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Figure 8. The up (left) and down (right) valence transversities as functions of x at Q2
= 2.4

GeV2. The darker band with solid borders in the foreground is our result in the flexible scenario
with ↵s(M2

Z) = 0.125. The lighter band with dot-dashed borders in the background is the most
recent transversity extraction from the Collins effect [2]. The central thick dashed line is the result
of Ref. [5]. The thick solid lines indicate the Soffer bound.
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Ref. [2] using the Collins effect but applying the standard DGLAP evolution equations only
to the collinear part of the fitting function. The central thick dashed line is the result of
Ref. [5], where evolution equations have been computed in the TMD framework.

In the right panel, the disagreement between our result for xhdv
1 (x) at x � 0.1 and

the outcome of the Collins effect is confirmed with respect to our previous analysis (see
Fig. 4 in Ref. [16]). This is due to the fact that the COMPASS data for AD

SIDIS off deuteron
targets remain the same. This trend is confirmed also in the other scenarios, indicating
that it is not an artifact of the chosen functional form. As a matter of fact, our replicas for
the valence down transversity tend to saturate the lower limit of the Soffer bound because
they are driven by the COMPASS deuteron data, in particular by the bins number 7 and
8. It is worth mentioning that some of the replicas outside the 68% band do not follow
this trend. Their trajectories are spread over the whole available space between the upper
and lower limits of the Soffer bound, still maintaining a good �2/d.o.f. (typically, around
2). It is also interesting to remark that the dashed line from Ref. [5], although in general
agreement with the other extraction based on the Collins effect, also tends to saturate the
Soffer bound at x > 0.2.

Apart from the range x � 0.1, there is a general consistency among the various extrac-
tions which is confirmed also for the valence up transversity (left panel), at least for the
range 0.0065  x  0.29 where there are data. This is encouraging: while the dihadron
SIDIS data are a subset of the single-hadron ones, the theoretical frameworks used to in-
terpret them are very different. Nevertheless, we point out that the collinear framework, in
which our results are produced, represents a well established and robust theoretical context.
On the contrary, the implementation of the QCD evolution equations of TMDs needed in
the study of the Collins effect still contains elements of arbitrariness (see Refs. [3–5] and ref-
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State-of-the-art:
Extractions of transversity

• TMD extraction [Anselmino et al, Kang et al]

• Collinear extraction [Pavia]

• GPD extraction  [Goldstein et al]
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Figure 1. Simplified scheme of the dihadron production pro-
cess: The incoming lepton and scattered lepton with their three-
momenta l and l0 define the scattering plane (gray). The three-
momentum of the virtual photon is denoted by q. The an-
gle �S is the azimuthal angle of the spin S of the fragment-
ing quark. Each hadron i has its three-momentum pi, together
they define the hadron plane (blue). The corresponding ⇠i val-
ues are used for a normalization of the di↵erence vector R, i.e.
R = (z2p1 � z1p2)/(z1 + z2) = ⇠2p1 � ⇠1p2. Hence �R is the az-
imuthal angle of R and RT is its component perpendicular to q.
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Figure 2. The identified dihadron asymmetries from the 2003-04
deuteron data [8].

3 Results from the combined 2007/2010
proton data

The first measurement of the dihadron asymmetry on a
proton target at COMPASS was performed using the data
collected in the year 2007. The results for h+h� pairs as a
function of x, z and Minv were presented in [5]. Recently
h+h� results have been published [9], where the 2007 data
have been combined with the most recent and largest data
set on the proton target taken in 2010. In both samples a
large asymmetry up to �10 % in the valence x-region is
present. As for the z dependence, no specific trend is vis-
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Figure 3. The identified dihadron asymmetries from the com-
bined 2007/2010 proton data [11].

ible, while for the invariant mass a negative signal around
the ⇢ mass of 0.770 GeV/c2 is observed and the asymme-
try is negative over the whole mass range.
The identified pion-pair asymmetry presented in Fig. 3
shows a clear signal up to �6 % in x, the z dependence is
compatible with a constant and for Minv a pronounced peak
around the ⇢ mass is observed. The asymmetries of the
other identified pair combinations K+K� and K+⇡� give
some weak indications of nonzero signals as functions of
their invariant masses.
The good agreement of the ⇡+⇡� asymmetry amplitudes
measured by COMPASS with the results obtained by the
HERMES experiment [10] and also with the available
model predictions [6, 7] is discussed in detail in Ref. [11].

4 Extraction of the Transversity
distribution

The complete sets of dihadron asymmetries obtained from
the data taken on the transversely polarized deuteron
and proton targets at the COMPASS experiment give the
unique possibility to extract the Transversity distributions
xhq

1(x) of u and d valence quarks separately, without the
necessity to evolve results between di↵erent kinematic
domains. This was done for the first time in a COMPASS
PhD thesis [12], following a method proposed originally
for the HERMES proton data [13] and later for the
COMPASS proton data [14]. The procedure executed
in the following is based on the method by Bacchetta et
al. [15] and their previous works, which is referenced
therein.
The starting points are the linear combinations
xh1,p(x,Q2) = xhu

1(x,Q2) � 1
4 xhd

1(x,Q2) and
xh1,d(x,Q2) = xhu

1(x,Q2) + xhd
1(x,Q2), which can be ex-
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Figure 1. Simplified scheme of the dihadron production pro-
cess: The incoming lepton and scattered lepton with their three-
momenta l and l0 define the scattering plane (gray). The three-
momentum of the virtual photon is denoted by q. The an-
gle �S is the azimuthal angle of the spin S of the fragment-
ing quark. Each hadron i has its three-momentum pi, together
they define the hadron plane (blue). The corresponding ⇠i val-
ues are used for a normalization of the di↵erence vector R, i.e.
R = (z2p1 � z1p2)/(z1 + z2) = ⇠2p1 � ⇠1p2. Hence �R is the az-
imuthal angle of R and RT is its component perpendicular to q.
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proton data
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proton target at COMPASS was performed using the data
collected in the year 2007. The results for h+h� pairs as a
function of x, z and Minv were presented in [5]. Recently
h+h� results have been published [9], where the 2007 data
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set on the proton target taken in 2010. In both samples a
large asymmetry up to �10 % in the valence x-region is
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momenta l and l0 define the scattering plane (gray). The three-
momentum of the virtual photon is denoted by q. The an-
gle �S is the azimuthal angle of the spin S of the fragment-
ing quark. Each hadron i has its three-momentum pi, together
they define the hadron plane (blue). The corresponding ⇠i val-
ues are used for a normalization of the di↵erence vector R, i.e.
R = (z2p1 � z1p2)/(z1 + z2) = ⇠2p1 � ⇠1p2. Hence �R is the az-
imuthal angle of R and RT is its component perpendicular to q.
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Figure 2. The identified dihadron asymmetries from the 2003-04
deuteron data [8].

3 Results from the combined 2007/2010
proton data

The first measurement of the dihadron asymmetry on a
proton target at COMPASS was performed using the data
collected in the year 2007. The results for h+h� pairs as a
function of x, z and Minv were presented in [5]. Recently
h+h� results have been published [9], where the 2007 data
have been combined with the most recent and largest data
set on the proton target taken in 2010. In both samples a
large asymmetry up to �10 % in the valence x-region is
present. As for the z dependence, no specific trend is vis-
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Figure 3. The identified dihadron asymmetries from the com-
bined 2007/2010 proton data [11].

ible, while for the invariant mass a negative signal around
the ⇢ mass of 0.770 GeV/c2 is observed and the asymme-
try is negative over the whole mass range.
The identified pion-pair asymmetry presented in Fig. 3
shows a clear signal up to �6 % in x, the z dependence is
compatible with a constant and for Minv a pronounced peak
around the ⇢ mass is observed. The asymmetries of the
other identified pair combinations K+K� and K+⇡� give
some weak indications of nonzero signals as functions of
their invariant masses.
The good agreement of the ⇡+⇡� asymmetry amplitudes
measured by COMPASS with the results obtained by the
HERMES experiment [10] and also with the available
model predictions [6, 7] is discussed in detail in Ref. [11].

4 Extraction of the Transversity
distribution

The complete sets of dihadron asymmetries obtained from
the data taken on the transversely polarized deuteron
and proton targets at the COMPASS experiment give the
unique possibility to extract the Transversity distributions
xhq

1(x) of u and d valence quarks separately, without the
necessity to evolve results between di↵erent kinematic
domains. This was done for the first time in a COMPASS
PhD thesis [12], following a method proposed originally
for the HERMES proton data [13] and later for the
COMPASS proton data [14]. The procedure executed
in the following is based on the method by Bacchetta et
al. [15] and their previous works, which is referenced
therein.
The starting points are the linear combinations
xh1,p(x,Q2) = xhu

1(x,Q2) � 1
4 xhd

1(x,Q2) and
xh1,d(x,Q2) = xhu

1(x,Q2) + xhd
1(x,Q2), which can be ex-
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of Ref. !2". The polarization of the incident beam is indicated
with #e and

A$y %!1"y#
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2
, B$y %!1"y , C$y %!y$2"y %.

$23%

In Eq. $22%, the indices (&1 ,&1!) refer to the chiralities of the
entering quarks and identify each submatrix, while (&2 ,&2!)
refer to the exiting quarks and point to the elements inside

each submatrix. By expanding the sum over repeated indices

in Eq. $21%, we get the expression
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For an unpolarized beam (#e!0, indicated with O) and a
transversely polarized target (#!0, indicated with T), Eq.
$24% corresponds to Eq. $10% of Ref. !6" after integrating over
all transverse momenta. The following SSA can be built:

A
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which allows us to isolate the transversity h1 at leading twist.

Apart from the usual variables x , y , z , the only other vari-

able to be measured is the angle )R#)S . Instead of using

the scattering plane as a reference to measure azimuthal

angles, it is sometimes convenient to use the directions of the

beam and of the transverse component of the target spin. The

new plane is rotated by the angle )S-") l
S with respect to

the scattering plane; therefore, we have )R-)R
S") l

S and

)R#)S-)R
S"2) l

S !6".
The asymmetry described in Eq. $25% is the most general

one at leading twist for the case of two-hadron production

when an unpolarized lepton beam scatters off a transversely

polarized target. No assumptions are made on the behavior of

the fragmentation functions. However, as we shall see in the

next section, it is useful and desirable to understand how

different partial waves contribute to the above fragmentation

functions.

III. PARTIAL-WAVE EXPANSION FOR THE

TWO-HADRON SYSTEM

If the invariant mass Mh of the two hadrons is not very

large, the pair can be assumed to be produced mainly in the

relative s-wave channel, with a typical smooth distribution,

or in the p-wave channel with a Breit-Wigner profile !32".
Therefore, it is useful to expand Eq. $16%—or equivalently
Eq. $19%—in relative partial waves keeping only the first two
harmonics. To this purpose, in the following we reformulate

the kinematics in the c.m. frame of the two-hadron system.

Then, the leading-twist projection for the quark-quark cor-

relator . is conveniently expanded deducing a more detailed

structure than Eq. $19%. A set of new bounds is derived and
the corresponding expression for the cross section is dis-

cussed.

In the c.m. frame the emission of the two hadrons occurs

back to back. The direction identified by this emission forms

an angle / with the direction of Ph in the target rest frame

$see Fig. 3%. In this frame, the relevant variables become
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where

FIG. 3. The hadron pair in the c.m. frame; / is the c.m. polar
angle of the pair with respect to the direction of Ph in the target rest

frame.
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Semi-inclusive production of two hadrons [19,21] offers
an alternative way to access transversity, where the chiral-
odd partner of transversity is represented by the DiFF H!

1
[47], which relates the transverse spin of the quark to the
azimuthal orientation of the two-hadron plane. This func-
tion is at present unknown. Very recently, the HERMES
collaboration has reported measurements of the asymmetry
containing the product h1H!

1 [48]. The COMPASS col-
laboration has also presented analogous preliminary results
[49]. In the meanwhile, the BELLE collaboration is plan-
ning to measure the fragmentation functions H!

1 in the near
future [50,51].

In this context, it seems of great importance to devise a
way to model DiFF. From the theoretical side, this can help
in understanding what are the essential building blocks and
mechanisms involved in dihadron fragmentation. It can
also provide guidance for fits to data and further phenome-
nological studies. From the experimental side, a model
could be useful to study the effects of cuts and acceptance,
to estimate the size of observables in different processes
and kinematical regimes. Our work is not the first one in
this direction [21,47,52]. The model presented here is close
to the one discussed in Ref. [47]. However, for the first time
we are able to fix the parameters by comparing our unpo-
larized DiFF D1 with the output of the PYTHIA event
generator [53] tuned for HERMES [54]. Then, without
introducing extra parameters, we make predictions for
the polarized DiFF H!

1 and the related SSA involving the
transversity distribution h1.

The paper is organized as follows. In Sec. II, we review
the basic formalism of DiFF and of SIDIS cross section for
two-hadron production. In Sec. III, we describe our model
for the fragmentation of a quark into two unpolarized
hadrons and give analytic results for DiFF calculated in
this model. In Sec. IV, we fix the parameters of the model
by comparing it to the output of the PYTHIA event gen-
erator tuned for HERMES kinematics. In Sec. V, we show
numerical predictions for the DiFF and for the above-
mentioned SSA in the kinematics explored by the
HERMES [48] and COMPASS collaborations [49].
Finally, in Sec. VI we draw some conclusions.

II. BASICS OF DIHADRON FRAGMENTATION
FUNCTIONS

Dihadron fragmentation functions are involved in the
description of the fragmentation process q ! !!!"X.
The quark has momentum k. The two pions have masses
m! # 0:140 GeV, momenta P1 and P2, respectively, and
invariant mass Mh (considered to be much smaller than the
hard scale of the process, e.g., the virtuality of the photon,
Q, in SIDIS). We introduce the vectors Ph # P1 ! P2
and R # $P1 " P2%=2. We describe a 4-vector a as
&a"; a!; ax; ay', i.e. in terms of its light cone components
a( # $a0 ( a3%=

!!!
2

p
and its transverse spatial components.

We introduce the light cone fraction z # P"
h =k

" and the
polar angle ", being the angle between the direction of P1
in the pair’s center of mass and the direction of Ph in the
lab frame [55], so that the relevant momenta can be written
as
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and $R is defined later in Eq. (15) (see also Fig. 1). It is
useful to compute the scalar products

 Ph * R # 0; (5)

 Ph * k # M2
h

2z
! z

k2 ! j ~kT j2
2

; (6)

 

Ph

Ph

P2

P1

RT

S S
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φ
R

two−hadron plane

scattering plane

l l’

q

FIG. 1 (color online). Angles involved in the measurement of
the transverse single-spin asymmetry in deep-inelastic produc-
tion of two hadrons in the current region.

1Note that there is a misprint in the expressions for j ~Rj in
Eq. (27) of Ref. [55] and in Eq. (23) of Ref. [28].
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In Eq. $22%, the indices (&1 ,&1!) refer to the chiralities of the
entering quarks and identify each submatrix, while (&2 ,&2!)
refer to the exiting quarks and point to the elements inside
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For an unpolarized beam (#e!0, indicated with O) and a
transversely polarized target (#!0, indicated with T), Eq.
$24% corresponds to Eq. $10% of Ref. !6" after integrating over
all transverse momenta. The following SSA can be built:
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which allows us to isolate the transversity h1 at leading twist.

Apart from the usual variables x , y , z , the only other vari-

able to be measured is the angle )R#)S . Instead of using

the scattering plane as a reference to measure azimuthal

angles, it is sometimes convenient to use the directions of the

beam and of the transverse component of the target spin. The
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The asymmetry described in Eq. $25% is the most general

one at leading twist for the case of two-hadron production

when an unpolarized lepton beam scatters off a transversely

polarized target. No assumptions are made on the behavior of

the fragmentation functions. However, as we shall see in the

next section, it is useful and desirable to understand how

different partial waves contribute to the above fragmentation

functions.

III. PARTIAL-WAVE EXPANSION FOR THE

TWO-HADRON SYSTEM

If the invariant mass Mh of the two hadrons is not very

large, the pair can be assumed to be produced mainly in the

relative s-wave channel, with a typical smooth distribution,

or in the p-wave channel with a Breit-Wigner profile !32".
Therefore, it is useful to expand Eq. $16%—or equivalently
Eq. $19%—in relative partial waves keeping only the first two
harmonics. To this purpose, in the following we reformulate

the kinematics in the c.m. frame of the two-hadron system.

Then, the leading-twist projection for the quark-quark cor-

relator . is conveniently expanded deducing a more detailed

structure than Eq. $19%. A set of new bounds is derived and
the corresponding expression for the cross section is dis-

cussed.

In the c.m. frame the emission of the two hadrons occurs

back to back. The direction identified by this emission forms

an angle / with the direction of Ph in the target rest frame

$see Fig. 3%. In this frame, the relevant variables become
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FIG. 3. The hadron pair in the c.m. frame; / is the c.m. polar
angle of the pair with respect to the direction of Ph in the target rest

frame.
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Semi-inclusive production of two hadrons [19,21] offers
an alternative way to access transversity, where the chiral-
odd partner of transversity is represented by the DiFF H!

1
[47], which relates the transverse spin of the quark to the
azimuthal orientation of the two-hadron plane. This func-
tion is at present unknown. Very recently, the HERMES
collaboration has reported measurements of the asymmetry
containing the product h1H!

1 [48]. The COMPASS col-
laboration has also presented analogous preliminary results
[49]. In the meanwhile, the BELLE collaboration is plan-
ning to measure the fragmentation functions H!

1 in the near
future [50,51].

In this context, it seems of great importance to devise a
way to model DiFF. From the theoretical side, this can help
in understanding what are the essential building blocks and
mechanisms involved in dihadron fragmentation. It can
also provide guidance for fits to data and further phenome-
nological studies. From the experimental side, a model
could be useful to study the effects of cuts and acceptance,
to estimate the size of observables in different processes
and kinematical regimes. Our work is not the first one in
this direction [21,47,52]. The model presented here is close
to the one discussed in Ref. [47]. However, for the first time
we are able to fix the parameters by comparing our unpo-
larized DiFF D1 with the output of the PYTHIA event
generator [53] tuned for HERMES [54]. Then, without
introducing extra parameters, we make predictions for
the polarized DiFF H!

1 and the related SSA involving the
transversity distribution h1.

The paper is organized as follows. In Sec. II, we review
the basic formalism of DiFF and of SIDIS cross section for
two-hadron production. In Sec. III, we describe our model
for the fragmentation of a quark into two unpolarized
hadrons and give analytic results for DiFF calculated in
this model. In Sec. IV, we fix the parameters of the model
by comparing it to the output of the PYTHIA event gen-
erator tuned for HERMES kinematics. In Sec. V, we show
numerical predictions for the DiFF and for the above-
mentioned SSA in the kinematics explored by the
HERMES [48] and COMPASS collaborations [49].
Finally, in Sec. VI we draw some conclusions.

II. BASICS OF DIHADRON FRAGMENTATION
FUNCTIONS

Dihadron fragmentation functions are involved in the
description of the fragmentation process q ! !!!"X.
The quark has momentum k. The two pions have masses
m! # 0:140 GeV, momenta P1 and P2, respectively, and
invariant mass Mh (considered to be much smaller than the
hard scale of the process, e.g., the virtuality of the photon,
Q, in SIDIS). We introduce the vectors Ph # P1 ! P2
and R # $P1 " P2%=2. We describe a 4-vector a as
&a"; a!; ax; ay', i.e. in terms of its light cone components
a( # $a0 ( a3%=
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and its transverse spatial components.

We introduce the light cone fraction z # P"
h =k

" and the
polar angle ", being the angle between the direction of P1
in the pair’s center of mass and the direction of Ph in the
lab frame [55], so that the relevant momenta can be written
as
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FIG. 1 (color online). Angles involved in the measurement of
the transverse single-spin asymmetry in deep-inelastic produc-
tion of two hadrons in the current region.

1Note that there is a misprint in the expressions for j ~Rj in
Eq. (27) of Ref. [55] and in Eq. (23) of Ref. [28].
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each submatrix. By expanding the sum over repeated indices

in Eq. $21%, we get the expression
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For an unpolarized beam (#e!0, indicated with O) and a
transversely polarized target (#!0, indicated with T), Eq.
$24% corresponds to Eq. $10% of Ref. !6" after integrating over
all transverse momenta. The following SSA can be built:
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which allows us to isolate the transversity h1 at leading twist.

Apart from the usual variables x , y , z , the only other vari-

able to be measured is the angle )R#)S . Instead of using

the scattering plane as a reference to measure azimuthal

angles, it is sometimes convenient to use the directions of the

beam and of the transverse component of the target spin. The

new plane is rotated by the angle )S-") l
S with respect to

the scattering plane; therefore, we have )R-)R
S") l

S and

)R#)S-)R
S"2) l

S !6".
The asymmetry described in Eq. $25% is the most general

one at leading twist for the case of two-hadron production

when an unpolarized lepton beam scatters off a transversely

polarized target. No assumptions are made on the behavior of

the fragmentation functions. However, as we shall see in the

next section, it is useful and desirable to understand how

different partial waves contribute to the above fragmentation

functions.

III. PARTIAL-WAVE EXPANSION FOR THE

TWO-HADRON SYSTEM

If the invariant mass Mh of the two hadrons is not very

large, the pair can be assumed to be produced mainly in the

relative s-wave channel, with a typical smooth distribution,

or in the p-wave channel with a Breit-Wigner profile !32".
Therefore, it is useful to expand Eq. $16%—or equivalently
Eq. $19%—in relative partial waves keeping only the first two
harmonics. To this purpose, in the following we reformulate

the kinematics in the c.m. frame of the two-hadron system.

Then, the leading-twist projection for the quark-quark cor-

relator . is conveniently expanded deducing a more detailed

structure than Eq. $19%. A set of new bounds is derived and
the corresponding expression for the cross section is dis-

cussed.

In the c.m. frame the emission of the two hadrons occurs

back to back. The direction identified by this emission forms

an angle / with the direction of Ph in the target rest frame

$see Fig. 3%. In this frame, the relevant variables become
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where

FIG. 3. The hadron pair in the c.m. frame; / is the c.m. polar
angle of the pair with respect to the direction of Ph in the target rest

frame.
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SIDIS production of pion pairs                 

[Bacchetta, A.C., Radici, PRL 107 (2011)]

Semi-inclusive production of two hadrons [19,21] offers
an alternative way to access transversity, where the chiral-
odd partner of transversity is represented by the DiFF H!

1
[47], which relates the transverse spin of the quark to the
azimuthal orientation of the two-hadron plane. This func-
tion is at present unknown. Very recently, the HERMES
collaboration has reported measurements of the asymmetry
containing the product h1H!

1 [48]. The COMPASS col-
laboration has also presented analogous preliminary results
[49]. In the meanwhile, the BELLE collaboration is plan-
ning to measure the fragmentation functions H!

1 in the near
future [50,51].

In this context, it seems of great importance to devise a
way to model DiFF. From the theoretical side, this can help
in understanding what are the essential building blocks and
mechanisms involved in dihadron fragmentation. It can
also provide guidance for fits to data and further phenome-
nological studies. From the experimental side, a model
could be useful to study the effects of cuts and acceptance,
to estimate the size of observables in different processes
and kinematical regimes. Our work is not the first one in
this direction [21,47,52]. The model presented here is close
to the one discussed in Ref. [47]. However, for the first time
we are able to fix the parameters by comparing our unpo-
larized DiFF D1 with the output of the PYTHIA event
generator [53] tuned for HERMES [54]. Then, without
introducing extra parameters, we make predictions for
the polarized DiFF H!

