Update on the phenomenology of collinear Dihadron FFs

DIS 2015

Aurore Courtoy

IFPA-Université de Liège (Belgium) DCI-Universidad de Guanajuato (Mexico)

in collaboration with A. Bacchetta, M Radici and M. Guagnelli in Pavia

Extraction of Transversity

Update on the phenomenology of collinear Dihadron FFs

DIS 2015

Aurore Courtoy

IFPA-Université de Liège (Belgium) DCI-Universidad de Guanajuato (Mexico)

in collaboration with A. Bacchetta, M Radici and M. Guagnelli in Pavia

State-of-the-art: Extractions of transversity

0

State-of-the-art: Extractions of transversity

Pavia 15 1503.03495 Submitted to JHEP

Processes

Exclusive processes

 $\sigma \rightarrow \text{Generalized PDF} \times d\sigma \times \text{Meson Amplitude}$

Processes

Exclusive processes

 $\sigma \rightarrow \text{Generalized PDF} \times d\sigma \times \text{Meson Amplitude}$

[Bacchetta, A.C., Radici, PRL 107 (2011)]

 $2013 \Rightarrow$ Replica method to make up for small errors at low- and large-x

2. SI pion pairs production in e+ e- annihilation @ Belle

[A.C., Bacchetta, Radici, Bianconi, Phys.Rev. D85]

$$A_{e^+e^-}(z, M_h^2, \bar{z}, \bar{M}_h^2) \propto \underbrace{\frac{\sum_q e_q^2 H_{1,sp}^{q \to \pi^+\pi^-}(z, M_h^2) \bar{H}_{1,sp}^{q \to \pi^+\pi^-}(\bar{z}, \bar{M}_h^2)}{\sum_q e_q^2 D_1^{q \to \pi^+\pi^-}(z, M_h^2) \bar{D}_1^{q \to \pi^+\pi^-}(\bar{z}, \bar{M}_h^2)}$$

[A.C., Bacchetta, Radici, Bianconi, Phys.Rev. D85]

c.m.

The Replica Approach

Too small errors w.r.t. ABSENCE of data

- generate *n* sets of data with gaussian noise (@1 σ) \rightarrow *n* replicas
- redo the fit *n* times
- keep the 1 σ distributed resulting "transversities", at each data point
- the error band is now made by 68% of the *n* replica point by point

The Replica Approach

Too small errors w.r.t. ABSENCE of data

- generate *n* sets of data with gaussian noise (@1 σ) \rightarrow *n* replicas
- redo the fit *n* times
- keep the 1 σ distributed resulting "transversities", at each data point
- the error band is now made by 68% of the *n* replica point by point

The Replica Approach

Too small errors w.r.t. ABSENCE of data

- generate *n* sets of data with gaussian noise (@1 σ) \rightarrow *n* replicas
- redo the fit *n* times
- keep the 1 σ distributed resulting "transversities", at each data point
- the error band is now made by 68% of the *n* replica point by point

$$R(z, M_h) = \frac{|\mathbf{R}|}{M_h} \frac{H_{1,sp}^{\triangleleft u}(z, M_h; Q_0^2)}{D_1^u(z, M_h; Q_0^2)}$$

D₁ unchanged (good statistics)

Effect of α_s(M_z²) value

Effect of α_s(M_z²) value

TRIPTIC plot

Deuteron Data

COMPASS range: 0.2<z<1 & 0.29<M_h<1.29 GeV

TRIPTIC plot

 $\langle A_{UT,d}^{\sin \phi_{RS}} \sin \theta \rangle$ -0.00 -0.00 -0.00 **Deuteron Data** -0.1 -0.15 $\langle A_{UT_{\mathcal{P}}}^{\sin \phi_{RS}} \sin \theta \rangle$ 0.00 0.00 (z, M_h)-dpdence determined by **DiFF** -0.1 **Proton Data** -0.15 10⁻² **10**⁻¹ 0.2 0.4 0.6 0.8 1.5 0.5 1 $M_{hh} \, [\text{GeV}/c^2]$ x z

