2}\right)
$$

Knowledge on DiFFs leads to $h_{1}\left(x, Q^{2}\right)$

Fitting the Valence Transversities

Fitting the Valence Transversities

Constraints from first principles
\rightarrow Soffer bound

$$
2\left|h_{1}^{q}\left(x, Q^{2}\right)\right| \leq\left|f_{1}^{q}\left(x, Q^{2}\right)+g_{1}^{q}\left(x, Q^{2}\right)\right| \equiv 2 \mathrm{SB}^{q}\left(x, Q^{2}\right)
$$

$\leftrightarrow h_{1}(x=1)=0$; the parton model predicts $h_{1}(x=0)=0$ but too restrictive in QCD

Fitting the Valence Transversities

Constraints from first principles

- Soffer bound

$$
2\left|h_{1}^{q}\left(x, Q^{2}\right)\right| \leq\left|f_{1}^{q}\left(x, Q^{2}\right)+g_{1}^{q}\left(x, Q^{2}\right)\right| \equiv 2 \mathrm{SB}^{q}\left(x, Q^{2}\right)
$$

$\checkmark h_{1}(x=1)=0 \quad$; the parton model predicts $h_{1}(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code
\uparrow of the Soffer bound: LO evolution of $f_{1}(x)$ from MSTW08 \& $g_{1}(x)$ from DSS
\uparrow of the DiFF \& $h_{1}: \quad$ LO as in previous papers

Fitting the Valence Transversities

Constraints from first principles

- Soffer bound

$$
2\left|h_{1}^{q}\left(x, Q^{2}\right)\right| \leq\left|f_{1}^{q}\left(x, Q^{2}\right)+g_{1}^{q}\left(x, Q^{2}\right)\right| \equiv 2 \mathrm{SB}^{q}\left(x, Q^{2}\right)
$$

$\checkmark h_{1}(x=1)=0 \quad$; the parton model predicts $h_{1}(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code
\uparrow of the Soffer bound: LO evolution of $f_{1}(x)$ from MSTW08 \& $g_{1}(x)$ from DSS
\star of the DiFF \& $h_{1}: \quad$ LO as in previous papers

Choice of Functional Form

Fitting the Valence Transversities

Constraints from first principles

- Soffer bound

$$
2\left|h_{1}^{q}\left(x, Q^{2}\right)\right| \leq\left|f_{1}^{q}\left(x, Q^{2}\right)+g_{1}^{q}\left(x, Q^{2}\right)\right| \equiv 2 \mathrm{SB}^{q}\left(x, Q^{2}\right)
$$

$\checkmark h_{1}(x=1)=0 \quad$; the parton model predicts $h_{1}(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code
\uparrow of the Soffer bound: LO evolution of $f_{1}(x)$ from MSTW08 \& $g_{1}(x)$ from DSS
\star of the DiFF \& $h_{1}: \quad$ LO as in previous papers

Choice of Functional Form

Fitting the Valence Transversities

Constraints from first principles

- Soffer bound

$$
2\left|h_{1}^{q}\left(x, Q^{2}\right)\right| \leq\left|f_{1}^{q}\left(x, Q^{2}\right)+g_{1}^{q}\left(x, Q^{2}\right)\right| \equiv 2 \mathrm{SB}^{q}\left(x, Q^{2}\right)
$$

$\checkmark h_{1}(x=1)=0 \quad$; the parton model predicts $h_{1}(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code
\uparrow of the Soffer bound: LO evolution of $f_{1}(x)$ from MSTW08 \& $g_{1}(x)$ from DSS
\star of the DiFF \& $h_{1}: \quad$ LO as in previous papers

Choice of Functional Form

the CRUCIAL point for further uses

Fitting the Valence Transversities

Constraints from first principles

- Soffer bound

$$
2\left|h_{1}^{q}\left(x, Q^{2}\right)\right| \leq\left|f_{1}^{q}\left(x, Q^{2}\right)+g_{1}^{q}\left(x, Q^{2}\right)\right| \equiv 2 \mathrm{SB}^{q}\left(x, Q^{2}\right)
$$

$\leftrightarrow h_{1}(x=1)=0$; the parton model predicts $h_{1}(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code
\downarrow of the Soffer bound: LO evolution of $f_{1}(x)$ from MSTW08 \& $g_{1}(x)$ from DSS
\star of the DiFF \& h_{1} : LO as in previous papers