1 and the related SSA involving the
transversity distribution h1.

The paper is organized as follows. In Sec. II, we review
the basic formalism of DiFF and of SIDIS cross section for
two-hadron production. In Sec. III, we describe our model
for the fragmentation of a quark into two unpolarized
hadrons and give analytic results for DiFF calculated in
this model. In Sec. IV, we fix the parameters of the model
by comparing it to the output of the PYTHIA event gen-
erator tuned for HERMES kinematics. In Sec. V, we show
numerical predictions for the DiFF and for the above-
mentioned SSA in the kinematics explored by the
HERMES [48] and COMPASS collaborations [49].
Finally, in Sec. VI we draw some conclusions.

II. BASICS OF DIHADRON FRAGMENTATION
FUNCTIONS

Dihadron fragmentation functions are involved in the
description of the fragmentation process q ! !!!"X.
The quark has momentum k. The two pions have masses
m! # 0:140 GeV, momenta P1 and P2, respectively, and
invariant mass Mh (considered to be much smaller than the
hard scale of the process, e.g., the virtuality of the photon,
Q, in SIDIS). We introduce the vectors Ph # P1 ! P2
and R # $P1 " P2%=2. We describe a 4-vector a as
&a"; a!; ax; ay', i.e. in terms of its light cone components
a( # $a0 ( a3%=

!!!
2

p
and its transverse spatial components.

We introduce the light cone fraction z # P"
h =k

" and the
polar angle ", being the angle between the direction of P1
in the pair’s center of mass and the direction of Ph in the
lab frame [55], so that the relevant momenta can be written
as

 k# #
"
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z
;
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where1

 j ~Rj # Mh
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!!!!!!!!!!!!!!!!!!!
1" 4m2

!

M2
h

s
; (4)

and $R is defined later in Eq. (15) (see also Fig. 1). It is
useful to compute the scalar products

 Ph * R # 0; (5)

 Ph * k # M2
h

2z
! z

k2 ! j ~kT j2
2

; (6)

 

Ph

Ph

P2

P1

RT

S S
φ

φ
R

two−hadron plane

scattering plane

l l’

q

FIG. 1 (color online). Angles involved in the measurement of
the transverse single-spin asymmetry in deep-inelastic produc-
tion of two hadrons in the current region.

1Note that there is a misprint in the expressions for j ~Rj in
Eq. (27) of Ref. [55] and in Eq. (23) of Ref. [28].
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Knowledge on DiFFs leads to h1(x, Q2)

Semi-inclusive production of two hadrons [19,21] offers
an alternative way to access transversity, where the chiral-
odd partner of transversity is represented by the DiFF H!

1
[47], which relates the transverse spin of the quark to the
azimuthal orientation of the two-hadron plane. This func-
tion is at present unknown. Very recently, the HERMES
collaboration has reported measurements of the asymmetry
containing the product h1H!

1 [48]. The COMPASS col-
laboration has also presented analogous preliminary results
[49]. In the meanwhile, the BELLE collaboration is plan-
ning to measure the fragmentation functions H!

1 in the near
future [50,51].

In this context, it seems of great importance to devise a
way to model DiFF. From the theoretical side, this can help
in understanding what are the essential building blocks and
mechanisms involved in dihadron fragmentation. It can
also provide guidance for fits to data and further phenome-
nological studies. From the experimental side, a model
could be useful to study the effects of cuts and acceptance,
to estimate the size of observables in different processes
and kinematical regimes. Our work is not the first one in
this direction [21,47,52]. The model presented here is close
to the one discussed in Ref. [47]. However, for the first time
we are able to fix the parameters by comparing our unpo-
larized DiFF D1 with the output of the PYTHIA event
generator [53] tuned for HERMES [54]. Then, without
introducing extra parameters, we make predictions for
the polarized DiFF H!

1 and the related SSA involving the
transversity distribution h1.

The paper is organized as follows. In Sec. II, we review
the basic formalism of DiFF and of SIDIS cross section for
two-hadron production. In Sec. III, we describe our model
for the fragmentation of a quark into two unpolarized
hadrons and give analytic results for DiFF calculated in
this model. In Sec. IV, we fix the parameters of the model
by comparing it to the output of the PYTHIA event gen-
erator tuned for HERMES kinematics. In Sec. V, we show
numerical predictions for the DiFF and for the above-
mentioned SSA in the kinematics explored by the
HERMES [48] and COMPASS collaborations [49].
Finally, in Sec. VI we draw some conclusions.

II. BASICS OF DIHADRON FRAGMENTATION
FUNCTIONS

Dihadron fragmentation functions are involved in the
description of the fragmentation process q ! !!!"X.
The quark has momentum k. The two pions have masses
m! # 0:140 GeV, momenta P1 and P2, respectively, and
invariant mass Mh (considered to be much smaller than the
hard scale of the process, e.g., the virtuality of the photon,
Q, in SIDIS). We introduce the vectors Ph # P1 ! P2
and R # $P1 " P2%=2. We describe a 4-vector a as
&a"; a!; ax; ay', i.e. in terms of its light cone components
a( # $a0 ( a3%=

!!!
2

p
and its transverse spatial components.

We introduce the light cone fraction z # P"
h =k

" and the
polar angle ", being the angle between the direction of P1
in the pair’s center of mass and the direction of Ph in the
lab frame [55], so that the relevant momenta can be written
as
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and $R is defined later in Eq. (15) (see also Fig. 1). It is
useful to compute the scalar products
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FIG. 1 (color online). Angles involved in the measurement of
the transverse single-spin asymmetry in deep-inelastic produc-
tion of two hadrons in the current region.

1Note that there is a misprint in the expressions for j ~Rj in
Eq. (27) of Ref. [55] and in Eq. (23) of Ref. [28].
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plitude times the conjugate of a different scattering ampli-

tude !12". However, for conciseness we follow the notation

of Ref. !2". The polarization of the incident beam is indicated
with #e and

A$y %!1"y#
y2

2
, B$y %!1"y , C$y %!y$2"y %.

$23%

In Eq. $22%, the indices (&1 ,&1!) refer to the chiralities of the
entering quarks and identify each submatrix, while (&2 ,&2!)
refer to the exiting quarks and point to the elements inside

each submatrix. By expanding the sum over repeated indices

in Eq. $21%, we get the expression

d7'

d(dMh
2d)Rdzdxdyd)S

!*
a
ea
2
2+2

4,Q2y
! A$y % f 1

a$x %D1
a$z ,( ,Mh

2%

##e#
C$y %

2
g1
a$x %D1

a$z ,( ,Mh
2%

#B$y %
"S! T""R! T"
Mh

sin$)R#)S%h1
a$x %H1

!a$z ,( ,Mh
2%# .

$24%

For an unpolarized beam (#e!0, indicated with O) and a
transversely polarized target (#!0, indicated with T), Eq.
$24% corresponds to Eq. $10% of Ref. !6" after integrating over
all transverse momenta. The following SSA can be built:

A
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which allows us to isolate the transversity h1 at leading twist.

Apart from the usual variables x , y , z , the only other vari-

able to be measured is the angle )R#)S . Instead of using

the scattering plane as a reference to measure azimuthal

angles, it is sometimes convenient to use the directions of the

beam and of the transverse component of the target spin. The

new plane is rotated by the angle )S-") l
S with respect to

the scattering plane; therefore, we have )R-)R
S") l

S and

)R#)S-)R
S"2) l

S !6".
The asymmetry described in Eq. $25% is the most general

one at leading twist for the case of two-hadron production

when an unpolarized lepton beam scatters off a transversely

polarized target. No assumptions are made on the behavior of

the fragmentation functions. However, as we shall see in the

next section, it is useful and desirable to understand how

different partial waves contribute to the above fragmentation

functions.

III. PARTIAL-WAVE EXPANSION FOR THE

TWO-HADRON SYSTEM

If the invariant mass Mh of the two hadrons is not very

large, the pair can be assumed to be produced mainly in the

relative s-wave channel, with a typical smooth distribution,

or in the p-wave channel with a Breit-Wigner profile !32".
Therefore, it is useful to expand Eq. $16%—or equivalently
Eq. $19%—in relative partial waves keeping only the first two
harmonics. To this purpose, in the following we reformulate

the kinematics in the c.m. frame of the two-hadron system.

Then, the leading-twist projection for the quark-quark cor-

relator . is conveniently expanded deducing a more detailed

structure than Eq. $19%. A set of new bounds is derived and
the corresponding expression for the cross section is dis-

cussed.

In the c.m. frame the emission of the two hadrons occurs

back to back. The direction identified by this emission forms

an angle / with the direction of Ph in the target rest frame

$see Fig. 3%. In this frame, the relevant variables become
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where

FIG. 3. The hadron pair in the c.m. frame; / is the c.m. polar
angle of the pair with respect to the direction of Ph in the target rest

frame.
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1. SIDIS production of pion pairs                 

[Bacchetta, A.C., Radici, PRL 107 (2011)]
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Knowledge on DiFFs leads to h1(x, Q2)

Semi-inclusive production of two hadrons [19,21] offers
an alternative way to access transversity, where the chiral-
odd partner of transversity is represented by the DiFF H!

1
[47], which relates the transverse spin of the quark to the
azimuthal orientation of the two-hadron plane. This func-
tion is at present unknown. Very recently, the HERMES
collaboration has reported measurements of the asymmetry
containing the product h1H!

1 [48]. The COMPASS col-
laboration has also presented analogous preliminary results
[49]. In the meanwhile, the BELLE collaboration is plan-
ning to measure the fragmentation functions H!

1 in the near
future [50,51].

In this context, it seems of great importance to devise a
way to model DiFF. From the theoretical side, this can help
in understanding what are the essential building blocks and
mechanisms involved in dihadron fragmentation. It can
also provide guidance for fits to data and further phenome-
nological studies. From the experimental side, a model
could be useful to study the effects of cuts and acceptance,
to estimate the size of observables in different processes
and kinematical regimes. Our work is not the first one in
this direction [21,47,52]. The model presented here is close
to the one discussed in Ref. [47]. However, for the first time
we are able to fix the parameters by comparing our unpo-
larized DiFF D1 with the output of the PYTHIA event
generator [53] tuned for HERMES [54]. Then, without
introducing extra parameters, we make predictions for
the polarized DiFF H!

1 and the related SSA involving the
transversity distribution h1.

The paper is organized as follows. In Sec. II, we review
the basic formalism of DiFF and of SIDIS cross section for
two-hadron production. In Sec. III, we describe our model
for the fragmentation of a quark into two unpolarized
hadrons and give analytic results for DiFF calculated in
this model. In Sec. IV, we fix the parameters of the model
by comparing it to the output of the PYTHIA event gen-
erator tuned for HERMES kinematics. In Sec. V, we show
numerical predictions for the DiFF and for the above-
mentioned SSA in the kinematics explored by the
HERMES [48] and COMPASS collaborations [49].
Finally, in Sec. VI we draw some conclusions.

II. BASICS OF DIHADRON FRAGMENTATION
FUNCTIONS

Dihadron fragmentation functions are involved in the
description of the fragmentation process q ! !!!"X.
The quark has momentum k. The two pions have masses
m! # 0:140 GeV, momenta P1 and P2, respectively, and
invariant mass Mh (considered to be much smaller than the
hard scale of the process, e.g., the virtuality of the photon,
Q, in SIDIS). We introduce the vectors Ph # P1 ! P2
and R # $P1 " P2%=2. We describe a 4-vector a as
&a"; a!; ax; ay', i.e. in terms of its light cone components
a( # $a0 ( a3%=

!!!
2

p
and its transverse spatial components.

We introduce the light cone fraction z # P"
h =k

" and the
polar angle ", being the angle between the direction of P1
in the pair’s center of mass and the direction of Ph in the
lab frame [55], so that the relevant momenta can be written
as
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and $R is defined later in Eq. (15) (see also Fig. 1). It is
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FIG. 1 (color online). Angles involved in the measurement of
the transverse single-spin asymmetry in deep-inelastic produc-
tion of two hadrons in the current region.

1Note that there is a misprint in the expressions for j ~Rj in
Eq. (27) of Ref. [55] and in Eq. (23) of Ref. [28].
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plitude times the conjugate of a different scattering ampli-

tude !12". However, for conciseness we follow the notation

of Ref. !2". The polarization of the incident beam is indicated
with #e and

A$y %!1"y#
y2

2
, B$y %!1"y , C$y %!y$2"y %.

$23%

In Eq. $22%, the indices (&1 ,&1!) refer to the chiralities of the
entering quarks and identify each submatrix, while (&2 ,&2!)
refer to the exiting quarks and point to the elements inside

each submatrix. By expanding the sum over repeated indices

in Eq. $21%, we get the expression
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For an unpolarized beam (#e!0, indicated with O) and a
transversely polarized target (#!0, indicated with T), Eq.
$24% corresponds to Eq. $10% of Ref. !6" after integrating over
all transverse momenta. The following SSA can be built:
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which allows us to isolate the transversity h1 at leading twist.

Apart from the usual variables x , y , z , the only other vari-

able to be measured is the angle )R#)S . Instead of using

the scattering plane as a reference to measure azimuthal

angles, it is sometimes convenient to use the directions of the

beam and of the transverse component of the target spin. The

new plane is rotated by the angle )S-") l
S with respect to

the scattering plane; therefore, we have )R-)R
S") l

S and

)R#)S-)R
S"2) l

S !6".
The asymmetry described in Eq. $25% is the most general

one at leading twist for the case of two-hadron production

when an unpolarized lepton beam scatters off a transversely

polarized target. No assumptions are made on the behavior of

the fragmentation functions. However, as we shall see in the

next section, it is useful and desirable to understand how

different partial waves contribute to the above fragmentation

functions.

III. PARTIAL-WAVE EXPANSION FOR THE

TWO-HADRON SYSTEM

If the invariant mass Mh of the two hadrons is not very

large, the pair can be assumed to be produced mainly in the

relative s-wave channel, with a typical smooth distribution,

or in the p-wave channel with a Breit-Wigner profile !32".
Therefore, it is useful to expand Eq. $16%—or equivalently
Eq. $19%—in relative partial waves keeping only the first two
harmonics. To this purpose, in the following we reformulate

the kinematics in the c.m. frame of the two-hadron system.

Then, the leading-twist projection for the quark-quark cor-

relator . is conveniently expanded deducing a more detailed

structure than Eq. $19%. A set of new bounds is derived and
the corresponding expression for the cross section is dis-

cussed.

In the c.m. frame the emission of the two hadrons occurs

back to back. The direction identified by this emission forms

an angle / with the direction of Ph in the target rest frame

$see Fig. 3%. In this frame, the relevant variables become
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where

FIG. 3. The hadron pair in the c.m. frame; / is the c.m. polar
angle of the pair with respect to the direction of Ph in the target rest

frame.
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•  keep the 1σ distributed resulting “transversities”, at each data point 

•  the error band is now made by  68% of the n replica point by point
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Fig. 4: Deuteron and proton asymmetries, integrated over the angle q , as a function of x, z and Mhh, for
the data taken with the 6LiD (top) and NH3 target (bottom), respectively. The open data points in both
asymmetry distributions vs. Mhh include all hadron pairs with an invariant mass of Mhh � 1.5 GeV/c2.
These pairs are discarded for the two other distributions, which are integrated over Mhh. The grey bands
indicate the systematic uncertainties, where the last bin in Mhh is not fully shown. The curves show the
comparison of the extracted asymmetries to predictions [37, 38] made using the transversity functions
extracted in Ref. [15] (solid lines) or a pQCD based counting rule analysis (dotted lines).1

5 Discussion of Results

The resulting asymmetries are shown in Fig. 4 as a function of x, z and Mhh for the 6LiD (top) and NH3
(bottom) targets, respectively. For 6LiD, no significant asymmetry is observed in any variable. For NH3,
large negative asymmetries are observed in the region x > 0.03, which implies that both transversity
distributions and polarised two-hadron interference fragmentation functions do not vanish. For x < 0.03,
the asymmetries are compatible with zero. Over the measured range of the invariant mass Mhh and z, the
asymmetry is negative and shows no strong dependence on these variables.
When comparing the results on the NH3 target to the published HERMES results on a transversely po-
larised proton target [28], the larger kinematic region in x and Mhh is evident. However, both results can-
not be directly compared for several reasons: (1) The opposite sign is due to the fact that in the extraction
of the asymmetries the phase p in the angle fRS is used in the COMPASS analysis; (2) COMPASS calcu-
lates asymmetries in the photon-nucleon system, while HERMES published them in the lepton-nucleon
system; both agree reasonably well when including Dnn corrections for HERMES; (3) HERMES uses
identified p

+
p

� pairs and COMPASS h+h� pairs; (4) COMPASS applies a minimum cut on z, removing
a possible dilution due to contributions from target fragmentation.
A naive interpretation of our data, based on Eq. (7) and on isospin symmetry and charge conjugation,
yields D1,u = D1,d and H^

1,u =�H^
1,d [27]. When considering only valence quarks, the asymmetry AsinfRS

UT,d

is proportional to [hu
1 +hd

1 ]H
^
1,u for the deuteron target, while for the proton target AsinfRS

UT,p µ [4hu
1 �hd

1 ]H
^
1,u.

Therefore, like in the case of the Collins asymmetry, the small asymmetries observed for the deuteron

Deuteron Data 

COMPASS range: 0.2<z<1 &  0.29<Mh<1.29 GeV
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Fig. 4: Deuteron and proton asymmetries, integrated over the angle q , as a function of x, z and Mhh, for
the data taken with the 6LiD (top) and NH3 target (bottom), respectively. The open data points in both
asymmetry distributions vs. Mhh include all hadron pairs with an invariant mass of Mhh � 1.5 GeV/c2.
These pairs are discarded for the two other distributions, which are integrated over Mhh. The grey bands
indicate the systematic uncertainties, where the last bin in Mhh is not fully shown. The curves show the
comparison of the extracted asymmetries to predictions [37, 38] made using the transversity functions
extracted in Ref. [15] (solid lines) or a pQCD based counting rule analysis (dotted lines).1

5 Discussion of Results

The resulting asymmetries are shown in Fig. 4 as a function of x, z and Mhh for the 6LiD (top) and NH3
(bottom) targets, respectively. For 6LiD, no significant asymmetry is observed in any variable. For NH3,
large negative asymmetries are observed in the region x > 0.03, which implies that both transversity
distributions and polarised two-hadron interference fragmentation functions do not vanish. For x < 0.03,
the asymmetries are compatible with zero. Over the measured range of the invariant mass Mhh and z, the
asymmetry is negative and shows no strong dependence on these variables.
When comparing the results on the NH3 target to the published HERMES results on a transversely po-
larised proton target [28], the larger kinematic region in x and Mhh is evident. However, both results can-
not be directly compared for several reasons: (1) The opposite sign is due to the fact that in the extraction
of the asymmetries the phase p in the angle fRS is used in the COMPASS analysis; (2) COMPASS calcu-
lates asymmetries in the photon-nucleon system, while HERMES published them in the lepton-nucleon
system; both agree reasonably well when including Dnn corrections for HERMES; (3) HERMES uses
identified p

+
p

� pairs and COMPASS h+h� pairs; (4) COMPASS applies a minimum cut on z, removing
a possible dilution due to contributions from target fragmentation.
A naive interpretation of our data, based on Eq. (7) and on isospin symmetry and charge conjugation,
yields D1,u = D1,d and H^

1,u =�H^
1,d [27]. When considering only valence quarks, the asymmetry AsinfRS

UT,d

is proportional to [hu
1 +hd

1 ]H
^
1,u for the deuteron target, while for the proton target AsinfRS

UT,p µ [4hu
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Therefore, like in the case of the Collins asymmetry, the small asymmetries observed for the deuteron
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the data taken with the 6LiD (top) and NH3 target (bottom), respectively. The open data points in both
asymmetry distributions vs. Mhh include all hadron pairs with an invariant mass of Mhh � 1.5 GeV/c2.
These pairs are discarded for the two other distributions, which are integrated over Mhh. The grey bands
indicate the systematic uncertainties, where the last bin in Mhh is not fully shown. The curves show the
comparison of the extracted asymmetries to predictions [37, 38] made using the transversity functions
extracted in Ref. [15] (solid lines) or a pQCD based counting rule analysis (dotted lines).1

5 Discussion of Results

The resulting asymmetries are shown in Fig. 4 as a function of x, z and Mhh for the 6LiD (top) and NH3
(bottom) targets, respectively. For 6LiD, no significant asymmetry is observed in any variable. For NH3,
large negative asymmetries are observed in the region x > 0.03, which implies that both transversity
distributions and polarised two-hadron interference fragmentation functions do not vanish. For x < 0.03,
the asymmetries are compatible with zero. Over the measured range of the invariant mass Mhh and z, the
asymmetry is negative and shows no strong dependence on these variables.
When comparing the results on the NH3 target to the published HERMES results on a transversely po-
larised proton target [28], the larger kinematic region in x and Mhh is evident. However, both results can-
not be directly compared for several reasons: (1) The opposite sign is due to the fact that in the extraction
of the asymmetries the phase p in the angle fRS is used in the COMPASS analysis; (2) COMPASS calcu-
lates asymmetries in the photon-nucleon system, while HERMES published them in the lepton-nucleon
system; both agree reasonably well when including Dnn corrections for HERMES; (3) HERMES uses
identified p

+
p

� pairs and COMPASS h+h� pairs; (4) COMPASS applies a minimum cut on z, removing
a possible dilution due to contributions from target fragmentation.
A naive interpretation of our data, based on Eq. (7) and on isospin symmetry and charge conjugation,
yields D1,u = D1,d and H^

1,u =�H^
1,d [27]. When considering only valence quarks, the asymmetry AsinfRS
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is proportional to [hu
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^
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asymmetry distributions vs. Mhh include all hadron pairs with an invariant mass of Mhh � 1.5 GeV/c2.
These pairs are discarded for the two other distributions, which are integrated over Mhh. The grey bands
indicate the systematic uncertainties, where the last bin in Mhh is not fully shown. The curves show the
comparison of the extracted asymmetries to predictions [37, 38] made using the transversity functions
extracted in Ref. [15] (solid lines) or a pQCD based counting rule analysis (dotted lines).1

5 Discussion of Results

The resulting asymmetries are shown in Fig. 4 as a function of x, z and Mhh for the 6LiD (top) and NH3
(bottom) targets, respectively. For 6LiD, no significant asymmetry is observed in any variable. For NH3,
large negative asymmetries are observed in the region x > 0.03, which implies that both transversity
distributions and polarised two-hadron interference fragmentation functions do not vanish. For x < 0.03,
the asymmetries are compatible with zero. Over the measured range of the invariant mass Mhh and z, the
asymmetry is negative and shows no strong dependence on these variables.
When comparing the results on the NH3 target to the published HERMES results on a transversely po-
larised proton target [28], the larger kinematic region in x and Mhh is evident. However, both results can-
not be directly compared for several reasons: (1) The opposite sign is due to the fact that in the extraction
of the asymmetries the phase p in the angle fRS is used in the COMPASS analysis; (2) COMPASS calcu-
lates asymmetries in the photon-nucleon system, while HERMES published them in the lepton-nucleon
system; both agree reasonably well when including Dnn corrections for HERMES; (3) HERMES uses
identified p
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� pairs and COMPASS h+h� pairs; (4) COMPASS applies a minimum cut on z, removing
a possible dilution due to contributions from target fragmentation.
A naive interpretation of our data, based on Eq. (7) and on isospin symmetry and charge conjugation,
yields D1,u = D1,d and H^
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FIG. 5. The unpolarized cross section d�0 at Q2 = 100 GeV2

as a function of z for the three bins 0.39  Mh  0.41, 0.79 
Mh  0.81, 0.99  Mh  1.01 GeV (from top to bottom).
Same notations as in the previous figure. The figure serves
only for illustration purposes. For the description of the ac-
tual fitting procedure, see details in the text, particularly
around Eqs. (15) and (16).

angles in the experimental acceptance, we will consider
their average values in each experimental bin. As such,
Eq. (7) corresponds to the experimental a

12R in Ref. [29].