COMPASS range: 0.2<z<1 & 0.29<M_h<1.29 GeV

TRIPTIC plot

TRIPTIC plot

Fransversity from A_{UT} sin(Φ_R+Φ_s)sinθ

Deuteron

$$xh_{1}^{u_{v}}(x,Q^{2}) + xh_{1}^{d_{v}}(x,Q^{2}) \underset{\boldsymbol{i}}{\propto} -\frac{5}{3}A_{\text{DIS}}^{\boldsymbol{i}}(x,Q^{2}) \frac{n_{u}(Q^{2})}{n_{u}^{\uparrow \boldsymbol{i}}(Q^{2})} x\left(f_{1}^{u+\bar{u}} + f_{1}^{d+\bar{d}} + \frac{2}{5}f_{1}^{s+\bar{s}}\right)$$

and combinations of both ...

Fransversity from A_{UT} sin(Φ_R+Φ_s)sinθ

and combinations of both ...

Now for i=j=1,...,n results for the replica method

The Functional Form

$$(Q_0)^2$$

$$x h_1^{q_V}(x) = \tanh\left(x^{1/2} \left(A_q + B_q x + C_q x^2 + D_q x^3\right)\right) \left(x \operatorname{SB}^q(x) + x \operatorname{SB}^{\bar{q}}(x)\right)$$

1st order polynomial

$$A_q + B_q x$$

2nd order polynomial

$$A_q + B_q x + C_q x^2$$

3rd order polynomial

$$A_q + B_q x + C_q x^2 + D_q x^3$$

Extra-flexible version

The Functional Form

$$(Q_0^2)$$

$$x h_1^{q_V}(x) = \tanh\left(x^{1/2} \left(A_q + B_q x + C_q x^2 + D_q x^3\right)\right) \left(x \operatorname{SB}^q(x) + x \operatorname{SB}^{\bar{q}}(x)\right)$$

Rigid version

1st order polynomial

$$A_q + B_q x$$

2nd order polynomial

$$A_q + B_q x + C_q x^2$$

3rd order polynomial

$$A_q + B_q x + C_q x^2 + D_q x^3$$

Extra-flexible version

Flexible version

The Functional Form

 (Q_0^2)

$$x h_1^{q_V}(x) = \tanh\left(x^{1/2} \left(A_q + B_q x + C_q x^2 + D_q x^3\right)\right) \left(x \operatorname{SB}^q(x) + x \operatorname{SB}^{\bar{q}}(x)\right)$$

Rigid version

1st order polynomial

$$A_q + B_q x$$

2nd order polynomial

$$A_q + B_q x + C_q x^2$$

3rd order polynomial

$$A_q + B_q x + C_q x^2 + D_q x^3$$

Extra-flexible version

Flexible version

$\chi^2/{ m d.o.f.}$	$\alpha_s(M_Z^2) = 0.125$	$\alpha_s(M_Z^2) = 0.139$
rigid	1.42	1.46
flexible	1.65	1.71
extraflexible	1.97	2.07

Comparison with Single-hadron extr.

Comparison with Single-hadron extr.

Tensor Charge

where we have data

$$\delta q = \int_{6.4 \times 10^{-3}}^{0.28} dx \, h_1^{q_v}(x)$$

Tensor Charge

full range 10⁻¹⁰- 1

Tensor Charge's Application

Probe New Fundamental Interactions from Beta Decay

$$N(p_n) \longrightarrow P(p_p)e^-(p_e)\bar{\nu}_e(p_\nu)$$

Tensor Charge's Application

Probe New Fundamental Interactions from Beta Decay

$$N(p_n) \longrightarrow P(p_p)e^-(p_e)\bar{\nu}_e(p_\nu)$$

can be sketched as

"
$$\left[d \xrightarrow{\Gamma} u e^{-}(p_e) \bar{\nu}_e(p_{\nu}) \right] \otimes \left[\langle P | \bar{u} \Gamma d | N \rangle \right]$$
 "

Tensor Charge's Application

Probe New Fundamental Interactions from Beta Decay

$$N(p_n) \longrightarrow P(p_p)e^-(p_e)\bar{\nu}_e(p_\nu)$$

Tensor Charge's Application

Probe New Fundamental Interactions from Beta Decay

$$N(p_n) \longrightarrow P(p_p)e^-(p_e)\bar{\nu}_e(p_\nu)$$

Isovector Tensor Charge

$$g_T = \delta u_v - \delta d_v$$

Various Lattice QCD results

Can it constrain New Physics interaction?