Choice of Functional Form

$$
x h_{1}^{q_{V}}\left(x, Q_{0}^{2}\right)=F F\left(\operatorname{param}, x, Q_{0}^{2}\right)\left(x \mathrm{SB}^{q}\left(x, Q_{0}^{2}\right)+x \mathrm{SB}^{\bar{q}}\left(x, Q_{0}^{2}\right)\right)
$$

Fitting the Valence Transversities

Constraints from first principles

- Soffer bound

$$
2\left|h_{1}^{q}\left(x, Q^{2}\right)\right| \leq\left|f_{1}^{q}\left(x, Q^{2}\right)+g_{1}^{q}\left(x, Q^{2}\right)\right| \equiv 2 \mathrm{SB}^{q}\left(x, Q^{2}\right)
$$

$\leftrightarrow h_{1}(x=1)=0$; the parton model predicts $h_{1}(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code
\downarrow of the Soffer bound: LO evolution of $f_{1}(x)$ from MSTW08 \& $g_{1}(x)$ from DSS
\checkmark of the DiFF \& $h_{1}: \quad$ LO as in previous papers

Choice of Functional Form
$\longleftarrow \quad$ the CRUCIAL point for further uses

$$
x h_{1}^{q_{V}}\left(x, Q_{0}^{2}\right)=F F\left(\text { param, } x, Q_{0}^{2}\right)\left(x \mathrm{SB}^{q}\left(x, Q_{0}^{2}\right)+x \mathrm{SB}^{\bar{q}}\left(x, Q_{0}^{2}\right)\right)
$$

Transversity from e $p^{\dagger} \rightarrow e^{\prime}\left(\pi^{+} \pi^{-}\right) X$ @ HERMES

$$
x h_{1}^{u_{v}}\left(x, Q^{2}\right)-\frac{1}{4} x h_{1}^{d_{v}}\left(x, Q^{2}\right)=-C_{y}^{-1} A_{\mathrm{DIS}}\left(x, Q^{2}\left(\frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\top}\left(Q^{2}\right)} \sum_{q=u, d, s} \frac{e_{q}^{2}}{e_{u}^{2}} x f_{1}^{q+\bar{q}}\left(x, Q^{2}\right)\right.\right.
$$

with 1-to-100 GeV² evolution correction: small corrections

HERMES range: $-0.259^{-1}(\pm 25 \%$ theo. err.) from fit

Transversity from e $p^{\uparrow} \rightarrow e^{\prime}\left(\pi^{+} \pi^{-}\right)$X @ HERMES

with 1-to-100 GeV² evolution correction: small corrections

HERMES range: $\quad-0.259^{-1}(\pm 25 \%$ theo. err.) from fit

Transversity from e $p^{\uparrow} \rightarrow e^{\prime}\left(\pi^{+} \pi^{-}\right)$X @ COMPASS 2007

with 1-to-100 GeV² evolution correction: negligible corrections

COMPASS range: $-0.208^{-1}(\pm 19 \%$ theo. err.) from fit

Our Flexible Functional Form 2nd order polynomial

Our Flexible Functional Form 2nd order polynomial

Flexible version

Our Flexible Functional Form 2nd order polynomial

The Error Analysis:

the Monte Carlo approach
1st order polynomial

The Error Analysis:

the Monte Carlo approach
1st order polynomial

ESTIMATES FROM EXPERIMENTAL PROJECTIONS

* old Pavia fit with artificial data in future range

* includes both CLAS12 on proton and SoLID on neutron
* to be up-dated with new Pavia fit

Our Rigid Functional Form 1st order polynomial

Our Rigid Functional Form 1st order polynomial

Our Rigid Functional Form 1st order polynomial

Dihadron SIDIS

Dihadron SIDIS

Collinear factorization

$$
D_{1}^{q \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, R_{T}^{2}\right)
$$

Here:

$$
D_{1}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}\right)
$$

$$
z=z_{1}+z_{2}
$$

$2|\mathbf{R}|=\sqrt{M_{h}^{2}-4 m_{\pi}^{2}}$

Dihadron SIDIS

Collinear factorization

$$
D_{1}^{q \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, R_{T}^{2}\right)
$$

Here: $\quad D_{1}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}\right) \quad z=z_{1}+z_{2} \quad 2|\mathbf{R}|=\sqrt{M_{h}^{2}-4 m_{\pi}^{2}}$

$$
H_{1}^{\varangle q \rightarrow H_{1} H_{2}}\left(z_{1}, z_{2}, R_{T}^{2}\right)
$$

transverse pol. of the fragm. quark \leftrightarrow angular distribution of hadron pairs in the transverse plane