It is convenient to define also the following quanti-

ties [25]

nq(Q
2) =

Z
dz dMh Dq

1

(z, Mh;Q
2)

n"

q(Q
2) =

Z
dz dMh

|R|
Mh

H^ q
1,sp(z, Mh;Q

2) .

(17)

Then, the Artru–Collins asymmetry can be simplified to

A(z, Mh;Q
2) = � hsin2 ✓

2

i
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2
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i
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P
q e2

q H^q
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D(z, Mh;Q2)
,

(18)

where we understand that nq(Q2) = nq(Q2) (due to
Eqs. (11), (12)), n"

q(Q
2) = �n"

q(Q
2) (see the following

Eqs. (20), (21)), and, using again Eqs. (11) and (12), we
have defined

D(z, Mh;Q
2) =
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9
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2) .

(19)

Isospin symmetry and charge conjugation can be ap-
plied also to the polarized fragmentation into (⇡+⇡�)
pairs such that [11, 21, 25]

H^, u
1

= �H^, d
1

= �H
^, u
1

= H
^, d
1

, (20)

H^, s
1

= �H
^, s
1

= H^, c
1

= �H
^, c
1

= 0 . (21)

These relations should hold for all channels but for the
K0

S resonance. However, pion pairs produced in the K0

S
decay are in the relative s wave, and with our assump-
tions there are no p wave contributions to interfere with.
Therefore, we assume H^, q

1,sp ⇡ 0 for the K0

S channel, such
that Eqs. (20) and (21) are valid in general throughout
our analysis.
Using these symmetry relations, we can further manip-

ulate Eq. (18) and define

H(z, Mh;Q
2) = �h1 + cos2 ✓

2

i
hsin2 ✓

2

i
9

5

1

hsin ✓i hsin ✓i
⇥ D(z, Mh;Q

2)A(z, Mh;Q
2)

⌘ |R|
Mh

H^u
1,sp(z, Mh;Q

2)n"

u(Q
2) ,

(22)

where
Z

dz dMh H(z, Mh, Q2) = [n"

u(Q
2)]2 . (23)
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its fitting procedure, and we present the results of the
parametrization of the unpolarized DiFF D

1

.

A. The Monte Carlo simulation

We used a PYTHIA simulation [34] to study (⇡+⇡�)
pairs with momentum fraction z and invariant mass Mh

from e+e� annihilations at the Belle kinematics [35]. The
pair distribution should be described according to the
unpolarized cross section of Eq. (8) integrated in ✓

2

and
✓, since we assume the integration to be complete in the
Monte Carlo sample. The actual expression of the cross
section is

d�0

dz dMh dQ2

=
4⇡↵2

Q2

X

q

e2

q Dq
1

(z, Mh;Q
2) . (9)

Events are generated with no cuts in acceptance. The
data sample is based on a Monte Carlo integrated lumi-
nosity L

MC

= 647.26 pb�1 corresponding to 2.194 ⇥ 106

events. The total number of produced pion pairs is
n

tot

= 1.040 ⇥ 106, approximately one pair every two
events. We use these numbers to normalize D

1

, but
the results for the Artru–Collins asymmetry (and, conse-
quently, for H^

1

/D
1

) are independent of the normaliza-
tion.

The counts of pion pairs are collected in a bidimen-
sional 40 ⇥ 50 binning in (z, Mh). The invariant mass
is limited in the range 0.29  Mh  1.29 GeV, the
lower bound being given by the natural threshold 2m⇡

and the upper cut excluding scarcely populated or fre-
quently empty bins. Each pion pair is required to have a
fractional energy z � 0.2 in order to focus only on pions
coming from the fragmentation process. To avoid large
mass corrections, we impose the condition

�h ⌘ 2Mh

zQ
⌧ 1 , (10)

which we in practice implement as �h  1/2.
For the fragmentation process q ! (⇡+⇡�)X in the

range 0.29  Mh  1.29 GeV, the invariant mass distri-
bution has a rich structure. The most prominent chan-
nels can be cast in two main categories, three resonant
channels and a “continuum” (see the discussion around
Fig. 2 in Ref. [11]; see also Refs. [3–5, 38]):

• the production of (⇡+⇡�) pairs in relative p wave
via the decay of the ⇢ resonance; it is the cleanest
channel and is responsible for a peak in the invari-
ant mass distribution at Mh ⇠ 776 MeV,

• the production of (⇡+⇡�) pairs in relative p wave
via the decay of the ! resonance; it produces a
sharp peak at Mh ⇠ 783 MeV but smaller than the
previous one. However, the ! resonance has a large
branching ratio for the decay into (⇡+⇡�)⇡0 [39].
We include also this contribution after summing
over the unobserved ⇡0; it generates a a broad peak
roughly centered around Mh ⇠ 500 MeV,

• the production of (⇡+⇡�) pairs via the decay of the
K0

S resonance, which produces a very narrow peak
at Mh ⇠ 498 MeV,

• everything else included in a channel which for con-
venience we call “continuum” and we model as the
fragmentation into an “incoherent” pion pair.

The fragmentation via the ⌘ resonance also produces a
peak overlapping with the K0

S one (plus a smaller hump
at Mh ⇠ 350 MeV) but with less statistical weight.
Hence, we will neglect this channel and we will neglect
as well all other resonances which are not visible in the
PYTHIA output [11].

In summary, the behaviour of the fragmentation into
(⇡+⇡�) pairs with respect to their invariant mass will be
simulated in four ways: three channels corresponding to
the decay of the ⇢, !, and K0

S resonances, and a chan-
nel that includes everything else (continuum). Using the
Monte Carlo, we study each channel separately. For each
channel, the flavor sum in Eq. (9) is decomposed in the
contribution of q = u, d, s, and c.

B. Fitting the Monte Carlo simulation

In the first step, for each channel ch = cont, ⇢, !, K,
and for each flavor q = u, d, s, c, we parametrize
Dq

1,ch(z, Mh;Q2

0

) at the hadronic scale Q2

0

= 1 GeV2 tak-

ing inspiration from Refs. [11, 21, 25]. For (⇡+⇡�) pairs,
isospin symmetry and charge conjugation suggest that

Du
1

= Dd
1

= D
u
1

= D
d
1

, (11)

Ds
1

= D
s
1

, Dc
1

= D
c
1

. (12)

The best fit of the Monte Carlo output at the Belle scale
shows compatibility with both conditions (11) and (12)
for all channels but for the K0

S ! (⇡+⇡�) decay, where
the choice Dd

1,K 6= Du
1,K is required. In general, we

choose Ds
1

to di↵er from Du
1

only in the z dependence.
The full analytic expression of Dq

1,ch(z, Mh;Q2

0

) can be
found in appendix A. Here, we illustrate the z and Mh de-
pendence of Du

1,⇢ as an example, since it displays enough
general features that are common to most of the other
channels. The function Du

1,⇢(z, Mh;Q2

0

) is described by
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FIG. 5. The unpolarized cross section d�0 at Q2 = 100 GeV2

as a function of z for the three bins 0.39  Mh  0.41, 0.79 
Mh  0.81, 0.99  Mh  1.01 GeV (from top to bottom).
Same notations as in the previous figure. The figure serves
only for illustration purposes. For the description of the ac-
tual fitting procedure, see details in the text, particularly
around Eqs. (15) and (16).

angles in the experimental acceptance, we will consider
their average values in each experimental bin. As such,
Eq. (7) corresponds to the experimental a

12R in Ref. [29].

It is convenient to define also the following quanti-

ties [25]

nq(Q
2) =

Z
dz dMh Dq

1

(z, Mh;Q
2)

n"

q(Q
2) =
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dz dMh
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Then, the Artru–Collins asymmetry can be simplified to
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where we understand that nq(Q2) = nq(Q2) (due to
Eqs. (11), (12)), n"

q(Q
2) = �n"

q(Q
2) (see the following

Eqs. (20), (21)), and, using again Eqs. (11) and (12), we
have defined
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Isospin symmetry and charge conjugation can be ap-
plied also to the polarized fragmentation into (⇡+⇡�)
pairs such that [11, 21, 25]
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, (20)
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= 0 . (21)

These relations should hold for all channels but for the
K0

S resonance. However, pion pairs produced in the K0

S
decay are in the relative s wave, and with our assump-
tions there are no p wave contributions to interfere with.
Therefore, we assume H^, q

1,sp ⇡ 0 for the K0

S channel, such
that Eqs. (20) and (21) are valid in general throughout
our analysis.
Using these symmetry relations, we can further manip-

ulate Eq. (18) and define

H(z, Mh;Q
2) = �h1 + cos2 ✓
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(22)

where
Z

dz dMh H(z, Mh, Q2) = [n"

u(Q
2)]2 . (23)
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its fitting procedure, and we present the results of the
parametrization of the unpolarized DiFF D

1

.

A. The Monte Carlo simulation

We used a PYTHIA simulation [34] to study (⇡+⇡�)
pairs with momentum fraction z and invariant mass Mh

from e+e� annihilations at the Belle kinematics [35]. The
pair distribution should be described according to the
unpolarized cross section of Eq. (8) integrated in ✓

2

and
✓, since we assume the integration to be complete in the
Monte Carlo sample. The actual expression of the cross
section is

d�0

dz dMh dQ2

=
4⇡↵2

Q2

X

q

e2

q Dq
1

(z, Mh;Q
2) . (9)

Events are generated with no cuts in acceptance. The
data sample is based on a Monte Carlo integrated lumi-
nosity L

MC

= 647.26 pb�1 corresponding to 2.194 ⇥ 106

events. The total number of produced pion pairs is
n

tot

= 1.040 ⇥ 106, approximately one pair every two
events. We use these numbers to normalize D

1

, but
the results for the Artru–Collins asymmetry (and, conse-
quently, for H^

1

/D
1

) are independent of the normaliza-
tion.

The counts of pion pairs are collected in a bidimen-
sional 40 ⇥ 50 binning in (z, Mh). The invariant mass
is limited in the range 0.29  Mh  1.29 GeV, the
lower bound being given by the natural threshold 2m⇡

and the upper cut excluding scarcely populated or fre-
quently empty bins. Each pion pair is required to have a
fractional energy z � 0.2 in order to focus only on pions
coming from the fragmentation process. To avoid large
mass corrections, we impose the condition

�h ⌘ 2Mh

zQ
⌧ 1 , (10)

which we in practice implement as �h  1/2.
For the fragmentation process q ! (⇡+⇡�)X in the

range 0.29  Mh  1.29 GeV, the invariant mass distri-
bution has a rich structure. The most prominent chan-
nels can be cast in two main categories, three resonant
channels and a “continuum” (see the discussion around
Fig. 2 in Ref. [11]; see also Refs. [3–5, 38]):

• the production of (⇡+⇡�) pairs in relative p wave
via the decay of the ⇢ resonance; it is the cleanest
channel and is responsible for a peak in the invari-
ant mass distribution at Mh ⇠ 776 MeV,

• the production of (⇡+⇡�) pairs in relative p wave
via the decay of the ! resonance; it produces a
sharp peak at Mh ⇠ 783 MeV but smaller than the
previous one. However, the ! resonance has a large
branching ratio for the decay into (⇡+⇡�)⇡0 [39].
We include also this contribution after summing
over the unobserved ⇡0; it generates a a broad peak
roughly centered around Mh ⇠ 500 MeV,

• the production of (⇡+⇡�) pairs via the decay of the
K0

S resonance, which produces a very narrow peak
at Mh ⇠ 498 MeV,

• everything else included in a channel which for con-
venience we call “continuum” and we model as the
fragmentation into an “incoherent” pion pair.

The fragmentation via the ⌘ resonance also produces a
peak overlapping with the K0

S one (plus a smaller hump
at Mh ⇠ 350 MeV) but with less statistical weight.
Hence, we will neglect this channel and we will neglect
as well all other resonances which are not visible in the
PYTHIA output [11].

In summary, the behaviour of the fragmentation into
(⇡+⇡�) pairs with respect to their invariant mass will be
simulated in four ways: three channels corresponding to
the decay of the ⇢, !, and K0

S resonances, and a chan-
nel that includes everything else (continuum). Using the
Monte Carlo, we study each channel separately. For each
channel, the flavor sum in Eq. (9) is decomposed in the
contribution of q = u, d, s, and c.

B. Fitting the Monte Carlo simulation

In the first step, for each channel ch = cont, ⇢, !, K,
and for each flavor q = u, d, s, c, we parametrize
Dq

1,ch(z, Mh;Q2

0

) at the hadronic scale Q2

0

= 1 GeV2 tak-

ing inspiration from Refs. [11, 21, 25]. For (⇡+⇡�) pairs,
isospin symmetry and charge conjugation suggest that

Du
1

= Dd
1

= D
u
1

= D
d
1

, (11)
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The best fit of the Monte Carlo output at the Belle scale
shows compatibility with both conditions (11) and (12)
for all channels but for the K0

S ! (⇡+⇡�) decay, where
the choice Dd

1,K 6= Du
1,K is required. In general, we

choose Ds
1

to di↵er from Du
1

only in the z dependence.
The full analytic expression of Dq

1,ch(z, Mh;Q2

0

) can be
found in appendix A. Here, we illustrate the z and Mh de-
pendence of Du

1,⇢ as an example, since it displays enough
general features that are common to most of the other
channels. The function Du
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Figure 6. Histogram of the distribution of M = 100 �2/d.o.f. when minimizing Eq. (4.1) for
↵s(M2

Z) = 0.125 and in the rigid scenario. The solid curve corresponds to a Gaussian distribution
centered at the average of the M = 100 �2 values. The shaded area represents the 1� variance.
The normalization of the Gaussian distribution is adapted to the histogram profile.

above. The uncertainty bands show the result of the 68% of all fitting replicas in the rigid
scenario with ↵s(M2

Z) = 0.125. They are obtained by minimizing the error function in
Eq. (4.1) and by further rejecting the largest 16% and the lowest 16% of the M = 100

replicas’ values in each x point.
In Fig. 6, we show the histogram for the distribution of the M values of the �2/d.o.f

obtained by minimizing the error function in Eq. (4.1) for the rigid scenario with ↵s(M2
Z) =

0.125. For sake of illustration, we compare it with the solid line representing a Gaussian
distribution centered around the average 1.42 of the �2/d.o.f. values for this scenario. The
shaded area represents the 1� variance. The distribution is not peaked at 1 but around
1.4 because of the rigidity of the fitting model. When changing evolution parameter from
↵s(M2

Z) = 0.125 to ↵s(M2
Z) = 0.139, the salient features of the �2 distribution remain

substantially the same and the average �2/d.o.f. increases by less than 3%, as it can be
realized by inspecting Tab. 2.

�2/d.o.f. ↵s(M2
Z) = 0.125 ↵s(M2

Z) = 0.139

rigid 1.42 1.46
flexible 1.65 1.71

extraflexible 1.97 2.07

Table 2. The average �2/d.o.f. obtained by minimizing the error function in Eq. (4.1) for the three
different scenarios explored in the fitting function, and for the two values of ↵s in the evolution
code.

In Fig. 7, we show the up valence transversity, xhuv
1 , as a function of x at Q2

= 2.4

GeV2 in the flexible scenario. The brightest band in the background with dashed borders
is the 68% of all replicas from our previous extraction [16]. The light grey band in the
foreground with dot-dashed borders shows the 68% of all replicas obtained in this work
when using ↵s(M2

Z) = 0.139. The darkest band with solid borders is the result when
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above. The uncertainty bands show the result of the 68% of all fitting replicas in the rigid
scenario with ↵s(M2

Z) = 0.125. They are obtained by minimizing the error function in
Eq. (4.1) and by further rejecting the largest 16% and the lowest 16% of the M = 100

replicas’ values in each x point.
In Fig. 6, we show the histogram for the distribution of the M values of the �2/d.o.f

obtained by minimizing the error function in Eq. (4.1) for the rigid scenario with ↵s(M2
Z) =

0.125. For sake of illustration, we compare it with the solid line representing a Gaussian
distribution centered around the average 1.42 of the �2/d.o.f. values for this scenario. The
shaded area represents the 1� variance. The distribution is not peaked at 1 but around
1.4 because of the rigidity of the fitting model. When changing evolution parameter from
↵s(M2

Z) = 0.125 to ↵s(M2
Z) = 0.139, the salient features of the �2 distribution remain

substantially the same and the average �2/d.o.f. increases by less than 3%, as it can be
realized by inspecting Tab. 2.

�2/d.o.f. ↵s(M2
Z) = 0.125 ↵s(M2

Z) = 0.139

rigid 1.42 1.46
flexible 1.65 1.71

extraflexible 1.97 2.07

Table 2. The average �2/d.o.f. obtained by minimizing the error function in Eq. (4.1) for the three
different scenarios explored in the fitting function, and for the two values of ↵s in the evolution
code.

In Fig. 7, we show the up valence transversity, xhuv
1 , as a function of x at Q2

= 2.4

GeV2 in the flexible scenario. The brightest band in the background with dashed borders
is the 68% of all replicas from our previous extraction [16]. The light grey band in the
foreground with dot-dashed borders shows the 68% of all replicas obtained in this work
when using ↵s(M2

Z) = 0.139. The darkest band with solid borders is the result when
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Figure 4. The up (left) and down (right) valence transversities coming from the present analysis
evolved to Q2 = 2.4GeV2. From top row to bottom, results with the rigid, flexible, and extra-flexible
scenarios are shown, respectively. The dark thick solid lines are the So↵er bound. The uncertainty
band with solid boundaries is the best fit in the standard approach at 1�, whose central value is
given by the central thick solid line. The uncertainty band with dashed boundaries is the 68% of
all fitting replicas obtained in the Monte Carlo approach. As a comparison, the uncertainty band
with short-dashed boundaries is the transversity extraction from the Collins e↵ect [15].

of the Collins e↵ect, from which the other parametrization of ref. [15] is extracted. As a

matter of fact, this is the only source of significant discrepancy between the two extractions,

which otherwise show a high level of compatibility despite the fact that they are obtained

from very di↵erent procedures. Note that if the So↵er bound is saturated at some scale, it

is likely to be significantly violated at a lower scale [46]. Therefore, if we want to maintain

– 15 –

Flexible version

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
2
0
5
P
_
0
3
1
5
 
v
1

0.01 0.03 0.1 0.3 1
-0.4

-0.2

0.0

0.2

0.4

0.6

x

x h1
uv

Figure 7. The up valence transversity as a function of x at Q2
= 2.4 GeV2 in the flexible scenario.

The brightest band in the background with dashed borders is the 68% of all replicas from our
previous extraction [16]. The light grey band in the foreground with dot-dashed borders is the 68%
of all replicas obtained in this work with ↵s(M2

Z) = 0.139. The darkest band with solid borders is
the same but for ↵s(M2

Z) = 0.125. The thick solid lines indicate the Soffer bound.

using ↵s(M2
Z) = 0.125. Finally, the thick solid lines indicate the Soffer bound. The fact

that the latter two bands overlap almost completely confirms that our new extraction is
not very sensitive to the value of ↵s(M2

Z), namely to the theoretical uncertainty in the
evolution equations. On the other side, the impact of the new COMPASS data is rather
evident. There is still overlap between present and previous extractions, but the better
statistical precision of data produces a narrower uncertainty band, at least in the range
0.0065  x  0.29 where there are data. Moreover, the replicas spread out over values that
on average are smaller than before. Since the new COMPASS analysis of Ref. [32] deals with
proton targets, the combination in Eq. (2.10) is not affected. Our extraction of the down
valence transversity is basically unchanged with respect to the previous one [16]; therefore,
we will not show it. Similar results are obtained when switching to other scenarios in the
fitting function; we will not show them as well.

In Fig. 8, we show how our new results compare with other extractions of transversity
based on the Collins effect. In the left (right) panel, the up (down) valence transversity is
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Figure 8. The up (left) and down (right) valence transversities as functions of x at Q2
= 2.4

GeV2. The darker band with solid borders in the foreground is our result in the flexible scenario
with ↵s(M2

Z) = 0.125. The lighter band with dot-dashed borders in the background is the most
recent transversity extraction from the Collins effect [2]. The central thick dashed line is the result
of Ref. [5]. The thick solid lines indicate the Soffer bound.

displayed as a function of x at Q2
= 2.4 GeV2. The darker band with solid borders in the

foreground is our result in the flexible scenario with ↵s(M2
Z) = 0.125. The lighter band

with dot-dashed borders in the background is the most recent transversity extraction of
Ref. [2] using the Collins effect but applying the standard DGLAP evolution equations only
to the collinear part of the fitting function. The central thick dashed line is the result of
Ref. [5], where evolution equations have been computed in the TMD framework.

In the right panel, the disagreement between our result for xhdv
1 (x) at x � 0.1 and

the outcome of the Collins effect is confirmed with respect to our previous analysis (see
Fig. 4 in Ref. [16]). This is due to the fact that the COMPASS data for AD

SIDIS off deuteron
targets remain the same. This trend is confirmed also in the other scenarios, indicating
that it is not an artifact of the chosen functional form. As a matter of fact, our replicas for
the valence down transversity tend to saturate the lower limit of the Soffer bound because
they are driven by the COMPASS deuteron data, in particular by the bins number 7 and
8. It is worth mentioning that some of the replicas outside the 68% band do not follow
this trend. Their trajectories are spread over the whole available space between the upper
and lower limits of the Soffer bound, still maintaining a good �2/d.o.f. (typically, around
2). It is also interesting to remark that the dashed line from Ref. [5], although in general
agreement with the other extraction based on the Collins effect, also tends to saturate the
Soffer bound at x > 0.2.