Effective theories approach

$$\Delta \mathcal{L}_{\text{eff}} = -\frac{G_F V_{ud}}{\sqrt{2}} \epsilon_T \, \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \cdot \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_e$$

Nucleon effective coupling from Beta Decay Exp.

$$C_T = \frac{4 \ G_F V_{ud}}{\sqrt{2}} g_T \ \epsilon_T \quad \Longrightarrow \quad |g_T \epsilon_T| < 6 \cdot 10^{-4}$$
[Pattie et al, Phys.Rev. C88]
[Wauters et al, Phys.Rev. C89]

Can it constrain New Physics interaction?

Effective theories approach

$$\Delta \mathcal{L}_{\text{eff}} = -\frac{G_F V_{ud}}{\sqrt{2}} \epsilon_T \, \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \cdot \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_e$$

Nucleon effective coupling from Beta Decay Exp.

[Courtoy, Baessler, Gonzalez-Alonso, Liuti, 1503.06814]

Can it constrain New Physics interaction?

Effective theories approach

$$\Delta \mathcal{L}_{\text{eff}} = -\frac{G_F V_{ud}}{\sqrt{2}} \epsilon_T \, \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \cdot \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_e$$

Nucleon effective coupling from Beta Decay Exp.

$$C_T = \frac{4 \ G_F V_{ud}}{\sqrt{2}} g_T \ \epsilon_T \quad \Longrightarrow \quad |g_T \epsilon_T| < 6 \cdot 10^{-4}$$
[Pattie et al, Phys.Rev. C88]
[Wauters et al, Phys.Rev. C89]

[Courtoy, Baessler, Gonzalez-Alonso, Liuti, 1503.06814]

Dotted curves: Projection of NEW error after JLab@12

Conclusion

Extraction of valence transversities from collinear framework

- NEW fit in the REPLICA method for
 - H₁<
 - **h**₁
- NEW COMPASS data on proton + identified pions
 - \Rightarrow lower distribution for u_V, no drastic change for d_V
- Two values for $\alpha_s(Mz^2)$
 - ➡ no/mild dependence from the output

Conclusion

Extraction of valence transversities from collinear framework

- NEW fit in the REPLICA method for
 - H₁<
 - **h**₁
- NEW COMPASS data on proton + identified pions
 - \Rightarrow lower distribution for u_V, no drastic change for d_V
- Two values for $\alpha_s(Mz^2)$
 - ➡ no/mild dependence from the output

Waiting for data from CLAS12 and SoLID (JLab@12)!

Conclusion

Extraction of valence transversities from collinear framework

- NEW fit in the REPLICA method for
 - H₁<
 - **h**₁
- NEW COMPASS data on proton + identified pions
 - \rightarrow lower distribution for u_V, no drastic change for d_V
- Two values for $\alpha_s(Mz^2)$
 - → no/mild dependence from the output

Beyond the fit...

- → Impact of tensor charge on New Physics?
- → DiFF and twist-3 observables: Analysis of BSA at CLAS & extraction of e(x) [1405.7659]
- → $P\uparrow$ -P at RHIC (to be considered in the future)

Waiting for data from CLAS12 and SoLID (JLab@12)!

[1503.06814]

[1504.00415]

Back-up slides

Comparison with extraction

PROTON

rigid functional form

Monte Carlo Approach:

some illustrations

Can we find "unforeseen" replica?

Monte Carlo Approach:

some illustrations

Anselmino et al [Phys.Rev. D87] Kang et al [Phys.Rev. D91]

Talk by A. Prokudin

Anselmino et al [Phys.Rev. D87] Kang et al [Phys.Rev. D91]

Talk by A. Prokudin

This talk

Anselmino et al [Phys.Rev. D87] Kang et al [Phys.Rev. D91]

Talk by A. Prokudin

This talk

Anselmino et al [Phys.Rev. D87] Kang et al [Phys.Rev. D91]

State-of-the-art: Extractions of transversity

Pavia 15 1503.03495 Submitted to JHEP

Two complementary approaches

- partner of Collins FF
- convolution

$$\int d^2 \mathbf{p}_T d^2 \mathbf{k}_T \, \delta^2(\mathbf{k}_T + \mathbf{q}_T - \mathbf{p}_T) \, h_1(x, k_T) \, H_1^{\perp}(z, p_T)$$

- QCD evolution: TMD evolution
- ongoing progresses

[Rogers, Aybat, Prokudin, Bacchetta,...]

