The Q-Weak Experiment: Measurement of the Weak Charge of the Proton

Dave Gaskell Jefferson Lab on behalf of the Q-Weak Collaboration

DIS 2015 April 29, 2015

1

Outline

- 1. Motivation and PVES
- 2. The Q-Weak Experiment
- 3. Results from Commissioning run
- 4. Recent developments

Parity Violating Electron Scattering and Q_W of the Proton

PV ep asymmetry in terms of EM and Neutral-weak form factors

$$A_{ep}^{PV} = \left[\frac{G_F Q^2}{4\pi\alpha\sqrt{2}}\right] \left[\frac{\epsilon G_E^{\gamma} G_E^Z + \tau G_M^{\gamma} G_M^Z - (1 - 4\sin^2\theta_W)\epsilon' G_M^{\gamma} G_A^Z}{\epsilon (G_E^{\gamma})^2 + \tau (G_M^{\gamma})^2}\right]$$

At low Q² and forward angles, can be expressed:

$$\frac{A_{ep}^{PV}}{A_0} = Q_W^p + Q^2 B(Q^2, \theta) \qquad A_0 = \left[\frac{-G_F Q^2}{4\pi\alpha\sqrt{2}}\right]$$

Suppression of Q_W (proton) provides enhanced sensitivity to $sin^2\theta_W$

Particle	Electric charge	Weak vector charge $(\sin^2 heta_W pprox rac{1}{4})$
е	-1	$Q_W^e = -1 + 4 \sin^2 heta_W pprox 0$
u	$+\frac{2}{3}$	$-2C_{1u}=+1-rac{8}{3}\sin^2 heta_Wpprox+rac{1}{3}$
d	$-\frac{1}{3}$	$-2C_{1d} = -1 + \frac{4}{3}\sin^2 heta_W \approx -\frac{2}{3}$
p(uud)	+1	$Q^p_W = 1 - 4 \sin^2 heta_W pprox 0.07$
n(udd)	0	$Q_W^n=-1$

Q_W(proton) and New Physics

Weak mixing angle precisely measured at *Z*-pole

→ Running of sin²θ_W to lower mass scales (momentum transfers) precisely predicted in context of Standard Model

Sensitivity to "New Physics" can be described in terms of mass scale Λ and model dependent coupling, g

Absolute mass scale depends on both *g* and assumed Lagrangian

$$\frac{\overline{x}}{p} + \frac{\overline{z}}{p} + \frac{\overline{z}}{p} + \frac{\overline{z}}{p} + \frac{\overline{x}}{p} + \frac{\overline$$

Q-Weak Experiment at Jefferson Lab

Installed and run in experimental Hall C at Jefferson Lab: 2010-2012

Aim: Measure PV asymmetry in elastic ep scattering at $Q^2 \sim 0.025$ GeV²

Nominal asymmetry ~ -230 ppb

Three distinct run periods:

- Fall 2010-January 2011: Commissioning + "early run" data sample
- 2. January-Spring 2011: Run 1
- 3. Fall 2011-Spring 2012: Run 2

Q-Weak Apparatus

Quartz Cerenkov Bars

Q-Weak Apparatus

Quartz Cerenkov Bars

First Results: Asymmetry

 $\langle Q^2 \rangle = 0.0250 \pm 0.0006 \text{ GeV}^2$ Run 0 Results $\langle E_{beam} \rangle = 1.155 \pm 0.003 \text{ GeV}$ \rightarrow 1/25th of total data set $= -279 \pm 35 \text{ (stat)} \pm 31 \text{ (syst) ppb}$ A_{ep} 0.05 0.2 0.1 0.15 0.25 0.3 0 0 • G0 HAPPEX -1 1 *****SAMPLE -2 PVA4 Asymmetry [ppm] Oweak Q-weak (4% of data, 3 days @ 100%) -6 I -7 -8 Q^{2} [(GeV/c)²] Published 10/2/2013: PRL 111,141803 (2013) Jefferson Lab 8

Global Fit to *A*_{ep} **Data**

$$\frac{A_{ep}}{A_0} = Q_W^p + Q^2 B(Q^2, \theta = 0) \qquad A_0 = \left[\frac{-G_F Q^2}{4\pi\alpha\sqrt{2}}\right]$$