Apart from the range x � 0.1, there is a general consistency among the various extrac-
tions which is confirmed also for the valence up transversity (left panel), at least for the
range 0.0065  x  0.29 where there are data. This is encouraging: while the dihadron
SIDIS data are a subset of the single-hadron ones, the theoretical frameworks used to in-
terpret them are very different. Nevertheless, we point out that the collinear framework, in
which our results are produced, represents a well established and robust theoretical context.
On the contrary, the implementation of the QCD evolution equations of TMDs needed in
the study of the Collins effect still contains elements of arbitrariness (see Refs. [3–5] and ref-
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of Ref. [5]. The thick solid lines indicate the Soffer bound.
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that it is not an artifact of the chosen functional form. As a matter of fact, our replicas for
the valence down transversity tend to saturate the lower limit of the Soffer bound because
they are driven by the COMPASS deuteron data, in particular by the bins number 7 and
8. It is worth mentioning that some of the replicas outside the 68% band do not follow
this trend. Their trajectories are spread over the whole available space between the upper
and lower limits of the Soffer bound, still maintaining a good �2/d.o.f. (typically, around
2). It is also interesting to remark that the dashed line from Ref. [5], although in general
agreement with the other extraction based on the Collins effect, also tends to saturate the
Soffer bound at x > 0.2.
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tions which is confirmed also for the valence up transversity (left panel), at least for the
range 0.0065  x  0.29 where there are data. This is encouraging: while the dihadron
SIDIS data are a subset of the single-hadron ones, the theoretical frameworks used to in-
terpret them are very different. Nevertheless, we point out that the collinear framework, in
which our results are produced, represents a well established and robust theoretical context.
On the contrary, the implementation of the QCD evolution equations of TMDs needed in
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Fig. 4 in Ref. [16]). This is due to the fact that the COMPASS data for AD
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targets remain the same. This trend is confirmed also in the other scenarios, indicating
that it is not an artifact of the chosen functional form. As a matter of fact, our replicas for
the valence down transversity tend to saturate the lower limit of the Soffer bound because
they are driven by the COMPASS deuteron data, in particular by the bins number 7 and
8. It is worth mentioning that some of the replicas outside the 68% band do not follow
this trend. Their trajectories are spread over the whole available space between the upper
and lower limits of the Soffer bound, still maintaining a good �2/d.o.f. (typically, around
2). It is also interesting to remark that the dashed line from Ref. [5], although in general
agreement with the other extraction based on the Collins effect, also tends to saturate the
Soffer bound at x > 0.2.

Apart from the range x � 0.1, there is a general consistency among the various extrac-
tions which is confirmed also for the valence up transversity (left panel), at least for the
range 0.0065  x  0.29 where there are data. This is encouraging: while the dihadron
SIDIS data are a subset of the single-hadron ones, the theoretical frameworks used to in-
terpret them are very different. Nevertheless, we point out that the collinear framework, in
which our results are produced, represents a well established and robust theoretical context.
On the contrary, the implementation of the QCD evolution equations of TMDs needed in
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recent transversity extraction from the Collins effect [2]. The central thick dashed line is the result
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which our results are produced, represents a well established and robust theoretical context.
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Figure 9. Truncated tensor charges (see text) at Q2
= 10 GeV2 for the valence up (left panel)

and down quark (right panel). From left to right: circle (label 2) for the value obtained through
the Collins effect in Ref. [5], black squares (labels 3-5) for the rigid, flexible, extraflexible scenarios,
respectively, here explored with ↵s(M2

Z) = 0.125, triangles (labels 6-8) for the corresponding ones
with ↵s(M2

Z) = 0.139. All the error bars correspond to the 68% confidence level.

erences therein). Moreover, we believe that our error analysis, based on the replica method
applied to the extraction of both the DiFFs from e+e� data and the transversity from SIDIS
data, represents the current most realistic estimate of the uncertainties on transversity. It
also clearly shows that we have no clue on the transversity for large x � 0.3 where there are
no data at present. This is particularly evident in the left panel of Fig. 8: the replicas in
the darker band tend to fill all the available phase space within the solid lines of the Soffer
bound, graphically visualizing our poor knowledge of xhuv

1 (x) in that range. Similarly, data
are missing also for very small x, and this prevents from fixing the behaviour of transversity
for x ! 0 in a less arbitrary way than the choice made in Eq. (4.2).

In Fig. 9, we show the "truncated" tensor charge

�qqv(Q
2
) =

Z x
max

x
min

dx hqv
1 (x, Q2

) , (4.3)

namely the truncated first Mellin moment of the valence transversity. The integral is
computed for x

min

= 0.0065  x  x
max

= 0.29, i.e. in the range of experimental data,
thus avoiding any numerical uncertainty produced by extrapolation outside this range. In
the left panel, we show �quv(Q2

= 10 GeV2
), in the right panel �qdv(Q2

= 10 GeV2
). They

are calculated at Q2
= 10 GeV2 in order to compare with the results of Ref. [5], which
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= 10 GeV2 for the valence up (left panel)

and down quark (right panel). From left to right: circle (label 2) for the value obtained through
the Collins effect in Ref. [5], black squares (labels 3-5) for the rigid, flexible, extraflexible scenarios,
respectively, here explored with ↵s(M2

Z) = 0.125, triangles (labels 6-8) for the corresponding ones
with ↵s(M2

Z) = 0.139. All the error bars correspond to the 68% confidence level.
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Figure 10. Tensor charges at Q2
0 = 1 GeV2 for the valence up (left panel) and down quark (right

panel). From left to right: circles (label 1, 2) for the values obtained through the Collins effect
in Ref. [2], black squares (labels 3-5) for the rigid, flexible, extraflexible scenarios explored in our
previous extraction of Ref. [16], triangles (labels 6-8) for the present work with ↵s(M2

Z) = 0.125.

are indicated in both panels by the leftmost circle with label 2. The black squares with
labels 3-5 indicate our result with ↵s(M2

Z) = 0.125 for the rigid, flexible, and extraflexible
scenarios, from left to right respectively. The triangles with labels 6-8 correspond to the
choice ↵s(M2

Z) = 0.139 in the same order. The corresponding error bars are computed by
considering the distance between the minimum and the maximum values of the 68% of all
replicas; the squares and triangles identify their equidistant point. Our results are basically
insensitive to the choice of ↵s; so, in the following we will show results only for the choice
↵s(M2

Z) = 0.125, forwarding the reader to Tab. 3 for the numerical values of all considered
cases.

In Fig. 10, we show the full Mellin moments of valence transversity at Q2
0 = 1 GeV2,

i.e. the tensor charges

�qv(Q
2
) =

Z 1

0
dx hqv

1 (x, Q2
) . (4.4)

The integration is now extended to the full x domain by extrapolating hqv
1 (x) outside the

experimental range. As in the previous figure, the left panel refers to the valence up quark
while the right one to the valence down quark. The two leftmost circles (labels 1, 2) are the
results obtained from the analysis of the Collins effect using two different methods for the
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Z) = 0.125.
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Figure 11. Isovector tensor charge �uv � �dv at Q2
= 4 GeV2. From left to right: light square

(label 1) is our result for the flexible scenario with ↵s(M2
Z) = 0.125; black square for the lattice

result of Ref. [46] (RQCD); black triangle from Ref. [47] (RBC-UKQCD); black circle from Ref. [48]
(LHPC); black inverted triangle from Ref. [49] (PNDME); black diamond and star from Ref. [50]
(ETMC) with 2+1 and 2+1+1 flavors, respectively.

�qqv of Eq. (4.3) at Q2
= 10 GeV2 for valence up and down quarks in the rigid, flexi-

ble, extraflexible scenarios for the fitting function of Eq. (4.2) with ↵s(M2
Z) = 0.125 or

↵s(M2
Z) = 0.139 in the evolution code. In the lower part of the table, we show the results

for the same cases but for the tensor charge �qv of Eq. (4.4) at the starting scale Q2
0 = 1

GeV2. All indicated errors are calculated at 68% confidence level.

5 Conclusions

The transversity parton distribution function is an essential piece of information on the
nucleon at leading twist. Its first Mellin moment is related to the nucleon tensor charge.
Due to its chiral-odd nature, transversity cannot be accessed in fully inclusive deep-inelastic
scattering (DIS). Within the framework of collinear factorization, it is however possible
to access it in two-particle-inclusive DIS in combination with Dihadron Fragmentation
Functions (DiFFs). The latter can be extracted from e+e� annihilations producing two
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extraction of the Collins function from e+e� annihilation data [2]. The three black squares
(labels 3-5) correspond to the results of our previous analysis [16] for the rigid, flexible, and
extraflexible scenarios, from left to right respectively. The three rightmost triangles (labels
6-8) indicate the outcome of the present work with ↵s(M2

Z) = 0.125 in the same order.
Consistently with Fig. 7, our new results for the up quark are smaller than the previous
ones. They also appear globally in better agreement with the values from Ref. [2] (and
not far from the ones obtained from the parametrization of chiral-odd Generalized Parton
Distributions of Ref. [37]), although the large uncertainties introduced by the numerical
extrapolation smooth most of the differences. This is particularly evident for the down
quark, where in addition the numerical values are very close because the experimental data
for AD

SIDIS are the same as before.
In Fig. 11, we show the isovector nucleon tensor charge gT = �uv��dv. While there is no

elementary tensor current at tree level in the Standard Model, the nucleon matrix element
of the tensor operator can still be defined (for a review, see Ref. [38] and references therein).
The gT belongs to the group of isovector nucleon charges that are related to flavour-changing
processes. A determination of these couplings may shed light on the search of new physics
mechanisms that may depend on them [39–42], or on direct dark matter searches [43]. The
vector charge gV , axial charge gA, and induced tensor charge g̃T , are fixed by baryon number
conservation, neutron �-decay, and nucleon magnetic moments, respectively [44]. Also the
pseudoscalar charge gP is, to some extext, constrained by low-energy n⇡+ scattering [45].
The other isovector nucleon couplings, including gT , have been determined so far only with
lattice QCD.

In Fig. 11, the leftmost light square with label 1 is our new result for gT = 0.81± 0.44

at Q2
= 4 GeV2 for the flexible scenario with ↵s(M2

Z) = 0.125 at 68% confidence level.
We compare it with various lattice computations. From left to right, the black square
refers to the lattice simulation of RQCD at m⇡ ⇡ 150 MeV with nf = 2 NPI Wilson-
clover fermions [46], the black triangle to that of RBC-UKQCD at m⇡ = 330 MeV with
nf = 2 + 1 domain wall fermions [47], the black circle to that of LHPC at m⇡ ⇡ 149

MeV with nf = 2+1 HEX-smeared Wilson-clover fermions [48], the black inverted triangle
to that of PNDME at m⇡ = 220 MeV with Wilson-clover fermions on a HISQ staggered
nf = 2 + 1 + 1 sea [49], the black diamond and star to that of ETMC at physical m⇡

with nf = 2 twisted mass fermions and at m⇡ = 213 MeV with nf = 2 + 1 + 1 twisted
mass fermions, respectively [50]. Our result is obviously compatible with the various lattice
simulations because of the very large error. As already remarked, this originates from the
fact that the integral in Eq. (4.4) involves the extrapolation of transversity outside the x

range of experimental data. From Fig. 7 it is evident that the replicas tend to take all
values within the Soffer bounds for x � 0.3 where there are no data, thus increasing the
uncertainty. Moreover, we stress again that there is also a source of systematic error related
to the power x1/2 in the fitting form of Eq. (4.2). The absence of data at very low x leaves
this choice basically unconstrained, whereas the value of the integral in Eq. (4.4) heavily
depends on it.

Finally, in Tab. 3 we collect all numerical values that we have obtained for the (trun-
cated) tensor charge. In the upper part of the table, we show the truncated tensor charge
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ones. They also appear globally in better agreement with the values from Ref. [2] (and
not far from the ones obtained from the parametrization of chiral-odd Generalized Parton
Distributions of Ref. [37]), although the large uncertainties introduced by the numerical
extrapolation smooth most of the differences. This is particularly evident for the down
quark, where in addition the numerical values are very close because the experimental data
for AD

SIDIS are the same as before.
In Fig. 11, we show the isovector nucleon tensor charge gT = �uv��dv. While there is no

elementary tensor current at tree level in the Standard Model, the nucleon matrix element
of the tensor operator can still be defined (for a review, see Ref. [38] and references therein).
The gT belongs to the group of isovector nucleon charges that are related to flavour-changing
processes. A determination of these couplings may shed light on the search of new physics
mechanisms that may depend on them [39–42], or on direct dark matter searches [43]. The
vector charge gV , axial charge gA, and induced tensor charge g̃T , are fixed by baryon number
conservation, neutron �-decay, and nucleon magnetic moments, respectively [44]. Also the
pseudoscalar charge gP is, to some extext, constrained by low-energy n⇡+ scattering [45].
The other isovector nucleon couplings, including gT , have been determined so far only with
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In Fig. 11, the leftmost light square with label 1 is our new result for gT = 0.81± 0.44

at Q2
= 4 GeV2 for the flexible scenario with ↵s(M2

Z) = 0.125 at 68% confidence level.
We compare it with various lattice computations. From left to right, the black square
refers to the lattice simulation of RQCD at m⇡ ⇡ 150 MeV with nf = 2 NPI Wilson-
clover fermions [46], the black triangle to that of RBC-UKQCD at m⇡ = 330 MeV with
nf = 2 + 1 domain wall fermions [47], the black circle to that of LHPC at m⇡ ⇡ 149

MeV with nf = 2+1 HEX-smeared Wilson-clover fermions [48], the black inverted triangle
to that of PNDME at m⇡ = 220 MeV with Wilson-clover fermions on a HISQ staggered
nf = 2 + 1 + 1 sea [49], the black diamond and star to that of ETMC at physical m⇡

with nf = 2 twisted mass fermions and at m⇡ = 213 MeV with nf = 2 + 1 + 1 twisted
mass fermions, respectively [50]. Our result is obviously compatible with the various lattice
simulations because of the very large error. As already remarked, this originates from the
fact that the integral in Eq. (4.4) involves the extrapolation of transversity outside the x

range of experimental data. From Fig. 7 it is evident that the replicas tend to take all
values within the Soffer bounds for x � 0.3 where there are no data, thus increasing the
uncertainty. Moreover, we stress again that there is also a source of systematic error related
to the power x1/2 in the fitting form of Eq. (4.2). The absence of data at very low x leaves
this choice basically unconstrained, whereas the value of the integral in Eq. (4.4) heavily
depends on it.

Finally, in Tab. 3 we collect all numerical values that we have obtained for the (trun-
cated) tensor charge. In the upper part of the table, we show the truncated tensor charge
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extraction of the Collins function from e+e� annihilation data [2]. The three black squares
(labels 3-5) correspond to the results of our previous analysis [16] for the rigid, flexible, and
extraflexible scenarios, from left to right respectively. The three rightmost triangles (labels
6-8) indicate the outcome of the present work with ↵s(M2

Z) = 0.125 in the same order.
Consistently with Fig. 7, our new results for the up quark are smaller than the previous
ones. They also appear globally in better agreement with the values from Ref. [2] (and
not far from the ones obtained from the parametrization of chiral-odd Generalized Parton
Distributions of Ref. [37]), although the large uncertainties introduced by the numerical
extrapolation smooth most of the differences. This is particularly evident for the down
quark, where in addition the numerical values are very close because the experimental data
for AD

SIDIS are the same as before.
In Fig. 11, we show the isovector nucleon tensor charge gT = �uv��dv. While there is no

elementary tensor current at tree level in the Standard Model, the nucleon matrix element
of the tensor operator can still be defined (for a review, see Ref. [38] and references therein).
The gT belongs to the group of isovector nucleon charges that are related to flavour-changing
processes. A determination of these couplings may shed light on the search of new physics
mechanisms that may depend on them [39–42], or on direct dark matter searches [43]. The
vector charge gV , axial charge gA, and induced tensor charge g̃T , are fixed by baryon number
conservation, neutron �-decay, and nucleon magnetic moments, respectively [44]. Also the
pseudoscalar charge gP is, to some extext, constrained by low-energy n⇡+ scattering [45].
The other isovector nucleon couplings, including gT , have been determined so far only with
lattice QCD.

In Fig. 11, the leftmost light square with label 1 is our new result for gT = 0.81± 0.44

at Q2
= 4 GeV2 for the flexible scenario with ↵s(M2

Z) = 0.125 at 68% confidence level.
We compare it with various lattice computations. From left to right, the black square
refers to the lattice simulation of RQCD at m⇡ ⇡ 150 MeV with nf = 2 NPI Wilson-
clover fermions [46], the black triangle to that of RBC-UKQCD at m⇡ = 330 MeV with
nf = 2 + 1 domain wall fermions [47], the black circle to that of LHPC at m⇡ ⇡ 149

MeV with nf = 2+1 HEX-smeared Wilson-clover fermions [48], the black inverted triangle
to that of PNDME at m⇡ = 220 MeV with Wilson-clover fermions on a HISQ staggered
nf = 2 + 1 + 1 sea [49], the black diamond and star to that of ETMC at physical m⇡

with nf = 2 twisted mass fermions and at m⇡ = 213 MeV with nf = 2 + 1 + 1 twisted
mass fermions, respectively [50]. Our result is obviously compatible with the various lattice
simulations because of the very large error. As already remarked, this originates from the
fact that the integral in Eq. (4.4) involves the extrapolation of transversity outside the x

range of experimental data. From Fig. 7 it is evident that the replicas tend to take all
values within the Soffer bounds for x � 0.3 where there are no data, thus increasing the
uncertainty. Moreover, we stress again that there is also a source of systematic error related
to the power x1/2 in the fitting form of Eq. (4.2). The absence of data at very low x leaves
this choice basically unconstrained, whereas the value of the integral in Eq. (4.4) heavily
depends on it.

Finally, in Tab. 3 we collect all numerical values that we have obtained for the (trun-
cated) tensor charge. In the upper part of the table, we show the truncated tensor charge
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Figure 11. Isovector tensor charge �uv � �dv at Q2
= 4 GeV2. From left to right: light square

(label 1) is our result for the flexible scenario with ↵s(M2
Z) = 0.125; black square for the lattice

result of Ref. [46] (RQCD); black triangle from Ref. [47] (RBC-UKQCD); black circle from Ref. [48]
(LHPC); black inverted triangle from Ref. [49] (PNDME); black diamond and star from Ref. [50]
(ETMC) with 2+1 and 2+1+1 flavors, respectively.

�qqv of Eq. (4.3) at Q2
= 10 GeV2 for valence up and down quarks in the rigid, flexi-

ble, extraflexible scenarios for the fitting function of Eq. (4.2) with ↵s(M2
Z) = 0.125 or

↵s(M2
Z) = 0.139 in the evolution code. In the lower part of the table, we show the results

for the same cases but for the tensor charge �qv of Eq. (4.4) at the starting scale Q2
0 = 1

GeV2. All indicated errors are calculated at 68% confidence level.

5 Conclusions

The transversity parton distribution function is an essential piece of information on the
nucleon at leading twist. Its first Mellin moment is related to the nucleon tensor charge.
Due to its chiral-odd nature, transversity cannot be accessed in fully inclusive deep-inelastic
scattering (DIS). Within the framework of collinear factorization, it is however possible
to access it in two-particle-inclusive DIS in combination with Dihadron Fragmentation
Functions (DiFFs). The latter can be extracted from e+e� annihilations producing two
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extraction of the Collins function from e+e� annihilation data [2]. The three black squares
(labels 3-5) correspond to the results of our previous analysis [16] for the rigid, flexible, and
extraflexible scenarios, from left to right respectively. The three rightmost triangles (labels
6-8) indicate the outcome of the present work with ↵s(M2

Z) = 0.125 in the same order.
Consistently with Fig. 7, our new results for the up quark are smaller than the previous
ones. They also appear globally in better agreement with the values from Ref. [2] (and
not far from the ones obtained from the parametrization of chiral-odd Generalized Parton
Distributions of Ref. [37]), although the large uncertainties introduced by the numerical
extrapolation smooth most of the differences. This is particularly evident for the down
quark, where in addition the numerical values are very close because the experimental data
for AD

SIDIS are the same as before.
In Fig. 11, we show the isovector nucleon tensor charge gT = �uv��dv. While there is no

elementary tensor current at tree level in the Standard Model, the nucleon matrix element
of the tensor operator can still be defined (for a review, see Ref. [38] and references therein).
The gT belongs to the group of isovector nucleon charges that are related to flavour-changing
processes. A determination of these couplings may shed light on the search of new physics
mechanisms that may depend on them [39–42], or on direct dark matter searches [43]. The
vector charge gV , axial charge gA, and induced tensor charge g̃T , are fixed by baryon number
conservation, neutron �-decay, and nucleon magnetic moments, respectively [44]. Also the
pseudoscalar charge gP is, to some extext, constrained by low-energy n⇡+ scattering [45].
The other isovector nucleon couplings, including gT , have been determined so far only with
lattice QCD.

In Fig. 11, the leftmost light square with label 1 is our new result for gT = 0.81± 0.44

at Q2
= 4 GeV2 for the flexible scenario with ↵s(M2

Z) = 0.125 at 68% confidence level.
We compare it with various lattice computations. From left to right, the black square
refers to the lattice simulation of RQCD at m⇡ ⇡ 150 MeV with nf = 2 NPI Wilson-
clover fermions [46], the black triangle to that of RBC-UKQCD at m⇡ = 330 MeV with
nf = 2 + 1 domain wall fermions [47], the black circle to that of LHPC at m⇡ ⇡ 149

MeV with nf = 2+1 HEX-smeared Wilson-clover fermions [48], the black inverted triangle
to that of PNDME at m⇡ = 220 MeV with Wilson-clover fermions on a HISQ staggered
nf = 2 + 1 + 1 sea [49], the black diamond and star to that of ETMC at physical m⇡

with nf = 2 twisted mass fermions and at m⇡ = 213 MeV with nf = 2 + 1 + 1 twisted
mass fermions, respectively [50]. Our result is obviously compatible with the various lattice
simulations because of the very large error. As already remarked, this originates from the
fact that the integral in Eq. (4.4) involves the extrapolation of transversity outside the x

range of experimental data. From Fig. 7 it is evident that the replicas tend to take all
values within the Soffer bounds for x � 0.3 where there are no data, thus increasing the
uncertainty. Moreover, we stress again that there is also a source of systematic error related
to the power x1/2 in the fitting form of Eq. (4.2). The absence of data at very low x leaves
this choice basically unconstrained, whereas the value of the integral in Eq. (4.4) heavily
depends on it.

Finally, in Tab. 3 we collect all numerical values that we have obtained for the (trun-
cated) tensor charge. In the upper part of the table, we show the truncated tensor charge
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ones. They also appear globally in better agreement with the values from Ref. [2] (and
not far from the ones obtained from the parametrization of chiral-odd Generalized Parton
Distributions of Ref. [37]), although the large uncertainties introduced by the numerical
extrapolation smooth most of the differences. This is particularly evident for the down
quark, where in addition the numerical values are very close because the experimental data
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SIDIS are the same as before.
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pseudoscalar charge gP is, to some extext, constrained by low-energy n⇡+ scattering [45].
The other isovector nucleon couplings, including gT , have been determined so far only with
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Z) = 0.125 at 68% confidence level.
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nf = 2 + 1 domain wall fermions [47], the black circle to that of LHPC at m⇡ ⇡ 149

MeV with nf = 2+1 HEX-smeared Wilson-clover fermions [48], the black inverted triangle
to that of PNDME at m⇡ = 220 MeV with Wilson-clover fermions on a HISQ staggered
nf = 2 + 1 + 1 sea [49], the black diamond and star to that of ETMC at physical m⇡

with nf = 2 twisted mass fermions and at m⇡ = 213 MeV with nf = 2 + 1 + 1 twisted
mass fermions, respectively [50]. Our result is obviously compatible with the various lattice
simulations because of the very large error. As already remarked, this originates from the
fact that the integral in Eq. (4.4) involves the extrapolation of transversity outside the x

range of experimental data. From Fig. 7 it is evident that the replicas tend to take all
values within the Soffer bounds for x � 0.3 where there are no data, thus increasing the
uncertainty. Moreover, we stress again that there is also a source of systematic error related
to the power x1/2 in the fitting form of Eq. (4.2). The absence of data at very low x leaves
this choice basically unconstrained, whereas the value of the integral in Eq. (4.4) heavily
depends on it.