• need input Functional Form of the transversity

- partner of chiral-odd DiFF
- simple product

$$h_1(x) H_1^{\triangleleft}(z, M_h)$$

- QCD evolution: DGLAP evolution
- known

[Bacchetta, Radici, Ceccopieri]

- no need for input Functional Form of the transversity
- direct extraction point by point

S. Gliske

SIDIS production of pion pairs

Chiral-odd DiFF:

Distribution of hadrons inside the jet *is related to the*

Direction of the transverse polarization of the fragmenting quarks

$$A_{\text{DIS}}(x, z, M_h^2, Q^2) = -C_y \frac{\sum_q e_q^2 h_1^q(x, Q^2) \frac{|\bar{R}|}{M_h} H_{1,sp}^{q \to \pi^+ \pi^-}(z, M_h^2, Q^2)}{\sum_q e_q^2 f_1^q(x, Q^2) - D_1^{q \to \pi^+ \pi^-}(z, M_h^2, Q^2)}$$

SIDIS production of pion pairs

Chiral-odd DiFF:

Distribution of hadrons inside the jet *is related to the*

Direction of the transverse polarization of the fragmenting quarks

$$A_{\text{DIS}}(x, z, M_h^2, Q^2) = -C_y \frac{\sum_q e_q^2 h_1^q(x, Q^2)}{\sum_q e_q^2 f_1^q(x, Q^2)} \frac{|\bar{R}|}{M_h} H_{1,sp}^{q \to \pi^+ \pi^-}(z, M_h^2, Q^2)}{D_1^{q \to \pi^+ \pi^-}(z, M_h^2, Q^2)}$$

Knowledge on DiFFs leads to h₁(x, Q²)

Constraints from first principles

+ Soffer bound

$$2|h_1^q(x,Q^2)| \le |f_1^q(x,Q^2) + g_1^q(x,Q^2)| \equiv 2\operatorname{SB}^q(x,Q^2)$$

+ $h_1(x=1)=0$; the parton model predicts $h_1(x=0)=0$ but too restrictive in QCD

Constraints from first principles

+ Soffer bound

$$2|h_1^q(x,Q^2)| \le |f_1^q(x,Q^2) + g_1^q(x,Q^2)| \equiv 2\operatorname{SB}^q(x,Q^2)$$

+ $h_1(x=1)=0$; the parton model predicts $h_1(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code

- ★ of the Soffer bound: LO evolution of f₁(x) from MSTW08 & g₁(x) from DSS
- ✦ of the DiFF & h₁: LO as in previous papers

Constraints from first principles

+ Soffer bound

$$2|h_1^q(x,Q^2)| \le |f_1^q(x,Q^2) + g_1^q(x,Q^2)| \equiv 2\operatorname{SB}^q(x,Q^2)$$

+ $h_1(x=1)=0$; the parton model predicts $h_1(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code

★ of the Soffer bound: LO evolution of f₁(x) from MSTW08 & g₁(x) from DSS

♦ of the DiFF & h₁: LO as in previous papers

Choice of Functional Form

Constraints from first principles

+ Soffer bound

$$2|h_1^q(x,Q^2)| \le |f_1^q(x,Q^2) + g_1^q(x,Q^2)| \equiv 2\operatorname{SB}^q(x,Q^2)$$

+ $h_1(x=1)=0$; the parton model predicts $h_1(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code

★ of the Soffer bound: LO evolution of f₁(x) from MSTW08 & g₁(x) from DSS

♦ of the DiFF & h₁: LO as in previous papers

Choice of Functional Form

the CRUCIAL point for further uses

Constraints from first principles

+ Soffer bound

$$2|h_1^q(x,Q^2)| \le |f_1^q(x,Q^2) + g_1^q(x,Q^2)| \equiv 2\operatorname{SB}^q(x,Q^2)$$