Finally, in Tab. 3 we collect all numerical values that we have obtained for the (trun-
cated) tensor charge. In the upper part of the table, we show the truncated tensor charge
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3

FIG. 1: (Color online) Values of the tensor charge,
g
T

(0, 4GeV2) with its uncertainty as obtained in: (1) DVMP,
Ref. [36]; (2) flexible form DiFF, Ref. [35]; (3) Single pion jet
SIDIS, Ref. [37]; Lattice QCD: (4) RQCD [14], (5) LHPC [12],
(6) PNDME [13].

better measurement of the d quarks contribution. The
results from this extraction are shown in Figure 1.

Deeply virtual exclusive pseudoscalar meson produc-
tion (DVMP),

l +N ! l0 + ⇡o(⌘) +N 0,

was proposed as a way to access transversity GPDs as-
suming a (twist three) chiral odd coupling (/ �5) for the
⇡o(⌘) prompt production mechanism [36, 38–42]. Three
additional transverse spin configurations are allowed in
the proton besides transversity which can be described in
terms of combinations of GPDs called E

T

, eH
T

, eE
T

[25].
The GPDs enter the observables at the amplitude level,
convoluted with complex coe�cients at the leading order,
thus forming the generalized form form factors (GFFs).
The various cross section terms and asymmetries are bi-
linear functions of the GFFs. A careful analysis of the
helicity amplitudes contributing to DVMP has to be per-
formed in order to disentangle the various chiral odd
GFFs from experiment [43].

The ideal set of data to maximally constrain the tensor
charge in the chiral odd sector are from the transverse
target spin asymmetry modulation [36],

F
sin(���S)
UT

= =m
h
H⇤

T

(2 eH
T

+ E
T

)
i

(7)

where �, is the angle between the leptonic and hadronic
planes, and �

s

, the angle between the lepton’s plane
and the outgoing hadron’s transverse spin. In Ref.[36]
the tensor charge was, however, extracted by fitting the
unpolarized ⇡o production cross section [20], using a
parametrization constrained from data in the chiral even

FIG. 2: (Color online) Bounds on ✏
T

obtained from preci-
sion measurements of beta decay using all current extrac-
tions and lattice QCD evaluations of the tensor charge g

T

,
plotted vs. the relative error, �g

T

/g
T

described in the text:
(turqoise) Lattice QCD [12, 13]; (yellow) Lattice QCD [14];
(green) Deeply virtual ⇡o and ⌘ production [36]; (blue) single
pion SIDIS [37]; (red) dihadron SIDIS [35]. The dashed lines
are future projections. All results were obtained using in the
definition of �g

T

/g
T

, each individual evaluation’s g
T

. The
grey band gives the error assuming �g

T

= 0, and the average
g
T

(see Fig.1). The lattice evaluations from Refs. [12, 13] are
indistinguishable.

sector to guide the functional shape of the in principle un-
known chiral odd GPDs. Notice that the tensor charge
was obtained with a relatively small error because of the
presence of these constraints. The results from this ex-
traction are also shown in Fig. 1.
Finally, in Fig. 1 we quote also the value obtained in

single pion SIDIS [37], although this is known to contain
some unaccounted for corrections from TMD evolution
[44, 45].

The impact on the extraction of ✏
T

, of both the lattice
QCD and experimental determinations of g

T

is regulated
by the most recent limit [46, 47],

| ✏
T

g
T

|< 6.4⇥ 10�4 (90%CL). (8)

Assuming no error on the extraction/evaluation of g
T

,
yields �✏

T,min

= 6.4 ⇥ 10�4/g
T

. Since the errors on
g
T

in both the lattice QCD and experimental extrac-
tions are a↵ected by systematic/theoretical uncertainty,
alternatives to the standard Hessian evaluation have been
adopted in recent analyses [18] which are based on the
R-fit method [48, 49]. By introducing the error on g

T

, we
obtain �✏

T

� �✏
T,min

. The amount by which �✏
T

de-
viates from the minimum error depends, however, on the
relative error �g

T

/g
T

as well as on the central value of
g
T

, and on C
T

. We find that within the range of param-
eters extracted from our analysis of exclusive and semi-
inclusive experiments, knowing the tensor charge up to a

[Courtoy, Baessler, Gonzalez-
Alonso, Liuti, 1503.06814]
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We evaluate the impact of recent developments in hadron phenomenology on constraining the
electroweak e↵ective theory Lagrangian beyond the standard model. We focus, in particular, on
the scalar and tensor components which can be measured in precision neutron beta decay. We
show how a class of new observables, the chiral-odd generalized parton distributions, along with the
extraction of the transversity structure function from dihadron electroproduction, can provide for
the first time well, it is not the first time there are constraints, but the first time they
are combined experimental constraints on the tensor charge. Direct experimental extractions if
su�ciently precise, provide a more stringent constraint than lattice QCD calculations.
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I. INTRODUCTION

High precision measurements of beta decay observables using cold and ultra-cold neutrons [] play an important
role in beyond the standard model (BSM) physics searches, the limits for new physics being sought, in this case, by
means of an e↵ective field theory (EFT) approach [1]. The most precise measurements, which are at the per-mil level
or even better [], are sensitive to BSM e↵ects generated at teraelectronvolt (TeV) scales and complement collider
searches []. The new scalar and tensor interactions which could contribute to beta decay are introduced through an
e↵ective Lagrangian including up to dimension six operators,

L
e↵

= L
SM

+�L
e↵

= L
SM

+
1

v2

X✓
v2

⇤2

i

◆
Oi (1)

where the SM term, L
SM

, contains only V-A operators while �L
e↵

includes BSM operators, i = S, T, P, V + A,
respectively describing the scalar, tensor, pseudo-scalar, and V+A interactions. Each BSM term depends I would

may be say ”parameterized” on the ratio between the Higgs vacuum expectation value, v = (2
p
2G

F

)�1/2 ⇡ 174
GeV, where G

F

is the Fermi constant G
F

= g2/(4
p
2m2

W

), and the mass scale for new physics, ⇤
i

. A low scale e↵ective
Lagrangian for semileptonic transitions was derived for example, in Ref. [2] which specifically includes contributions
from the scalar, ✏

S

, pseudo-scalar, ✏
P

, and tensor, ✏
T

, couplings through both W exchange diagrams with modified
W-fermion couplings, and specific four-fermion operators. The main e↵ect of V + A contributions is the deviation
from the SM prediction of the CKM element V

ud

, whereas (pseudo-)scalar and tensor interactions would also modify
the spectra and angular asymmetries []. We focus in this work on an e↵ective low-energy tensor interaction, which
can be parametrized as follows 1

�L
e↵

= �G
F

V
udp
2

✏
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ū�µ⌫(1� �
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)d · ē�
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Can it constrain New Physics interaction?

Effective theories approach

Nucleon effective coupling from Beta Decay Exp.

2

The e↵ective coupling (Wilson coe�cient), ✏
T

, is a function of the masses and couplings of the new particles
mediating this interaction, similarly to the Fermi constant depending on the W-mass and the weak couplings. Notice
that we have defined ✏

T

relative to the Fermi interaction, and therefore we have ✏
T

/ m2

W

/⇤2, where ⇤ is the New
Physics scale relevant for this non-standard tensor interaction. Such an interaction can be generated for example by
the tree-level exchange of new particles, e.g. lepto-quarks [], or by loop diagrams with supersymmetric particles [].
More generally, if new particles are heavier than the electroweak scale, this low-energy Wilson coe�cient ✏

T

can be
matched to a high-energy Wilson coe�cient associated with the SU(2)

L

⇥U(1)
Y

invariant operator O
T

= . . . []. This
high-energy E↵ective Field Theory (EFT) is sometimes called the Standard Model EFT.

To connect to observables, the matrix elements of all quark bilinear Lorentz structures that appear in the e↵ective
Lagrangian are taken between neutron and proton states. These matrix elements can be parameterized in terms of
their corresponding nucleon form factors thus allowing one to match the ✏

i

couplings onto the nucleon Lagrangian
e↵ective couplings describing the polarized neutron decay distribution []. As a result, within EFT one establishes a
model-independent connection/matching procedure between the constraints from collider observables and the ones
from low-energy precision measurements: the appearance of possible new particles at a fundamental high scale is
inferred from a signal at low energy, as new BSM terms detected in the neutron beta-decay distribution.

The measurement of lifetimes, spectra and angular asymmetries in both nuclear and neutron � decays constrain
the nucleon e↵ective coupling C

T

, which is connected to ✏
T

by

C
T

=
4 G

F

V
udp

2
g
T

✏
T

, (3)

where g
T

is the isovector tensor charge, defined as the following neutron-proton form factor evaluated at t = 0,
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where U
p,n

are the neutron and proton spinor amplitudes and t = �2 = p
p

� p
n

, is the momentum transfer squared.
2Let us stress that this hadron matrix element does not appear in the SM theoretical description of beta decays at
any practical level. However, its determination is crucial to translate experimental bounds on C

T

into the quark-level
coupling ✏

T

.
The relevant observables appear in both the di↵erential decay distribution for polarized neutrons [], and in the

integrated distribution giving the neutron lifetime, ⌧
n

. These are the electron-neutrino correlation, a, the beta
asymmetry, A, the neutrino asymmetry, B, and the Fierz interference term, b [].

A thorough analysis of precision beta decay with cold and ultra-cold neutrons was conducted In Ref. [2], with the
aim of assessing whether the uncertainties from current measurements allow one to access O(10�3) limits on the scalar
and tensor interactions. Within the working hypotheses that ✏

T

and ✏
S

are real, and disregarding CP odd terms, the
most sensitive observable to BSM physics is the Fierz interference term, b, which can be di↵erent from zero only if
the scalar or tensor current terms are present. The neutrino asymmetry coe�cient B also receives contributions from
BSM currents through b

⌫

, or the coe�cient of the electron mass to energy ratio term m
e

/E
e

. 3 Both b and b
⌫

can be
written in terms of the scalar and tensor couplings, g

S

and g
T

, and of the scalar and tensor matrix elements, ✏
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and
✏
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, respectively as,
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, the hadronic charged currents (CC) matrix elements are defined as,
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2 In Eq. (4) we neglect other contributions to the matrix element of the tensor current since they are kinematically suppressed by | � | /Mn,
Mn being the neutron mass [2].

3 It should be noticed that recoil corrections as well as radiative corrections also contribute at the 10�3 level.
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Notice that ✏
T

has a renormalization scale and scheme dependence that must be cancelled by the corresponding
form factor g

T

.
where The ✏

T

coe�cient carries a / v2/⇤2 dependence9 on the new-physics scale ⇤ and in the SM they vanish
leaving the well-known (V � A) ⇥ (V � A) structure generated by the exchange of a W boson. Such exotic tensor
interaction can be generated for example by the tree-level exchange of a scalar leptoquark.

Precise measurements in beta decay set strong bounds on the combination g
T

✏
T

, namely [69, 70]

|g
T

✏
T

| < 6 · 10�4 (90% C.L.) , (41)

which is expected to be improved by the next generation of experiments. In particular, a measurement of the Fierz
term b in neutron beta decay at the per-mil level, would improve this bound by a factor of 3.

In order to extract a bound on the Wilson coe�cient ✏
T

from Eq. (41) it is necessary to know the value of the
tensor charge g

T

. Such a bound on ✏
T

can be translated into bounds on masses and couplings in any specific new
physics setup.

It is clear that a large error in the tensor charge will dilute the strong bound given in Eq. (41), which in fact
vanishes completely if the tensor charge is zero. In other words, the sensitivity of beta decay measurements to exotic
tensor interactions depends on our knowledge of the tensor charge. This issue was studied in Ref. [] where it was
shown that a precision of 10-15% in g

T

was necessary to fully exploit a future determination of the Fierz term b at
the per-mil level. Let us do a similar analysis here to understand the impact of the phenomenological determinations
of g

T

explained in the previous sections.
Since the theoretical error is the dominating one in both lattice and phenomenological determinations, one cannot

assume a gaussian distribution of the error around the central value. In order to deal with this situation we follow
Ref. [2] and we calculate the confidence interval on ✏

T

using the so-called R-Fit method [71]. In this scheme the
theoretical likelihoods do not contribute to the �2 of the fit and the corresponding QCD parameters take values
within certain “allowed ranges”. In our case, this means that g

T

is restricted to remain inside a given interval, e.g.
0.16  g

T

 1.20 for the current determination from di-hadron SIDIS (Section ??) TO BE UPDATED. Notice that
all values inside this range are treated on an equal footing, whereas values outside the interval are not permitted
irrespective of how close they are from the edges of the allowed range. The chi-squared function is then given by
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where the minimization is performed varying g
T

within its allowed range. A careful look at this function reveals that
the bound on ✏

T

depends only on the lower limit of the tensor charge, as long as the experimental determination of
g
T

✏
T

is compatible with zero at 1�.
In this way we obtain the limits on the Wilson coe�cient ✏

T

that are shown in Fig. 6, using di↵erent values of the
tensor charge. Let us remind for comparison that the bound obtained from the analysis of LHC data carried out in
Ref. [72] is |✏

T

| < 0.0013.

V. CONCLUSIONS

The possibility of obtaining the scalar and tensor charges directly from experiment with su�cient precision, gives
an entirely di↵erent leverage to neutron beta decay searches.

Due to its non-perturbative nature, the nucleon structure can only be unveiled using complementary methods such
as e↵ecive field theories, lattice calculations, models for the nucleon structure, Schwinger-Dyson based techniques

9 v denotes the electroweak symmetry breaking scale, v = (
p
2GF )�1/2 ' 246 GeV.

[Pattie et al, Phys.Rev. C88]
[Wauters et al, Phys.Rev. C89]
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I. INTRODUCTION

High precision measurements of beta decay observables using cold and ultra-cold neutrons [] play an important
role in beyond the standard model (BSM) physics searches, the limits for new physics being sought, in this case, by
means of an e↵ective field theory (EFT) approach [1]. The most precise measurements, which are at the per-mil level
or even better [], are sensitive to BSM e↵ects generated at teraelectronvolt (TeV) scales and complement collider
searches []. The new scalar and tensor interactions which could contribute to beta decay are introduced through an
e↵ective Lagrangian including up to dimension six operators,
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W-fermion couplings, and specific four-fermion operators. The main e↵ect of V + A contributions is the deviation
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The e↵ective coupling (Wilson coe�cient), ✏
T

, is a function of the masses and couplings of the new particles
mediating this interaction, similarly to the Fermi constant depending on the W-mass and the weak couplings. Notice
that we have defined ✏
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/⇤2, where ⇤ is the New
Physics scale relevant for this non-standard tensor interaction. Such an interaction can be generated for example by
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high-energy E↵ective Field Theory (EFT) is sometimes called the Standard Model EFT.
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Lagrangian are taken between neutron and proton states. These matrix elements can be parameterized in terms of
their corresponding nucleon form factors thus allowing one to match the ✏
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couplings onto the nucleon Lagrangian
e↵ective couplings describing the polarized neutron decay distribution []. As a result, within EFT one establishes a
model-independent connection/matching procedure between the constraints from collider observables and the ones
from low-energy precision measurements: the appearance of possible new particles at a fundamental high scale is
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2Let us stress that this hadron matrix element does not appear in the SM theoretical description of beta decays at
any practical level. However, its determination is crucial to translate experimental bounds on C

T

into the quark-level
coupling ✏

T

.
The relevant observables appear in both the di↵erential decay distribution for polarized neutrons [], and in the

integrated distribution giving the neutron lifetime, ⌧
n

. These are the electron-neutrino correlation, a, the beta
asymmetry, A, the neutrino asymmetry, B, and the Fierz interference term, b [].

A thorough analysis of precision beta decay with cold and ultra-cold neutrons was conducted In Ref. [2], with the
aim of assessing whether the uncertainties from current measurements allow one to access O(10�3) limits on the scalar
and tensor interactions. Within the working hypotheses that ✏

T

and ✏
S

are real, and disregarding CP odd terms, the
most sensitive observable to BSM physics is the Fierz interference term, b, which can be di↵erent from zero only if
the scalar or tensor current terms are present. The neutrino asymmetry coe�cient B also receives contributions from
BSM currents through b

⌫

, or the coe�cient of the electron mass to energy ratio term m
e

/E
e

. 3 Both b and b
⌫

can be
written in terms of the scalar and tensor couplings, g

S

and g
T

, and of the scalar and tensor matrix elements, ✏
S

and
✏
T

, respectively as,

b =
2

1 + 3�2

[g
S

✏
S

� 12g
T

✏
T

�] (5)

b
⌫

=
2

1 + 3�2
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S

✏
S

�� 4g
T

✏
T

(1 + 2�)] , (6)

where � = g
A

/g
V

, the hadronic charged currents (CC) matrix elements are defined as,
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µ⌫

d |N(p
n

, S
n

)i = g
T

�
�(p

n

� p
p

)2
�
U(p

p

, S
p

)�
µ⌫

U(p
n

, S
n
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2 In Eq. (4) we neglect other contributions to the matrix element of the tensor current since they are kinematically suppressed by | � | /Mn,
Mn being the neutron mass [2].

3 It should be noticed that recoil corrections as well as radiative corrections also contribute at the 10�3 level.
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Notice that ✏
T

has a renormalization scale and scheme dependence that must be cancelled by the corresponding
form factor g

T

.
where The ✏

T

coe�cient carries a / v2/⇤2 dependence9 on the new-physics scale ⇤ and in the SM they vanish
leaving the well-known (V � A) ⇥ (V � A) structure generated by the exchange of a W boson. Such exotic tensor
interaction can be generated for example by the tree-level exchange of a scalar leptoquark.

Precise measurements in beta decay set strong bounds on the combination g
T

✏
T

, namely [69, 70]

|g
T

✏
T

| < 6 · 10�4 (90% C.L.) , (41)

which is expected to be improved by the next generation of experiments. In particular, a measurement of the Fierz
term b in neutron beta decay at the per-mil level, would improve this bound by a factor of 3.

In order to extract a bound on the Wilson coe�cient ✏
T

from Eq. (41) it is necessary to know the value of the
tensor charge g

T

. Such a bound on ✏
T

can be translated into bounds on masses and couplings in any specific new
physics setup.

It is clear that a large error in the tensor charge will dilute the strong bound given in Eq. (41), which in fact
vanishes completely if the tensor charge is zero. In other words, the sensitivity of beta decay measurements to exotic
tensor interactions depends on our knowledge of the tensor charge. This issue was studied in Ref. [] where it was
shown that a precision of 10-15% in g

T

was necessary to fully exploit a future determination of the Fierz term b at
the per-mil level. Let us do a similar analysis here to understand the impact of the phenomenological determinations
of g

T

explained in the previous sections.
Since the theoretical error is the dominating one in both lattice and phenomenological determinations, one cannot

assume a gaussian distribution of the error around the central value. In order to deal with this situation we follow
Ref. [2] and we calculate the confidence interval on ✏

T

using the so-called R-Fit method [71]. In this scheme the
theoretical likelihoods do not contribute to the �2 of the fit and the corresponding QCD parameters take values
within certain “allowed ranges”. In our case, this means that g

T

is restricted to remain inside a given interval, e.g.
0.16  g

T

 1.20 for the current determination from di-hadron SIDIS (Section ??) TO BE UPDATED. Notice that
all values inside this range are treated on an equal footing, whereas values outside the interval are not permitted
irrespective of how close they are from the edges of the allowed range. The chi-squared function is then given by

�2(✏
T

) = min
g

T

✓
[g

T

✏
T

]exp � g
T

✏
T

� [g
T

✏
T

]exp

◆
2

, (42)

where the minimization is performed varying g
T

within its allowed range. A careful look at this function reveals that
the bound on ✏

T

depends only on the lower limit of the tensor charge, as long as the experimental determination of
g
T

✏
T

is compatible with zero at 1�.
In this way we obtain the limits on the Wilson coe�cient ✏

T

that are shown in Fig. 6, using di↵erent values of the
tensor charge. Let us remind for comparison that the bound obtained from the analysis of LHC data carried out in
Ref. [72] is |✏

T

| < 0.0013.

V. CONCLUSIONS

The possibility of obtaining the scalar and tensor charges directly from experiment with su�cient precision, gives
an entirely di↵erent leverage to neutron beta decay searches.

Due to its non-perturbative nature, the nucleon structure can only be unveiled using complementary methods such
as e↵ecive field theories, lattice calculations, models for the nucleon structure, Schwinger-Dyson based techniques

9 v denotes the electroweak symmetry breaking scale, v = (
p
2GF )�1/2 ' 246 GeV.

[Pattie et al, Phys.Rev. C88]
[Wauters et al, Phys.Rev. C89]
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FIG. 1: (Color online) Values of the tensor charge,
g
T

(0, 4GeV2) with its uncertainty as obtained in: (1) DVMP,
Ref. [36]; (2) flexible form DiFF, Ref. [35]; (3) Single pion jet
SIDIS, Ref. [37]; Lattice QCD: (4) RQCD [14], (5) LHPC [12],
(6) PNDME [13].

better measurement of the d quarks contribution. The
results from this extraction are shown in Figure 1.

Deeply virtual exclusive pseudoscalar meson produc-
tion (DVMP),

l +N ! l0 + ⇡o(⌘) +N 0,

was proposed as a way to access transversity GPDs as-
suming a (twist three) chiral odd coupling (/ �5) for the
⇡o(⌘) prompt production mechanism [36, 38–42]. Three
additional transverse spin configurations are allowed in
the proton besides transversity which can be described in
terms of combinations of GPDs called E

T

, eH
T

, eE
T

[25].
The GPDs enter the observables at the amplitude level,
convoluted with complex coe�cients at the leading order,
thus forming the generalized form form factors (GFFs).
The various cross section terms and asymmetries are bi-
linear functions of the GFFs. A careful analysis of the
helicity amplitudes contributing to DVMP has to be per-
formed in order to disentangle the various chiral odd
GFFs from experiment [43].

The ideal set of data to maximally constrain the tensor
charge in the chiral odd sector are from the transverse
target spin asymmetry modulation [36],

F
sin(���S)
UT

= =m
h
H⇤

T

(2 eH
T

+ E
T

)
i

(7)

where �, is the angle between the leptonic and hadronic
planes, and �

s

, the angle between the lepton’s plane
and the outgoing hadron’s transverse spin. In Ref.[36]
the tensor charge was, however, extracted by fitting the
unpolarized ⇡o production cross section [20], using a
parametrization constrained from data in the chiral even

FIG. 2: (Color online) Bounds on ✏
T

obtained from preci-
sion measurements of beta decay using all current extrac-
tions and lattice QCD evaluations of the tensor charge g

T

,
plotted vs. the relative error, �g

T

/g
T

described in the text:
(turqoise) Lattice QCD [12, 13]; (yellow) Lattice QCD [14];
(green) Deeply virtual ⇡o and ⌘ production [36]; (blue) single
pion SIDIS [37]; (red) dihadron SIDIS [35]. The dashed lines
are future projections. All results were obtained using in the
definition of �g

T

/g
T

, each individual evaluation’s g
T

. The
grey band gives the error assuming �g

T

= 0, and the average
g
T

(see Fig.1). The lattice evaluations from Refs. [12, 13] are
indistinguishable.

sector to guide the functional shape of the in principle un-
known chiral odd GPDs. Notice that the tensor charge
was obtained with a relatively small error because of the
presence of these constraints. The results from this ex-
traction are also shown in Fig. 1.
Finally, in Fig. 1 we quote also the value obtained in

single pion SIDIS [37], although this is known to contain
some unaccounted for corrections from TMD evolution
[44, 45].

The impact on the extraction of ✏
T

, of both the lattice
QCD and experimental determinations of g

T

is regulated
by the most recent limit [46, 47],

| ✏
T

g
T

|< 6.4⇥ 10�4 (90%CL). (8)

Assuming no error on the extraction/evaluation of g
T

,
yields �✏

T,min

= 6.4 ⇥ 10�4/g
T

. Since the errors on
g
T

in both the lattice QCD and experimental extrac-
tions are a↵ected by systematic/theoretical uncertainty,
alternatives to the standard Hessian evaluation have been
adopted in recent analyses [18] which are based on the
R-fit method [48, 49]. By introducing the error on g

T

, we
obtain �✏

T

� �✏
T,min

. The amount by which �✏
T

de-
viates from the minimum error depends, however, on the
relative error �g

T

/g
T

as well as on the central value of
g
T

, and on C
T

. We find that within the range of param-
eters extracted from our analysis of exclusive and semi-
inclusive experiments, knowing the tensor charge up to a
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and División de Ciencias e Ingenieŕıas, Universidad de Guanajuato, C.P. 37150, León, Guanajuato, México
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We evaluate the impact of recent developments in hadron phenomenology on constraining the
electroweak e↵ective theory Lagrangian beyond the standard model. We focus, in particular, on
the scalar and tensor components which can be measured in precision neutron beta decay. We
show how a class of new observables, the chiral-odd generalized parton distributions, along with the
extraction of the transversity structure function from dihadron electroproduction, can provide for
the first time well, it is not the first time there are constraints, but the first time they
are combined experimental constraints on the tensor charge. Direct experimental extractions if
su�ciently precise, provide a more stringent constraint than lattice QCD calculations.

PACS numbers: 13.60.Hb, 13.40.Gp, 24.85.+p

I. INTRODUCTION

High precision measurements of beta decay observables using cold and ultra-cold neutrons [] play an important
role in beyond the standard model (BSM) physics searches, the limits for new physics being sought, in this case, by
means of an e↵ective field theory (EFT) approach [1]. The most precise measurements, which are at the per-mil level
or even better [], are sensitive to BSM e↵ects generated at teraelectronvolt (TeV) scales and complement collider
searches []. The new scalar and tensor interactions which could contribute to beta decay are introduced through an
e↵ective Lagrangian including up to dimension six operators,

L
e↵

= L
SM

+�L
e↵

= L
SM

+
1

v2

X✓
v2

⇤2

i

◆
Oi (1)

where the SM term, L
SM

, contains only V-A operators while �L
e↵

includes BSM operators, i = S, T, P, V + A,
respectively describing the scalar, tensor, pseudo-scalar, and V+A interactions. Each BSM term depends I would

may be say ”parameterized” on the ratio between the Higgs vacuum expectation value, v = (2
p
2G

F

)�1/2 ⇡ 174
GeV, where G

F

is the Fermi constant G
F

= g2/(4
p
2m2

W

), and the mass scale for new physics, ⇤
i

. A low scale e↵ective
Lagrangian for semileptonic transitions was derived for example, in Ref. [2] which specifically includes contributions
from the scalar, ✏

S

, pseudo-scalar, ✏
P

, and tensor, ✏
T

, couplings through both W exchange diagrams with modified
W-fermion couplings, and specific four-fermion operators. The main e↵ect of V + A contributions is the deviation
from the SM prediction of the CKM element V

ud

, whereas (pseudo-)scalar and tensor interactions would also modify
the spectra and angular asymmetries []. We focus in this work on an e↵ective low-energy tensor interaction, which
can be parametrized as follows 1

�L
e↵

= �G
F

V
udp
2

✏
T

ū�µ⌫(1� �
5

)d · ē�
µ⌫

(1� �
5

)⌫
e

. (2)
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1 We consider only terms with left-handed neutrinos, which are the most relevant for beta decay searches, what about quark R and

L terms?.

Can it constrain New Physics interaction?

Effective theories approach

Nucleon effective coupling from Beta Decay Exp.

2

The e↵ective coupling (Wilson coe�cient), ✏
T

, is a function of the masses and couplings of the new particles
mediating this interaction, similarly to the Fermi constant depending on the W-mass and the weak couplings. Notice
that we have defined ✏

T

relative to the Fermi interaction, and therefore we have ✏
T

/ m2

W

/⇤2, where ⇤ is the New
Physics scale relevant for this non-standard tensor interaction. Such an interaction can be generated for example by
the tree-level exchange of new particles, e.g. lepto-quarks [], or by loop diagrams with supersymmetric particles [].
More generally, if new particles are heavier than the electroweak scale, this low-energy Wilson coe�cient ✏

T

can be
matched to a high-energy Wilson coe�cient associated with the SU(2)

L

⇥U(1)
Y

invariant operator O
T

= . . . []. This
high-energy E↵ective Field Theory (EFT) is sometimes called the Standard Model EFT.

To connect to observables, the matrix elements of all quark bilinear Lorentz structures that appear in the e↵ective
Lagrangian are taken between neutron and proton states. These matrix elements can be parameterized in terms of
their corresponding nucleon form factors thus allowing one to match the ✏

i

couplings onto the nucleon Lagrangian
e↵ective couplings describing the polarized neutron decay distribution []. As a result, within EFT one establishes a
model-independent connection/matching procedure between the constraints from collider observables and the ones
from low-energy precision measurements: the appearance of possible new particles at a fundamental high scale is
inferred from a signal at low energy, as new BSM terms detected in the neutron beta-decay distribution.

The measurement of lifetimes, spectra and angular asymmetries in both nuclear and neutron � decays constrain
the nucleon e↵ective coupling C

T

, which is connected to ✏
T

by

C
T

=
4 G

F

V
udp

2
g
T

✏
T

, (3)

where g
T

is the isovector tensor charge, defined as the following neutron-proton form factor evaluated at t = 0,

hp(p
p
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)i = g
T

(�t) Ū
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(p
p

)�
µ⌫

U
n

(p
n

) , (4)

where U
p,n

are the neutron and proton spinor amplitudes and t = �2 = p
p

� p
n

, is the momentum transfer squared.
2Let us stress that this hadron matrix element does not appear in the SM theoretical description of beta decays at
any practical level. However, its determination is crucial to translate experimental bounds on C

T

into the quark-level
coupling ✏

T

.
The relevant observables appear in both the di↵erential decay distribution for polarized neutrons [], and in the

integrated distribution giving the neutron lifetime, ⌧
n

. These are the electron-neutrino correlation, a, the beta
asymmetry, A, the neutrino asymmetry, B, and the Fierz interference term, b [].

A thorough analysis of precision beta decay with cold and ultra-cold neutrons was conducted In Ref. [2], with the
aim of assessing whether the uncertainties from current measurements allow one to access O(10�3) limits on the scalar
and tensor interactions. Within the working hypotheses that ✏

T

and ✏
S

are real, and disregarding CP odd terms, the
most sensitive observable to BSM physics is the Fierz interference term, b, which can be di↵erent from zero only if
the scalar or tensor current terms are present. The neutrino asymmetry coe�cient B also receives contributions from
BSM currents through b

⌫

, or the coe�cient of the electron mass to energy ratio term m
e

/E
e

. 3 Both b and b
⌫

can be
written in terms of the scalar and tensor couplings, g

S

and g
T

, and of the scalar and tensor matrix elements, ✏
S

and
✏
T

, respectively as,
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where � = g
A

/g
V

, the hadronic charged currents (CC) matrix elements are defined as,
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µ⌫

d |N(p
n

, S
n

)i = g
T

�
�(p

n

� p
p

)2
�
U(p

p

, S
p

)�
µ⌫

U(p
n

, S
n

) (8)

2 In Eq. (4) we neglect other contributions to the matrix element of the tensor current since they are kinematically suppressed by | � | /Mn,
Mn being the neutron mass [2].

3 It should be noticed that recoil corrections as well as radiative corrections also contribute at the 10�3 level.
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Notice that ✏
T

has a renormalization scale and scheme dependence that must be cancelled by the corresponding
form factor g

T

.
where The ✏

T

coe�cient carries a / v2/⇤2 dependence9 on the new-physics scale ⇤ and in the SM they vanish
leaving the well-known (V � A) ⇥ (V � A) structure generated by the exchange of a W boson. Such exotic tensor
interaction can be generated for example by the tree-level exchange of a scalar leptoquark.

Precise measurements in beta decay set strong bounds on the combination g
T

✏
T

, namely [69, 70]

|g
T

✏
T

| < 6 · 10�4 (90% C.L.) , (41)

which is expected to be improved by the next generation of experiments. In particular, a measurement of the Fierz
term b in neutron beta decay at the per-mil level, would improve this bound by a factor of 3.

In order to extract a bound on the Wilson coe�cient ✏
T

from Eq. (41) it is necessary to know the value of the
tensor charge g

T

. Such a bound on ✏
T

can be translated into bounds on masses and couplings in any specific new
physics setup.

It is clear that a large error in the tensor charge will dilute the strong bound given in Eq. (41), which in fact
vanishes completely if the tensor charge is zero. In other words, the sensitivity of beta decay measurements to exotic
tensor interactions depends on our knowledge of the tensor charge. This issue was studied in Ref. [] where it was
shown that a precision of 10-15% in g

T

was necessary to fully exploit a future determination of the Fierz term b at
the per-mil level. Let us do a similar analysis here to understand the impact of the phenomenological determinations
of g

T

explained in the previous sections.
Since the theoretical error is the dominating one in both lattice and phenomenological determinations, one cannot

assume a gaussian distribution of the error around the central value. In order to deal with this situation we follow
Ref. [2] and we calculate the confidence interval on ✏

T

using the so-called R-Fit method [71]. In this scheme the
theoretical likelihoods do not contribute to the �2 of the fit and the corresponding QCD parameters take values
within certain “allowed ranges”. In our case, this means that g

T

is restricted to remain inside a given interval, e.g.
0.16  g

T

 1.20 for the current determination from di-hadron SIDIS (Section ??) TO BE UPDATED. Notice that
all values inside this range are treated on an equal footing, whereas values outside the interval are not permitted
irrespective of how close they are from the edges of the allowed range. The chi-squared function is then given by

�2(✏
T

) = min
g

T

✓
[g

T

✏
T

]exp � g
T

✏
T

� [g
T

✏
T

]exp

◆
2

, (42)

where the minimization is performed varying g
T

within its allowed range. A careful look at this function reveals that
the bound on ✏

T

depends only on the lower limit of the tensor charge, as long as the experimental determination of
g
T

✏
T

is compatible with zero at 1�.
In this way we obtain the limits on the Wilson coe�cient ✏

T

that are shown in Fig. 6, using di↵erent values of the
tensor charge. Let us remind for comparison that the bound obtained from the analysis of LHC data carried out in
Ref. [72] is |✏

T

| < 0.0013.

V. CONCLUSIONS

The possibility of obtaining the scalar and tensor charges directly from experiment with su�cient precision, gives
an entirely di↵erent leverage to neutron beta decay searches.

Due to its non-perturbative nature, the nucleon structure can only be unveiled using complementary methods such
as e↵ecive field theories, lattice calculations, models for the nucleon structure, Schwinger-Dyson based techniques

9 v denotes the electroweak symmetry breaking scale, v = (
p
2GF )�1/2 ' 246 GeV.

[Pattie et al, Phys.Rev. C88]
[Wauters et al, Phys.Rev. C89]
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FIG. 1: (Color online) Values of the tensor charge,
g
T

(0, 4GeV2) with its uncertainty as obtained in: (1) DVMP,
Ref. [36]; (2) flexible form DiFF, Ref. [35]; (3) Single pion jet
SIDIS, Ref. [37]; Lattice QCD: (4) RQCD [14], (5) LHPC [12],
(6) PNDME [13].

better measurement of the d quarks contribution. The
results from this extraction are shown in Figure 1.

Deeply virtual exclusive pseudoscalar meson produc-
tion (DVMP),

l +N ! l0 + ⇡o(⌘) +N 0,

was proposed as a way to access transversity GPDs as-
suming a (twist three) chiral odd coupling (/ �5) for the
⇡o(⌘) prompt production mechanism [36, 38–42]. Three
additional transverse spin configurations are allowed in
the proton besides transversity which can be described in
terms of combinations of GPDs called E

T

, eH
T

, eE
T

[25].
The GPDs enter the observables at the amplitude level,
convoluted with complex coe�cients at the leading order,
thus forming the generalized form form factors (GFFs).
The various cross section terms and asymmetries are bi-
linear functions of the GFFs. A careful analysis of the
helicity amplitudes contributing to DVMP has to be per-
formed in order to disentangle the various chiral odd
GFFs from experiment [43].

The ideal set of data to maximally constrain the tensor
charge in the chiral odd sector are from the transverse
target spin asymmetry modulation [36],

F
sin(���S)
UT

= =m
h
H⇤

T

(2 eH
T

+ E
T

)
i

(7)

where �, is the angle between the leptonic and hadronic
planes, and �

s

, the angle between the lepton’s plane
and the outgoing hadron’s transverse spin. In Ref.[36]
the tensor charge was, however, extracted by fitting the
unpolarized ⇡o production cross section [20], using a
parametrization constrained from data in the chiral even

FIG. 2: (Color online) Bounds on ✏
T

obtained from preci-
sion measurements of beta decay using all current extrac-
tions and lattice QCD evaluations of the tensor charge g

T

,
plotted vs. the relative error, �g

T

/g
T

described in the text:
(turqoise) Lattice QCD [12, 13]; (yellow) Lattice QCD [14];
(green) Deeply virtual ⇡o and ⌘ production [36]; (blue) single
pion SIDIS [37]; (red) dihadron SIDIS [35]. The dashed lines
are future projections. All results were obtained using in the
definition of �g

T

/g
T

, each individual evaluation’s g
T

. The
grey band gives the error assuming �g

T

= 0, and the average
g
T

(see Fig.1). The lattice evaluations from Refs. [12, 13] are
indistinguishable.

sector to guide the functional shape of the in principle un-
known chiral odd GPDs. Notice that the tensor charge
was obtained with a relatively small error because of the
presence of these constraints. The results from this ex-
traction are also shown in Fig. 1.
Finally, in Fig. 1 we quote also the value obtained in

single pion SIDIS [37], although this is known to contain
some unaccounted for corrections from TMD evolution
[44, 45].

The impact on the extraction of ✏
T

, of both the lattice
QCD and experimental determinations of g

T

is regulated
by the most recent limit [46, 47],

| ✏
T

g
T

|< 6.4⇥ 10�4 (90%CL). (8)

Assuming no error on the extraction/evaluation of g
T

,
yields �✏

T,min

= 6.4 ⇥ 10�4/g
T

. Since the errors on
g
T

in both the lattice QCD and experimental extrac-
tions are a↵ected by systematic/theoretical uncertainty,
alternatives to the standard Hessian evaluation have been
adopted in recent analyses [18] which are based on the
R-fit method [48, 49]. By introducing the error on g

T

, we
obtain �✏

T

� �✏
T,min

. The amount by which �✏
T

de-
viates from the minimum error depends, however, on the
relative error �g

T

/g
T

as well as on the central value of
g
T

, and on C
T

. We find that within the range of param-
eters extracted from our analysis of exclusive and semi-
inclusive experiments, knowing the tensor charge up to a
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•  NEW fit in the REPLICA method for

• H1<

• h1

•  NEW COMPASS data on proton + identified pions

➡ lower distribution for uV, no drastic change for dV

• Two values for αS(MZ2)

➡ no/mild dependence from the output

Beyond the fit...

➡ Impact of tensor charge on New Physics?                                                       [1503.06814]

➡ DiFF and twist-3 observables: Analysis of BSA at CLAS & extraction of e(x)   [1405.7659]

➡ P↑-P at RHIC (to be considered in the future)                                                                 [1504.00415]

Waiting for data from CLAS12 
and SoLID (JLab@12)!
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Χ2/dof

1.56557
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1.79911
2.07397
1.75523
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State-of-the-art:
Extractions of transversity

measurements as function of zh1, zh2, and Ph⊥ (we limit
Ph⊥=zh1 < 3.5 GeV) from the BELLE [16] and BABAR
[17] collaborations. We use the MINUIT minimization
package to perform the fit. The resulting parameters are
presented in Table I. The total χ2 ¼ 218.407, nd:o:f: ¼ 249,
and χ2=nd:o:f: ¼ 0.88. The fit is equally good for SIDIS and
eþe− data χ2SIDIS=nSIDIS ¼ 0.93, χ2eþe−=neþe− ¼ 0.72. The
goodness of the resulting fit is 90% [40,53] and inclusion of
more parameters does not improve it. We estimate flavor
dependence of functions by allowing a flavor dependent
functional form. Note that our resulting d quark transversity
is very close to its bound, the same feature was also found
in Refs. [35,36]. We plot the extracted transversity and
the Collins fragmentation function in Fig. 1 at two different
scales, Q2 ¼ 10 and 1000 GeV2. Only the relative sign of
transversity can be determined and we present here a
solution with positive u quark transversity as in
Refs. [19–21,35,36]. Favorite and unfavorite Collins FFs
are of opposite signs as suggested by the sum rules [54,55].
We also show an example of a description of exper-

imental data, namely the Ph⊥ dependence of asymmetry in
eþe− from the BABAR [17] collaboration in Fig. 2. One can
see that the NLL0 accuracy adequately describes the data. In
this plot we also show theoretical computations without
TMD evolution (dotted line), leading-logarithmic (LL)
accuracy (dashed line), and the complete NLL0 accuracy
(solid line). The difference between these computations
diminishes when we include higher orders, it means that the

theoretical uncertainty improves. We conjecture that the
difference between NLL0 and NNLL will be smaller than
the difference between NLL0 and LL and will thus be
comparable to experimental errors. One can also observe
that asymmetry at Q2 ¼ 110 GeV2 is suppressed by a
factor of 2 to 3 with respect to tree-level calculations due to
the Sudakov form factor.
Finally, we present an estimate at 90% confidence level

(C.L.) interval for the nucleon tensor charge contributions
using the strategy outlined in Refs. [56,57]. Transversity
enters directly into SIDIS asymmetry and we find that the
main constraints come from SIDIS data only, its correla-
tions with errors of Collins FF turn out to be numerically
negligible. Since the experimental data has only probed the
limited region 0.0065 < xB < 0.35, we define the follow-
ing partial contribution to the tensor charge:

δq½xmin;xmax$ðQ2Þ≡
Z

xmax

xmin

dxhq1ðx;Q2Þ: ð18Þ

In Fig. 3, we plot the χ2 Monte Carlo scanning of SIDIS
data for the contribution to the tensor charge from such a
region, and find)2(x,Q1x h
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FIG. 1 (color online). Extracted transversity distribution and the
Collins fragmentation function at two different scales Q2 ¼ 10
(solid lines) and Q2 ¼ 1000 (dashed lines) GeV2.

TABLE I. Fitted parameters of the transversity quark distribu-
tions for u and d and the Collins fragmentation functions. The fit
is performed by using the MINUIT minimization package. Quoted
errors correspond to the MINUIT estimate.

Nh
u ¼ 0.85' 0.09 au ¼ 0.69' 0.04 bu ¼ 0.05' 0.04

Nh
d ¼ −1.0' 0.13 ad ¼ 1.79' 0.32 bd ¼ 7.00' 2.65

Nc
u ¼ −0.262' 0.025 αu ¼ 1.69' 0.01 βu ¼ 0.00' 0.54

Nc
d ¼ 0.195' 0.007 αd ¼ 0.32' 0.04 βd ¼ 0.00' 0.79

gc ¼ 0.0236' 0.0007 (GeV2)

χ2min ¼ 218.407 χ2min=n:d:o:f: ¼ 0.88
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FIG. 2 (color online). Collins asymmetries measured by the
BABAR [17] Collaboration as a function of Ph⊥ in production of
unlike sign “U” over like sign “L” pion pairs at Q2 ¼ 110 GeV2.
The solid line corresponds to the full NLL0 calculation, the
dashed line to the LL calculation, and the dotted line to the
calculation without TMD evolution. Calculations are performed
with the parameters from Table I.
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FIG. 3 (color online). χ2 profiles for up and down quark
contributions to the tensor charge. The errors of points corre-
spond to the 90% C.L. interval.
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Figure 8. The up (left) and down (right) valence transversities as functions of x at Q2
= 2.4

GeV2. The darker band with solid borders in the foreground is our result in the flexible scenario
with ↵s(M2

Z) = 0.125. The lighter band with dot-dashed borders in the background is the most
recent transversity extraction from the Collins effect [2]. The central thick dashed line is the result
of Ref. [5]. The thick solid lines indicate the Soffer bound.

displayed as a function of x at Q2
= 2.4 GeV2. The darker band with solid borders in the

foreground is our result in the flexible scenario with ↵s(M2
Z) = 0.125. The lighter band

with dot-dashed borders in the background is the most recent transversity extraction of
Ref. [2] using the Collins effect but applying the standard DGLAP evolution equations only
to the collinear part of the fitting function. The central thick dashed line is the result of
Ref. [5], where evolution equations have been computed in the TMD framework.

In the right panel, the disagreement between our result for xhdv
1 (x) at x � 0.1 and

the outcome of the Collins effect is confirmed with respect to our previous analysis (see
Fig. 4 in Ref. [16]). This is due to the fact that the COMPASS data for AD

SIDIS off deuteron
targets remain the same. This trend is confirmed also in the other scenarios, indicating
that it is not an artifact of the chosen functional form. As a matter of fact, our replicas for
the valence down transversity tend to saturate the lower limit of the Soffer bound because
they are driven by the COMPASS deuteron data, in particular by the bins number 7 and
8. It is worth mentioning that some of the replicas outside the 68% band do not follow
this trend. Their trajectories are spread over the whole available space between the upper
and lower limits of the Soffer bound, still maintaining a good �2/d.o.f. (typically, around
2). It is also interesting to remark that the dashed line from Ref. [5], although in general
agreement with the other extraction based on the Collins effect, also tends to saturate the
Soffer bound at x > 0.2.