+ $h_1(x=1)=0$; the parton model predicts $h_1(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code

★ of the Soffer bound: LO evolution of f₁(x) from MSTW08 & g₁(x) from DSS

♦ of the DiFF & h₁: LO as in previous papers

Choice of Functional Form

<--- the

the CRUCIAL point for further uses

Constraints from first principles

+ Soffer bound

$$2|h_1^q(x,Q^2)| \le |f_1^q(x,Q^2) + g_1^q(x,Q^2)| \equiv 2\operatorname{SB}^q(x,Q^2)$$

+ $h_1(x=1)=0$; the parton model predicts $h_1(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code

◆ of the Soffer bound: LO evolution of f₁(x) from MSTW08 & g₁(x) from DSS

✦ of the DiFF & h₁: LO as in previous papers

Choice of Functional Form

the CRUCIAL point for further uses

$$x h_1^{q_V}(x, Q_0^2) = FF(\text{param}, x, Q_0^2) \left(x \operatorname{SB}^q(x, Q_0^2) + x \operatorname{SB}^{\bar{q}}(x, Q_0^2) \right)$$

with FF defined [-1,1]

Fitting the Valence Transversities

Constraints from first principles

+ Soffer bound

$$2|h_1^q(x,Q^2)| \le |f_1^q(x,Q^2) + g_1^q(x,Q^2)| \equiv 2\operatorname{SB}^q(x,Q^2)$$

+ $h_1(x=1)=0$; the parton model predicts $h_1(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code

★ of the Soffer bound: LO evolution of f₁(x) from MSTW08 & g₁(x) from DSS

✦ of the DiFF & h₁: LO as in previous papers

Choice of Functional Form

——— the CRUC

the CRUCIAL point for further uses

$$x h_1^{q_V}(x, Q_0^2) = FF(\text{param}, x, Q_0^2) \left(x \operatorname{SB}^q(x, Q_0^2) + x \operatorname{SB}^{\bar{q}}(x, Q_0^2) \right)$$

with FF defined [-1,1]

Transversity from e $p^{\uparrow} \rightarrow e^{\prime} (\pi^{+}\pi^{-}) X @ HERMES$

Transversity from e $p^{\uparrow} \rightarrow e^{\prime} (\pi^{+}\pi^{-}) X @ HERMES$

Transversity from e $p^{\uparrow} \rightarrow e' (\pi^{+}\pi^{-}) X @ COMPASS 2007$

$$\begin{aligned} xh_1^{u_v}(x,Q^2) - \frac{1}{4}xh_1^{d_v}(x,Q^2) &= -C_y^{-1}A_{\text{DIS}}(x,Q^2\begin{pmatrix}n_u(Q^2)\\n_u^{\uparrow}(Q^2)\end{pmatrix}\sum_{q=u,d,s}\frac{e_q^2}{e_u^2}xf_1^{q+\bar{q}}(x,Q^2) \end{aligned}$$
with 1-to-100 GeV² evolution correction: negligible corrections
$$\begin{aligned} \text{COMPASS range: -0.208^{-1} (\pm 19\% \text{ theo. err.}) from fit} \end{aligned}$$

Our Flexible Functional Form 2nd order polynomial

Our Flexible Functional Form 2nd order polynomial

Flexible version

Our Flexible Functional Form 2nd order polynomial

Flexible version

The Error Analysis:the Monte Carlo approach1st order polynomial

The Error Analysis:the Monte Carlo approach1st order polynomial

ESTIMATES FROM EXPERIMENTAL PROJECTIONS

- old Pavia fit with artificial data in future range
- includes both CLAS12 on proton and SoLID on neutron
- to be up-dated with new Pavia fit

Our Rigid Functional Form 1st order polynomial

Our Rigid Functional Form 1st order polynomial

Our Rigid Functional Form 1st order polynomial

Dihadron SIDIS

Dihadron SIDIS

transverse pol. of the fragm. quark ↔ angular distribution of hadron pairs in the transverse plane