Apart from the range x � 0.1, there is a general consistency among the various extrac-
tions which is confirmed also for the valence up transversity (left panel), at least for the
range 0.0065  x  0.29 where there are data. This is encouraging: while the dihadron
SIDIS data are a subset of the single-hadron ones, the theoretical frameworks used to in-
terpret them are very different. Nevertheless, we point out that the collinear framework, in
which our results are produced, represents a well established and robust theoretical context.
On the contrary, the implementation of the QCD evolution equations of TMDs needed in
the study of the Collins effect still contains elements of arbitrariness (see Refs. [3–5] and ref-
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measurements as function of zh1, zh2, and Ph⊥ (we limit
Ph⊥=zh1 < 3.5 GeV) from the BELLE [16] and BABAR
[17] collaborations. We use the MINUIT minimization
package to perform the fit. The resulting parameters are
presented in Table I. The total χ2 ¼ 218.407, nd:o:f: ¼ 249,
and χ2=nd:o:f: ¼ 0.88. The fit is equally good for SIDIS and
eþe− data χ2SIDIS=nSIDIS ¼ 0.93, χ2eþe−=neþe− ¼ 0.72. The
goodness of the resulting fit is 90% [40,53] and inclusion of
more parameters does not improve it. We estimate flavor
dependence of functions by allowing a flavor dependent
functional form. Note that our resulting d quark transversity
is very close to its bound, the same feature was also found
in Refs. [35,36]. We plot the extracted transversity and
the Collins fragmentation function in Fig. 1 at two different
scales, Q2 ¼ 10 and 1000 GeV2. Only the relative sign of
transversity can be determined and we present here a
solution with positive u quark transversity as in
Refs. [19–21,35,36]. Favorite and unfavorite Collins FFs
are of opposite signs as suggested by the sum rules [54,55].
We also show an example of a description of exper-

imental data, namely the Ph⊥ dependence of asymmetry in
eþe− from the BABAR [17] collaboration in Fig. 2. One can
see that the NLL0 accuracy adequately describes the data. In
this plot we also show theoretical computations without
TMD evolution (dotted line), leading-logarithmic (LL)
accuracy (dashed line), and the complete NLL0 accuracy
(solid line). The difference between these computations
diminishes when we include higher orders, it means that the

theoretical uncertainty improves. We conjecture that the
difference between NLL0 and NNLL will be smaller than
the difference between NLL0 and LL and will thus be
comparable to experimental errors. One can also observe
that asymmetry at Q2 ¼ 110 GeV2 is suppressed by a
factor of 2 to 3 with respect to tree-level calculations due to
the Sudakov form factor.
Finally, we present an estimate at 90% confidence level

(C.L.) interval for the nucleon tensor charge contributions
using the strategy outlined in Refs. [56,57]. Transversity
enters directly into SIDIS asymmetry and we find that the
main constraints come from SIDIS data only, its correla-
tions with errors of Collins FF turn out to be numerically
negligible. Since the experimental data has only probed the
limited region 0.0065 < xB < 0.35, we define the follow-
ing partial contribution to the tensor charge:

δq½xmin;xmax$ðQ2Þ≡
Z
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xmin

dxhq1ðx;Q2Þ: ð18Þ

In Fig. 3, we plot the χ2 Monte Carlo scanning of SIDIS
data for the contribution to the tensor charge from such a
region, and find)2(x,Q1x h

u
d

x

0

0.1

0.2
2 = 10 GeV2Q

2 = 1000 GeV2Q

0 0.2 0.4 0.6 0.8 1

-0.1

-0.05

0

)2(z,Q
(3)

H-z

fav

unfav

z

0

0.02

0.04
2 = 10 GeV2Q

2 = 1000 GeV2Q

0 0.2 0.4 0.6 0.8 1

-0.04

-0.02

0

FIG. 1 (color online). Extracted transversity distribution and the
Collins fragmentation function at two different scales Q2 ¼ 10
(solid lines) and Q2 ¼ 1000 (dashed lines) GeV2.

TABLE I. Fitted parameters of the transversity quark distribu-
tions for u and d and the Collins fragmentation functions. The fit
is performed by using the MINUIT minimization package. Quoted
errors correspond to the MINUIT estimate.

Nh
u ¼ 0.85' 0.09 au ¼ 0.69' 0.04 bu ¼ 0.05' 0.04

Nh
d ¼ −1.0' 0.13 ad ¼ 1.79' 0.32 bd ¼ 7.00' 2.65

Nc
u ¼ −0.262' 0.025 αu ¼ 1.69' 0.01 βu ¼ 0.00' 0.54

Nc
d ¼ 0.195' 0.007 αd ¼ 0.32' 0.04 βd ¼ 0.00' 0.79

gc ¼ 0.0236' 0.0007 (GeV2)

χ2min ¼ 218.407 χ2min=n:d:o:f: ¼ 0.88

)
h

(P
U

L
0

A

T

 (GeV)hP T

0 0.2 0.4 0.6 0.8 1 1.2
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

FIG. 2 (color online). Collins asymmetries measured by the
BABAR [17] Collaboration as a function of Ph⊥ in production of
unlike sign “U” over like sign “L” pion pairs at Q2 ¼ 110 GeV2.
The solid line corresponds to the full NLL0 calculation, the
dashed line to the LL calculation, and the dotted line to the
calculation without TMD evolution. Calculations are performed
with the parameters from Table I.
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FIG. 3 (color online). χ2 profiles for up and down quark
contributions to the tensor charge. The errors of points corre-
spond to the 90% C.L. interval.
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Figure 8. The up (left) and down (right) valence transversities as functions of x at Q2
= 2.4

GeV2. The darker band with solid borders in the foreground is our result in the flexible scenario
with ↵s(M2

Z) = 0.125. The lighter band with dot-dashed borders in the background is the most
recent transversity extraction from the Collins effect [2]. The central thick dashed line is the result
of Ref. [5]. The thick solid lines indicate the Soffer bound.

displayed as a function of x at Q2
= 2.4 GeV2. The darker band with solid borders in the

foreground is our result in the flexible scenario with ↵s(M2
Z) = 0.125. The lighter band

with dot-dashed borders in the background is the most recent transversity extraction of
Ref. [2] using the Collins effect but applying the standard DGLAP evolution equations only
to the collinear part of the fitting function. The central thick dashed line is the result of
Ref. [5], where evolution equations have been computed in the TMD framework.

In the right panel, the disagreement between our result for xhdv
1 (x) at x � 0.1 and

the outcome of the Collins effect is confirmed with respect to our previous analysis (see
Fig. 4 in Ref. [16]). This is due to the fact that the COMPASS data for AD

SIDIS off deuteron
targets remain the same. This trend is confirmed also in the other scenarios, indicating
that it is not an artifact of the chosen functional form. As a matter of fact, our replicas for
the valence down transversity tend to saturate the lower limit of the Soffer bound because
they are driven by the COMPASS deuteron data, in particular by the bins number 7 and
8. It is worth mentioning that some of the replicas outside the 68% band do not follow
this trend. Their trajectories are spread over the whole available space between the upper
and lower limits of the Soffer bound, still maintaining a good �2/d.o.f. (typically, around
2). It is also interesting to remark that the dashed line from Ref. [5], although in general
agreement with the other extraction based on the Collins effect, also tends to saturate the
Soffer bound at x > 0.2.

Apart from the range x � 0.1, there is a general consistency among the various extrac-
tions which is confirmed also for the valence up transversity (left panel), at least for the
range 0.0065  x  0.29 where there are data. This is encouraging: while the dihadron
SIDIS data are a subset of the single-hadron ones, the theoretical frameworks used to in-
terpret them are very different. Nevertheless, we point out that the collinear framework, in
which our results are produced, represents a well established and robust theoretical context.
On the contrary, the implementation of the QCD evolution equations of TMDs needed in
the study of the Collins effect still contains elements of arbitrariness (see Refs. [3–5] and ref-
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On the contrary, the implementation of the QCD evolution equations of TMDs needed in
the study of the Collins effect still contains elements of arbitrariness (see Refs. [3–5] and ref-
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measurements as function of zh1, zh2, and Ph⊥ (we limit
Ph⊥=zh1 < 3.5 GeV) from the BELLE [16] and BABAR
[17] collaborations. We use the MINUIT minimization
package to perform the fit. The resulting parameters are
presented in Table I. The total χ2 ¼ 218.407, nd:o:f: ¼ 249,
and χ2=nd:o:f: ¼ 0.88. The fit is equally good for SIDIS and
eþe− data χ2SIDIS=nSIDIS ¼ 0.93, χ2eþe−=neþe− ¼ 0.72. The
goodness of the resulting fit is 90% [40,53] and inclusion of
more parameters does not improve it. We estimate flavor
dependence of functions by allowing a flavor dependent
functional form. Note that our resulting d quark transversity
is very close to its bound, the same feature was also found
in Refs. [35,36]. We plot the extracted transversity and
the Collins fragmentation function in Fig. 1 at two different
scales, Q2 ¼ 10 and 1000 GeV2. Only the relative sign of
transversity can be determined and we present here a
solution with positive u quark transversity as in
Refs. [19–21,35,36]. Favorite and unfavorite Collins FFs
are of opposite signs as suggested by the sum rules [54,55].
We also show an example of a description of exper-

imental data, namely the Ph⊥ dependence of asymmetry in
eþe− from the BABAR [17] collaboration in Fig. 2. One can
see that the NLL0 accuracy adequately describes the data. In
this plot we also show theoretical computations without
TMD evolution (dotted line), leading-logarithmic (LL)
accuracy (dashed line), and the complete NLL0 accuracy
(solid line). The difference between these computations
diminishes when we include higher orders, it means that the

theoretical uncertainty improves. We conjecture that the
difference between NLL0 and NNLL will be smaller than
the difference between NLL0 and LL and will thus be
comparable to experimental errors. One can also observe
that asymmetry at Q2 ¼ 110 GeV2 is suppressed by a
factor of 2 to 3 with respect to tree-level calculations due to
the Sudakov form factor.
Finally, we present an estimate at 90% confidence level

(C.L.) interval for the nucleon tensor charge contributions
using the strategy outlined in Refs. [56,57]. Transversity
enters directly into SIDIS asymmetry and we find that the
main constraints come from SIDIS data only, its correla-
tions with errors of Collins FF turn out to be numerically
negligible. Since the experimental data has only probed the
limited region 0.0065 < xB < 0.35, we define the follow-
ing partial contribution to the tensor charge:

δq½xmin;xmax$ðQ2Þ≡
Z

xmax

xmin

dxhq1ðx;Q2Þ: ð18Þ

In Fig. 3, we plot the χ2 Monte Carlo scanning of SIDIS
data for the contribution to the tensor charge from such a
region, and find)2(x,Q1x h
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FIG. 1 (color online). Extracted transversity distribution and the
Collins fragmentation function at two different scales Q2 ¼ 10
(solid lines) and Q2 ¼ 1000 (dashed lines) GeV2.

TABLE I. Fitted parameters of the transversity quark distribu-
tions for u and d and the Collins fragmentation functions. The fit
is performed by using the MINUIT minimization package. Quoted
errors correspond to the MINUIT estimate.

Nh
u ¼ 0.85' 0.09 au ¼ 0.69' 0.04 bu ¼ 0.05' 0.04

Nh
d ¼ −1.0' 0.13 ad ¼ 1.79' 0.32 bd ¼ 7.00' 2.65

Nc
u ¼ −0.262' 0.025 αu ¼ 1.69' 0.01 βu ¼ 0.00' 0.54

Nc
d ¼ 0.195' 0.007 αd ¼ 0.32' 0.04 βd ¼ 0.00' 0.79

gc ¼ 0.0236' 0.0007 (GeV2)

χ2min ¼ 218.407 χ2min=n:d:o:f: ¼ 0.88
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FIG. 2 (color online). Collins asymmetries measured by the
BABAR [17] Collaboration as a function of Ph⊥ in production of
unlike sign “U” over like sign “L” pion pairs at Q2 ¼ 110 GeV2.
The solid line corresponds to the full NLL0 calculation, the
dashed line to the LL calculation, and the dotted line to the
calculation without TMD evolution. Calculations are performed
with the parameters from Table I.
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spond to the 90% C.L. interval.
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with dot-dashed borders in the background is the most recent transversity extraction of
Ref. [2] using the Collins effect but applying the standard DGLAP evolution equations only
to the collinear part of the fitting function. The central thick dashed line is the result of
Ref. [5], where evolution equations have been computed in the TMD framework.

In the right panel, the disagreement between our result for xhdv
1 (x) at x � 0.1 and

the outcome of the Collins effect is confirmed with respect to our previous analysis (see
Fig. 4 in Ref. [16]). This is due to the fact that the COMPASS data for AD

SIDIS off deuteron
targets remain the same. This trend is confirmed also in the other scenarios, indicating
that it is not an artifact of the chosen functional form. As a matter of fact, our replicas for
the valence down transversity tend to saturate the lower limit of the Soffer bound because
they are driven by the COMPASS deuteron data, in particular by the bins number 7 and
8. It is worth mentioning that some of the replicas outside the 68% band do not follow
this trend. Their trajectories are spread over the whole available space between the upper
and lower limits of the Soffer bound, still maintaining a good �2/d.o.f. (typically, around
2). It is also interesting to remark that the dashed line from Ref. [5], although in general
agreement with the other extraction based on the Collins effect, also tends to saturate the
Soffer bound at x > 0.2.

Apart from the range x � 0.1, there is a general consistency among the various extrac-
tions which is confirmed also for the valence up transversity (left panel), at least for the
range 0.0065  x  0.29 where there are data. This is encouraging: while the dihadron
SIDIS data are a subset of the single-hadron ones, the theoretical frameworks used to in-
terpret them are very different. Nevertheless, we point out that the collinear framework, in
which our results are produced, represents a well established and robust theoretical context.
On the contrary, the implementation of the QCD evolution equations of TMDs needed in
the study of the Collins effect still contains elements of arbitrariness (see Refs. [3–5] and ref-
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which our results are produced, represents a well established and robust theoretical context.
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measurements as function of zh1, zh2, and Ph⊥ (we limit
Ph⊥=zh1 < 3.5 GeV) from the BELLE [16] and BABAR
[17] collaborations. We use the MINUIT minimization
package to perform the fit. The resulting parameters are
presented in Table I. The total χ2 ¼ 218.407, nd:o:f: ¼ 249,
and χ2=nd:o:f: ¼ 0.88. The fit is equally good for SIDIS and
eþe− data χ2SIDIS=nSIDIS ¼ 0.93, χ2eþe−=neþe− ¼ 0.72. The
goodness of the resulting fit is 90% [40,53] and inclusion of
more parameters does not improve it. We estimate flavor
dependence of functions by allowing a flavor dependent
functional form. Note that our resulting d quark transversity
is very close to its bound, the same feature was also found
in Refs. [35,36]. We plot the extracted transversity and
the Collins fragmentation function in Fig. 1 at two different
scales, Q2 ¼ 10 and 1000 GeV2. Only the relative sign of
transversity can be determined and we present here a
solution with positive u quark transversity as in
Refs. [19–21,35,36]. Favorite and unfavorite Collins FFs
are of opposite signs as suggested by the sum rules [54,55].
We also show an example of a description of exper-

imental data, namely the Ph⊥ dependence of asymmetry in
eþe− from the BABAR [17] collaboration in Fig. 2. One can
see that the NLL0 accuracy adequately describes the data. In
this plot we also show theoretical computations without
TMD evolution (dotted line), leading-logarithmic (LL)
accuracy (dashed line), and the complete NLL0 accuracy
(solid line). The difference between these computations
diminishes when we include higher orders, it means that the

theoretical uncertainty improves. We conjecture that the
difference between NLL0 and NNLL will be smaller than
the difference between NLL0 and LL and will thus be
comparable to experimental errors. One can also observe
that asymmetry at Q2 ¼ 110 GeV2 is suppressed by a
factor of 2 to 3 with respect to tree-level calculations due to
the Sudakov form factor.
Finally, we present an estimate at 90% confidence level

(C.L.) interval for the nucleon tensor charge contributions
using the strategy outlined in Refs. [56,57]. Transversity
enters directly into SIDIS asymmetry and we find that the
main constraints come from SIDIS data only, its correla-
tions with errors of Collins FF turn out to be numerically
negligible. Since the experimental data has only probed the
limited region 0.0065 < xB < 0.35, we define the follow-
ing partial contribution to the tensor charge:

δq½xmin;xmax$ðQ2Þ≡
Z

xmax

xmin

dxhq1ðx;Q2Þ: ð18Þ

In Fig. 3, we plot the χ2 Monte Carlo scanning of SIDIS
data for the contribution to the tensor charge from such a
region, and find)2(x,Q1x h
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FIG. 1 (color online). Extracted transversity distribution and the
Collins fragmentation function at two different scales Q2 ¼ 10
(solid lines) and Q2 ¼ 1000 (dashed lines) GeV2.

TABLE I. Fitted parameters of the transversity quark distribu-
tions for u and d and the Collins fragmentation functions. The fit
is performed by using the MINUIT minimization package. Quoted
errors correspond to the MINUIT estimate.

Nh
u ¼ 0.85' 0.09 au ¼ 0.69' 0.04 bu ¼ 0.05' 0.04

Nh
d ¼ −1.0' 0.13 ad ¼ 1.79' 0.32 bd ¼ 7.00' 2.65

Nc
u ¼ −0.262' 0.025 αu ¼ 1.69' 0.01 βu ¼ 0.00' 0.54

Nc
d ¼ 0.195' 0.007 αd ¼ 0.32' 0.04 βd ¼ 0.00' 0.79

gc ¼ 0.0236' 0.0007 (GeV2)

χ2min ¼ 218.407 χ2min=n:d:o:f: ¼ 0.88
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FIG. 2 (color online). Collins asymmetries measured by the
BABAR [17] Collaboration as a function of Ph⊥ in production of
unlike sign “U” over like sign “L” pion pairs at Q2 ¼ 110 GeV2.
The solid line corresponds to the full NLL0 calculation, the
dashed line to the LL calculation, and the dotted line to the
calculation without TMD evolution. Calculations are performed
with the parameters from Table I.
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FIG. 3 (color online). χ2 profiles for up and down quark
contributions to the tensor charge. The errors of points corre-
spond to the 90% C.L. interval.
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Figure 8. The up (left) and down (right) valence transversities as functions of x at Q2
= 2.4

GeV2. The darker band with solid borders in the foreground is our result in the flexible scenario
with ↵s(M2

Z) = 0.125. The lighter band with dot-dashed borders in the background is the most
recent transversity extraction from the Collins effect [2]. The central thick dashed line is the result
of Ref. [5]. The thick solid lines indicate the Soffer bound.

displayed as a function of x at Q2
= 2.4 GeV2. The darker band with solid borders in the

foreground is our result in the flexible scenario with ↵s(M2
Z) = 0.125. The lighter band

with dot-dashed borders in the background is the most recent transversity extraction of
Ref. [2] using the Collins effect but applying the standard DGLAP evolution equations only
to the collinear part of the fitting function. The central thick dashed line is the result of
Ref. [5], where evolution equations have been computed in the TMD framework.

In the right panel, the disagreement between our result for xhdv
1 (x) at x � 0.1 and

the outcome of the Collins effect is confirmed with respect to our previous analysis (see
Fig. 4 in Ref. [16]). This is due to the fact that the COMPASS data for AD

SIDIS off deuteron
targets remain the same. This trend is confirmed also in the other scenarios, indicating
that it is not an artifact of the chosen functional form. As a matter of fact, our replicas for
the valence down transversity tend to saturate the lower limit of the Soffer bound because
they are driven by the COMPASS deuteron data, in particular by the bins number 7 and
8. It is worth mentioning that some of the replicas outside the 68% band do not follow
this trend. Their trajectories are spread over the whole available space between the upper
and lower limits of the Soffer bound, still maintaining a good �2/d.o.f. (typically, around
2). It is also interesting to remark that the dashed line from Ref. [5], although in general
agreement with the other extraction based on the Collins effect, also tends to saturate the
Soffer bound at x > 0.2.

Apart from the range x � 0.1, there is a general consistency among the various extrac-
tions which is confirmed also for the valence up transversity (left panel), at least for the
range 0.0065  x  0.29 where there are data. This is encouraging: while the dihadron
SIDIS data are a subset of the single-hadron ones, the theoretical frameworks used to in-
terpret them are very different. Nevertheless, we point out that the collinear framework, in
which our results are produced, represents a well established and robust theoretical context.
On the contrary, the implementation of the QCD evolution equations of TMDs needed in
the study of the Collins effect still contains elements of arbitrariness (see Refs. [3–5] and ref-
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which our results are produced, represents a well established and robust theoretical context.
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measurements as function of zh1, zh2, and Ph⊥ (we limit
Ph⊥=zh1 < 3.5 GeV) from the BELLE [16] and BABAR
[17] collaborations. We use the MINUIT minimization
package to perform the fit. The resulting parameters are
presented in Table I. The total χ2 ¼ 218.407, nd:o:f: ¼ 249,
and χ2=nd:o:f: ¼ 0.88. The fit is equally good for SIDIS and
eþe− data χ2SIDIS=nSIDIS ¼ 0.93, χ2eþe−=neþe− ¼ 0.72. The
goodness of the resulting fit is 90% [40,53] and inclusion of
more parameters does not improve it. We estimate flavor
dependence of functions by allowing a flavor dependent
functional form. Note that our resulting d quark transversity
is very close to its bound, the same feature was also found
in Refs. [35,36]. We plot the extracted transversity and
the Collins fragmentation function in Fig. 1 at two different
scales, Q2 ¼ 10 and 1000 GeV2. Only the relative sign of
transversity can be determined and we present here a
solution with positive u quark transversity as in
Refs. [19–21,35,36]. Favorite and unfavorite Collins FFs
are of opposite signs as suggested by the sum rules [54,55].
We also show an example of a description of exper-

imental data, namely the Ph⊥ dependence of asymmetry in
eþe− from the BABAR [17] collaboration in Fig. 2. One can
see that the NLL0 accuracy adequately describes the data. In
this plot we also show theoretical computations without
TMD evolution (dotted line), leading-logarithmic (LL)
accuracy (dashed line), and the complete NLL0 accuracy
(solid line). The difference between these computations
diminishes when we include higher orders, it means that the

theoretical uncertainty improves. We conjecture that the
difference between NLL0 and NNLL will be smaller than
the difference between NLL0 and LL and will thus be
comparable to experimental errors. One can also observe
that asymmetry at Q2 ¼ 110 GeV2 is suppressed by a
factor of 2 to 3 with respect to tree-level calculations due to
the Sudakov form factor.
Finally, we present an estimate at 90% confidence level

(C.L.) interval for the nucleon tensor charge contributions
using the strategy outlined in Refs. [56,57]. Transversity
enters directly into SIDIS asymmetry and we find that the
main constraints come from SIDIS data only, its correla-
tions with errors of Collins FF turn out to be numerically
negligible. Since the experimental data has only probed the
limited region 0.0065 < xB < 0.35, we define the follow-
ing partial contribution to the tensor charge:

δq½xmin;xmax$ðQ2Þ≡
Z

xmax

xmin

dxhq1ðx;Q2Þ: ð18Þ

In Fig. 3, we plot the χ2 Monte Carlo scanning of SIDIS
data for the contribution to the tensor charge from such a
region, and find)2(x,Q1x h
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FIG. 1 (color online). Extracted transversity distribution and the
Collins fragmentation function at two different scales Q2 ¼ 10
(solid lines) and Q2 ¼ 1000 (dashed lines) GeV2.

TABLE I. Fitted parameters of the transversity quark distribu-
tions for u and d and the Collins fragmentation functions. The fit
is performed by using the MINUIT minimization package. Quoted
errors correspond to the MINUIT estimate.

Nh
u ¼ 0.85' 0.09 au ¼ 0.69' 0.04 bu ¼ 0.05' 0.04

Nh
d ¼ −1.0' 0.13 ad ¼ 1.79' 0.32 bd ¼ 7.00' 2.65

Nc
u ¼ −0.262' 0.025 αu ¼ 1.69' 0.01 βu ¼ 0.00' 0.54

Nc
d ¼ 0.195' 0.007 αd ¼ 0.32' 0.04 βd ¼ 0.00' 0.79

gc ¼ 0.0236' 0.0007 (GeV2)

χ2min ¼ 218.407 χ2min=n:d:o:f: ¼ 0.88
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FIG. 2 (color online). Collins asymmetries measured by the
BABAR [17] Collaboration as a function of Ph⊥ in production of
unlike sign “U” over like sign “L” pion pairs at Q2 ¼ 110 GeV2.
The solid line corresponds to the full NLL0 calculation, the
dashed line to the LL calculation, and the dotted line to the
calculation without TMD evolution. Calculations are performed
with the parameters from Table I.
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Two complementary approaches

•  partner of Collins FF
•  convolution 

• partner of chiral-odd DiFF
• simple product 

•  QCD evolution: TMD evolution
•  ongoing progresses                                          

[Rogers, Aybat, Prokudin, Bacchetta,...]

• need input Functional Form of the 
transversity 

h1(x)H
^
1 (z,Mh)

Z
d2pT d

2kT �2(kT + qT � pT )h1(x, kT )H
?
1 (z, pT )

•  QCD evolution: DGLAP evolution
•  known                                                

[Bacchetta, Radici, Ceccopieri]

• no need for  input Functional Form 
of the transversity 

• direct extraction point by point
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Semi-inclusive production of two hadrons [19,21] offers
an alternative way to access transversity, where the chiral-
odd partner of transversity is represented by the DiFF H!

1
[47], which relates the transverse spin of the quark to the
azimuthal orientation of the two-hadron plane. This func-
tion is at present unknown. Very recently, the HERMES
collaboration has reported measurements of the asymmetry
containing the product h1H!

1 [48]. The COMPASS col-
laboration has also presented analogous preliminary results
[49]. In the meanwhile, the BELLE collaboration is plan-
ning to measure the fragmentation functions H!

1 in the near
future [50,51].

In this context, it seems of great importance to devise a
way to model DiFF. From the theoretical side, this can help
in understanding what are the essential building blocks and
mechanisms involved in dihadron fragmentation. It can
also provide guidance for fits to data and further phenome-
nological studies. From the experimental side, a model
could be useful to study the effects of cuts and acceptance,
to estimate the size of observables in different processes
and kinematical regimes. Our work is not the first one in
this direction [21,47,52]. The model presented here is close
to the one discussed in Ref. [47]. However, for the first time
we are able to fix the parameters by comparing our unpo-
larized DiFF D1 with the output of the PYTHIA event
generator [53] tuned for HERMES [54]. Then, without
introducing extra parameters, we make predictions for
the polarized DiFF H!

1 and the related SSA involving the
transversity distribution h1.

The paper is organized as follows. In Sec. II, we review
the basic formalism of DiFF and of SIDIS cross section for
two-hadron production. In Sec. III, we describe our model
for the fragmentation of a quark into two unpolarized
hadrons and give analytic results for DiFF calculated in
this model. In Sec. IV, we fix the parameters of the model
by comparing it to the output of the PYTHIA event gen-
erator tuned for HERMES kinematics. In Sec. V, we show
numerical predictions for the DiFF and for the above-
mentioned SSA in the kinematics explored by the
HERMES [48] and COMPASS collaborations [49].
Finally, in Sec. VI we draw some conclusions.

II. BASICS OF DIHADRON FRAGMENTATION
FUNCTIONS

Dihadron fragmentation functions are involved in the
description of the fragmentation process q ! !!!"X.
The quark has momentum k. The two pions have masses
m! # 0:140 GeV, momenta P1 and P2, respectively, and
invariant mass Mh (considered to be much smaller than the
hard scale of the process, e.g., the virtuality of the photon,
Q, in SIDIS). We introduce the vectors Ph # P1 ! P2
and R # $P1 " P2%=2. We describe a 4-vector a as
&a"; a!; ax; ay', i.e. in terms of its light cone components
a( # $a0 ( a3%=

!!!
2

p
and its transverse spatial components.

We introduce the light cone fraction z # P"
h =k

" and the
polar angle ", being the angle between the direction of P1
in the pair’s center of mass and the direction of Ph in the
lab frame [55], so that the relevant momenta can be written
as
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and $R is defined later in Eq. (15) (see also Fig. 1). It is
useful to compute the scalar products

 Ph * R # 0; (5)

 Ph * k # M2
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FIG. 1 (color online). Angles involved in the measurement of
the transverse single-spin asymmetry in deep-inelastic produc-
tion of two hadrons in the current region.

1Note that there is a misprint in the expressions for j ~Rj in
Eq. (27) of Ref. [55] and in Eq. (23) of Ref. [28].
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plitude times the conjugate of a different scattering ampli-

tude !12". However, for conciseness we follow the notation

of Ref. !2". The polarization of the incident beam is indicated
with #e and

A$y %!1"y#
y2

2
, B$y %!1"y , C$y %!y$2"y %.

$23%

In Eq. $22%, the indices (&1 ,&1!) refer to the chiralities of the
entering quarks and identify each submatrix, while (&2 ,&2!)
refer to the exiting quarks and point to the elements inside

each submatrix. By expanding the sum over repeated indices

in Eq. $21%, we get the expression
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For an unpolarized beam (#e!0, indicated with O) and a
transversely polarized target (#!0, indicated with T), Eq.
$24% corresponds to Eq. $10% of Ref. !6" after integrating over
all transverse momenta. The following SSA can be built:

A
OT

sin()R#)S)$y ,x ,z ,Mh
2%

!
$ d)Sd)Rd( sin$)R#)S%d

7'OT

$ d)Sd)Rd(d7'OO

!"S! T"
B$y %

A$y %

*
a
ea
2h1

a$x %$ d(
"R! T"
2Mh

H1
!a$z ,( ,Mh

2%

*
a
ea
2 f 1

a$x %$ d(D1
a$z ,( ,Mh

2%

,

$25%

which allows us to isolate the transversity h1 at leading twist.

Apart from the usual variables x , y , z , the only other vari-

able to be measured is the angle )R#)S . Instead of using

the scattering plane as a reference to measure azimuthal

angles, it is sometimes convenient to use the directions of the

beam and of the transverse component of the target spin. The

new plane is rotated by the angle )S-") l
S with respect to

the scattering plane; therefore, we have )R-)R
S") l

S and

)R#)S-)R
S"2) l

S !6".
The asymmetry described in Eq. $25% is the most general

one at leading twist for the case of two-hadron production

when an unpolarized lepton beam scatters off a transversely

polarized target. No assumptions are made on the behavior of

the fragmentation functions. However, as we shall see in the

next section, it is useful and desirable to understand how

different partial waves contribute to the above fragmentation

functions.

III. PARTIAL-WAVE EXPANSION FOR THE

TWO-HADRON SYSTEM

If the invariant mass Mh of the two hadrons is not very

large, the pair can be assumed to be produced mainly in the

relative s-wave channel, with a typical smooth distribution,

or in the p-wave channel with a Breit-Wigner profile !32".
Therefore, it is useful to expand Eq. $16%—or equivalently
Eq. $19%—in relative partial waves keeping only the first two
harmonics. To this purpose, in the following we reformulate

the kinematics in the c.m. frame of the two-hadron system.

Then, the leading-twist projection for the quark-quark cor-

relator . is conveniently expanded deducing a more detailed

structure than Eq. $19%. A set of new bounds is derived and
the corresponding expression for the cross section is dis-

cussed.

In the c.m. frame the emission of the two hadrons occurs

back to back. The direction identified by this emission forms

an angle / with the direction of Ph in the target rest frame

$see Fig. 3%. In this frame, the relevant variables become
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FIG. 3. The hadron pair in the c.m. frame; / is the c.m. polar
angle of the pair with respect to the direction of Ph in the target rest

frame.

A. BACCHETTA AND M. RADICI PHYSICAL REVIEW D 67, 094002 $2003%

094002-6

SIDIS production of pion pairs                 

Chiral-odd DiFF: 

Distribution of hadrons inside the jet 
is related to the

Direction of the transverse polarization of the fragmenting quarks



ADIS(x, z,M2
h , Q2) = �Cy

�
q e2

q hq
1(x, Q2) |R̄|

Mh
Hq��+��

1,sp (z, M2
h , Q2)

�
q e2

q fq
1 (x, Q2) Dq��+��

1 (z, M2
h , Q2)

Knowledge on DiFFs leads to h1(x, Q2)

Semi-inclusive production of two hadrons [19,21] offers
an alternative way to access transversity, where the chiral-
odd partner of transversity is represented by the DiFF H!

1
[47], which relates the transverse spin of the quark to the
azimuthal orientation of the two-hadron plane. This func-
tion is at present unknown. Very recently, the HERMES
collaboration has reported measurements of the asymmetry
containing the product h1H!

1 [48]. The COMPASS col-
laboration has also presented analogous preliminary results
[49]. In the meanwhile, the BELLE collaboration is plan-
ning to measure the fragmentation functions H!

1 in the near
future [50,51].

In this context, it seems of great importance to devise a
way to model DiFF. From the theoretical side, this can help
in understanding what are the essential building blocks and
mechanisms involved in dihadron fragmentation. It can
also provide guidance for fits to data and further phenome-
nological studies. From the experimental side, a model
could be useful to study the effects of cuts and acceptance,
to estimate the size of observables in different processes
and kinematical regimes. Our work is not the first one in
this direction [21,47,52]. The model presented here is close
to the one discussed in Ref. [47]. However, for the first time
we are able to fix the parameters by comparing our unpo-
larized DiFF D1 with the output of the PYTHIA event
generator [53] tuned for HERMES [54]. Then, without
introducing extra parameters, we make predictions for
the polarized DiFF H!

1 and the related SSA involving the
transversity distribution h1.

The paper is organized as follows. In Sec. II, we review
the basic formalism of DiFF and of SIDIS cross section for
two-hadron production. In Sec. III, we describe our model
for the fragmentation of a quark into two unpolarized
hadrons and give analytic results for DiFF calculated in
this model. In Sec. IV, we fix the parameters of the model
by comparing it to the output of the PYTHIA event gen-
erator tuned for HERMES kinematics. In Sec. V, we show
numerical predictions for the DiFF and for the above-
mentioned SSA in the kinematics explored by the
HERMES [48] and COMPASS collaborations [49].
Finally, in Sec. VI we draw some conclusions.
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The quark has momentum k. The two pions have masses
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invariant mass Mh (considered to be much smaller than the
hard scale of the process, e.g., the virtuality of the photon,
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and its transverse spatial components.
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FIG. 3. The hadron pair in the c.m. frame; / is the c.m. polar
angle of the pair with respect to the direction of Ph in the target rest

frame.
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Constraints from first principles

✦ Soffer bound

✦ h1(x=1)=0   ; the parton model predicts h1(x=0)=0 but too restrictive in QCD

�ASIDIS, and the error coming from the fit of H^
1 , i.e., �n"

u

. The extracted transversity
combinations, with the exact scale dependence for n
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, n
d

, n
s

and n"
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, are explicitly given in
Table 5.

Though, as we have just demonstrated, one of the biggest advantages of the dihadron
way of extracting transversity resides in it is unbiased by a functional form a priori, we are
aware that such a form is mandatory for practical purposes. The scarce data does not allow
an accurate statistical analysis, so the outcome of the fitting procedure presented hereafter
does not lead to substantial physical interpretations. In particular, we will show that several
functional forms, with dramatically different behavior at the moderate x region, lead to an
equally good goodness-of-fit criterion. It is in part due to that the transversities are defined
between x 2 [0, 1] 2, while the data range from x ⇠ 6⇥10�3 to 0.28. One has to be cautious
about the meaning of the functional form oustide the experimental range of data.

The main constraint we have on the functional form is the Soffer inequality [16],
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1(x, Q2)| ⌘ 2 SBq(x, Q2) , (3.1)

which is true at all Q2 [17, 18]. An analogous relation holds for antiquark distributions. We
impose this upper (lower) bound by multiplying the functional form by the corresponding
Soffer bound at the starting scale of the parameterization. To be consistent, we here use the
MSTW08 set [15] for the unpolarized PDF, combined to the DSSV parameterization [19]
for the helicity parameterization, at the scale of Q2

0 = 1GeV2.
We have studied the dependence on the Soffer bound coming from different PDF sets

SHALL WE SET AN ADHOC ERROR COMING FROM THE PDF SET??
The functional form we have adopted is directly proportional to the Soffer bound, i.e.

TO BE UPDATED...
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To ensure that the valence transversities respect this limit, the multiplying function must
be defined between [�1, 1], like the hyperbolic tangent of Eq. (3.2). The power of overall
x in the argument of the hyperbolic tangent has been chosen according to the power of
the paremeterization of unpolarized PDFs. In fact, the Soffer bound is divergent at x = 0

but x SBq(x, Q2) is still integrable. The valence transversities should be integrable as well,
which we impose by a judicious choice of the power of the argument.

The evolution of the functional form (3.2) is implemented by the HOPPET code. The
fitting procedure consists then in minimizing the usual �2 function, defined as
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means that we sum over the data points h
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) of
Table 5. The �2/d.o.f. is 1.13 for the combined proton and deuteron analysis. The best fit
parameters and their 1 � � error at the initial scale Q2

0 = 1GeV2 are given in Table 4.
2

The lower limit constraint can be relaxed so the functional form does only have to be zero at x = 1.
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✦ of the Soffer bound:  LO evolution of f1(x) from MSTW08 & g1(x) from DSS  
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✦ h1(x=1)=0   ; the parton model predicts h1(x=0)=0 but too restrictive in QCD

�ASIDIS, and the error coming from the fit of H^
1 , i.e., �n"

u

. The extracted transversity
combinations, with the exact scale dependence for n

u

, n
d

, n
s

and n"
u

, are explicitly given in
Table 5.

Though, as we have just demonstrated, one of the biggest advantages of the dihadron
way of extracting transversity resides in it is unbiased by a functional form a priori, we are
aware that such a form is mandatory for practical purposes. The scarce data does not allow
an accurate statistical analysis, so the outcome of the fitting procedure presented hereafter
does not lead to substantial physical interpretations. In particular, we will show that several
functional forms, with dramatically different behavior at the moderate x region, lead to an
equally good goodness-of-fit criterion. It is in part due to that the transversities are defined
between x 2 [0, 1] 2, while the data range from x ⇠ 6⇥10�3 to 0.28. One has to be cautious
about the meaning of the functional form oustide the experimental range of data.

The main constraint we have on the functional form is the Soffer inequality [16],

2|hq

1(x, Q2)|  |f q

1 (x, Q2) + gq

1(x, Q2)| ⌘ 2 SBq(x, Q2) , (3.1)

which is true at all Q2 [17, 18]. An analogous relation holds for antiquark distributions. We
impose this upper (lower) bound by multiplying the functional form by the corresponding
Soffer bound at the starting scale of the parameterization. To be consistent, we here use the
MSTW08 set [15] for the unpolarized PDF, combined to the DSSV parameterization [19]
for the helicity parameterization, at the scale of Q2

0 = 1GeV2.
We have studied the dependence on the Soffer bound coming from different PDF sets

SHALL WE SET AN ADHOC ERROR COMING FROM THE PDF SET??
The functional form we have adopted is directly proportional to the Soffer bound, i.e.

TO BE UPDATED...

x hqV
1 (x) = tanh

⇣
x1/4 (A

q

+ B
q

x + C
q

x2)
⌘ �

x SBq(x) + x SBq̄(x)
�
/2 . (3.2)

To ensure that the valence transversities respect this limit, the multiplying function must
be defined between [�1, 1], like the hyperbolic tangent of Eq. (3.2). The power of overall
x in the argument of the hyperbolic tangent has been chosen according to the power of
the paremeterization of unpolarized PDFs. In fact, the Soffer bound is divergent at x = 0

but x SBq(x, Q2) is still integrable. The valence transversities should be integrable as well,
which we impose by a judicious choice of the power of the argument.

The evolution of the functional form (3.2) is implemented by the HOPPET code. The
fitting procedure consists then in minimizing the usual �2 function, defined as

�2 =
X

Nd

⇣
x

d

h
P/D

1,data

(x
d

, Q2
d

) � x
d

h
P/D

1,theo

(x
d

, Q2
d

)
⌘2

⇣
�h

P/D

1,data

(x
d

, Q2
d

)
⌘2 (3.3)

with ��2 = 1. The sum over N
d

means that we sum over the data points h
P/D

1,data

(x
d

, Q2
d

) of
Table 5. The �2/d.o.f. is 1.13 for the combined proton and deuteron analysis. The best fit
parameters and their 1 � � error at the initial scale Q2

0 = 1GeV2 are given in Table 4.
2

The lower limit constraint can be relaxed so the functional form does only have to be zero at x = 1.

– 6 –

)

     with FF defined [-1,1]

xh

qV
1 (x,Q2

0) = FF (param, x,Q

2
0)

�
x SBq(x,Q2

0) + x SBq̄(x,Q2
0)
�



Transversity   from e p↑→e’ (π+π-) X @ HERMES

xhuv
1 (x, Q2)� 1

4 xhdv
1 (x, Q2) = �C�1

y ADIS(x, Q2)
nu(Q2)
n⇥u(Q2)

�

q=u,d,s

e2
q

e2
u

xfq+q̄
1 (x, Q2)

HERMES range:   -0.259-1   (± 25% theo. err.)   from fitwith 1-to-100 GeV2 evolution correction: 
small corrections

integrated in mean values



Transversity   from e p↑→e’ (π+π-) X @ HERMES

xhuv
1 (x, Q2)� 1

4 xhdv
1 (x, Q2) = �C�1

y ADIS(x, Q2)
nu(Q2)
n⇥u(Q2)

�

q=u,d,s

e2
q

e2
u

xfq+q̄
1 (x, Q2)

HERMES range:   -0.259-1   (± 25% theo. err.)   from fitwith 1-to-100 GeV2 evolution correction: 
small corrections

Transversity   from e p↑→e’ (π+π-) X @ COMPASS 2007

xhuv
1 (x, Q2)� 1

4 xhdv
1 (x, Q2) = �C�1

y ADIS(x, Q2)
nu(Q2)
n⇥u(Q2)

�

q=u,d,s

e2
q

e2
u

xfq+q̄
1 (x, Q2)

COMPASS range: -0.208-1   (± 19% theo. err.)   from fit
with 1-to-100 GeV2 evolution correction:

negligible corrections

integrated in mean values



Our Flexible Functional Form   2nd order polynomial
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The Error Analysis:     the Monte Carlo approach
                                                         1st order polynomial

J
H
E
P
0
3
(
2
0
1
3
)
1
1
9

Figure 4. The up (left) and down (right) valence transversities coming from the present analysis
evolved to Q2 = 2.4GeV2. From top row to bottom, results with the rigid, flexible, and extra-flexible
scenarios are shown, respectively. The dark thick solid lines are the So↵er bound. The uncertainty
band with solid boundaries is the best fit in the standard approach at 1�, whose central value is
given by the central thick solid line. The uncertainty band with dashed boundaries is the 68% of
all fitting replicas obtained in the Monte Carlo approach. As a comparison, the uncertainty band
with short-dashed boundaries is the transversity extraction from the Collins e↵ect [15].

of the Collins e↵ect, from which the other parametrization of ref. [15] is extracted. As a

matter of fact, this is the only source of significant discrepancy between the two extractions,

which otherwise show a high level of compatibility despite the fact that they are obtained

from very di↵erent procedures. Note that if the So↵er bound is saturated at some scale, it

is likely to be significantly violated at a lower scale [46]. Therefore, if we want to maintain
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Figure 4. The up (left) and down (right) valence transversities coming from the present analysis
evolved to Q2 = 2.4GeV2. From top row to bottom, results with the rigid, flexible, and extra-flexible
scenarios are shown, respectively. The dark thick solid lines are the So↵er bound. The uncertainty
band with solid boundaries is the best fit in the standard approach at 1�, whose central value is
given by the central thick solid line. The uncertainty band with dashed boundaries is the 68% of
all fitting replicas obtained in the Monte Carlo approach. As a comparison, the uncertainty band
with short-dashed boundaries is the transversity extraction from the Collins e↵ect [15].

of the Collins e↵ect, from which the other parametrization of ref. [15] is extracted. As a

matter of fact, this is the only source of significant discrepancy between the two extractions,

which otherwise show a high level of compatibility despite the fact that they are obtained

from very di↵erent procedures. Note that if the So↵er bound is saturated at some scale, it

is likely to be significantly violated at a lower scale [46]. Therefore, if we want to maintain
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1σ error band from replicas @2.4 GeV2

Best fit central curve @2.4 GeV2

and standard 1σ error band



The Error Analysis:     the Monte Carlo approach
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Figure 4. The up (left) and down (right) valence transversities coming from the present analysis
evolved to Q2 = 2.4GeV2. From top row to bottom, results with the rigid, flexible, and extra-flexible
scenarios are shown, respectively. The dark thick solid lines are the So↵er bound. The uncertainty
band with solid boundaries is the best fit in the standard approach at 1�, whose central value is
given by the central thick solid line. The uncertainty band with dashed boundaries is the 68% of
all fitting replicas obtained in the Monte Carlo approach. As a comparison, the uncertainty band
with short-dashed boundaries is the transversity extraction from the Collins e↵ect [15].

of the Collins e↵ect, from which the other parametrization of ref. [15] is extracted. As a

matter of fact, this is the only source of significant discrepancy between the two extractions,

which otherwise show a high level of compatibility despite the fact that they are obtained

from very di↵erent procedures. Note that if the So↵er bound is saturated at some scale, it

is likely to be significantly violated at a lower scale [46]. Therefore, if we want to maintain
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Figure 4. The up (left) and down (right) valence transversities coming from the present analysis
evolved to Q2 = 2.4GeV2. From top row to bottom, results with the rigid, flexible, and extra-flexible
scenarios are shown, respectively. The dark thick solid lines are the So↵er bound. The uncertainty
band with solid boundaries is the best fit in the standard approach at 1�, whose central value is
given by the central thick solid line. The uncertainty band with dashed boundaries is the 68% of
all fitting replicas obtained in the Monte Carlo approach. As a comparison, the uncertainty band
with short-dashed boundaries is the transversity extraction from the Collins e↵ect [15].

of the Collins e↵ect, from which the other parametrization of ref. [15] is extracted. As a

matter of fact, this is the only source of significant discrepancy between the two extractions,

which otherwise show a high level of compatibility despite the fact that they are obtained

from very di↵erent procedures. Note that if the So↵er bound is saturated at some scale, it

is likely to be significantly violated at a lower scale [46]. Therefore, if we want to maintain
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Rigid version

1σ error band from replicas @2.4 GeV2

Best fit central curve @2.4 GeV2

and standard 1σ error band



Nucleon Charges

ESTIMATES FROM EXPERIMENTAL 
PROJECTIONS
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Our Rigid Functional Form   1st order polynomial

Band: Torino 2009 transversity

Soffer Bound @ 2.4 GeV2

Best fit central curve @2.4 GeV2

and standard 1-σ error band
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Our Rigid Functional Form   1st order polynomial

Band: Torino 2009 transversity

Soffer Bound @ 2.4 GeV2

Best fit central curve @2.4 GeV2

and standard 1-σ error band
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Our Rigid Functional Form   1st order polynomial

Band: Torino 2009 transversity

Soffer Bound @ 2.4 GeV2

Best fit central curve @2.4 GeV2

and standard 1-σ error band
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Dihadron SIDIS
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