Neutral-weak Quark Coupling Constants

Combined analysis of PVES data and atomic PV

 $C_{1u} = -0.1835 + -0.0054$ $C_{1d} = 0.3355 + -0.0050$

$$Q^{p}_{W} = -2 (2 C_{1u} + C_{1d})$$

= 0.063 ± 0.012 (PVES+APV)
= 0.064 ± 0.012 (PVES only)

SM prediction = 0.0710(7)

Extraction and Uncertainties Aen

$$A_{ep} = R_{tot} \frac{\frac{A_{msr}}{P} - \sum_{i}^{4} f_{i} A_{i}}{1 - \sum f_{i}}$$

$$f_1(A_1) =$$
 aluminum target cell wall background
 $f_2(A_2) =$ background from beamline
 $f_3(A_3) =$ soft, neutral backgrounds
 $f_4(A_4) =$ inelastic processes (N $\rightarrow \Delta$)
efferson Lab

A_{ep} Extraction and Uncertainties

	Correction	Contribution			
	Value (ppb)	to ΔA	$_{ep}$ (ppb)		
Normalization Factors Applied to A_{Raw}					
Beam Polarization $1/P$	-21		$\overline{5}$		
Kinematics R_{tot}	5		9		
Bckgrnd Dilution $1/(1 - f_{tot})$	-7	-			
Asymmetry corrections					
Beam Asymmetries κA_{reg}	-40				
Transverse Polarization κA_T	0		5		
Detector Linearity κA_L	0		4		
Backgrounds	$\kappa P f_i A_i$	$\delta(f_i)$	$\delta(A_i)$		
Target Windows (b_1)	-58	4	8		
Beamline Scattering (b_2)	11	3	23		
Other Neutral bkg (b_3)	0	1	< 1		
Inelastics (b_4)	1	1	< 1		

2013 PRL Systematic Uncertainties

Polarimetry

Q-Weak polarimetry precision goal: dP/P = 1%

Strategy:

- 1. Use existing Møller polarimeter to make precision, periodic measurements at low current
- 2. Build new Compton polarimeter to make continuous, non-invasive measurements
- \rightarrow 2 independent techniques!

Q-Weak early result relied on Møller only. Quoted uncertainty for 2013 PRL: *dP/P* =2%

Polarimetry (Preliminary) – Run 2

Beam parameter corrections

Beam parameters that change with helicity can give rise to false asymmetry

$$A_{beam} = \sum_{i}^{5} \left(\frac{\partial A}{\partial x_i}\right) \Delta x_i$$

Sensitivity

Helicity correlated position, angle, or E

Can measure sensitivity 2 ways:

- Regression use "natural" motion of beam to determine response
- 2. Dithering drive the beam (w/large amplitude)

Excellent consistency between regression and dithering, for subset of data where both are available Jenerson Lab

Run2 measured asymmetry

→ 77% of Run 2 data set

- → Beam parameter correction only
- \rightarrow No polarization, AI subtraction
- → Statistical errors

Beamline backgrounds

Contribution from beamline backgrounds largest uncertainty in 2013 result

- → Thought to be interactions of beam halo with narrow aperture of collimating "plug"
- → Dedicated measurements were performed ("blocked octant") to constrain size and asymmetry of these backgrounds : f=0.19%
- → Size and asymmetry of these backgrounds can be measured using ancillary detectors that have smaller (fractional) contribution from elastic signal

Kinematics and Aluminum Background

Q² Determination

- Significant effort underway in analysis of low current tracking data for determination of nominal Q²
- Uncertainty dominated by determination of scattering angle
- Excellent agreement between data and simulation

Aluminum Background

- Need both asymmetry and dilution with good precision
- Increased data set over 2013 result smaller statistical uncertainties
- Systematic uncertainties in both A and f will be improved

Qweak Run 2 - Blinded Asymmetries

(statistics only - not corrected for beam polarization, AI target windows, ΔQ^2 , etc.)

$sin^2(\theta_W)$

Summary

First results from Q-Weak (4% of total data set)
 – PRL 111,141803 (2013)

$$A_{ep} = -279 \pm 35 \text{ (stat) } \pm 31 \text{ (syst) ppb}$$

- Significant progress has been made in analyzing full data set – both statistical and systematic uncertainties will be much improved
- Final results expected soon
- In addition to main ep results several results coming from ancillary/background measurements are expected

Additional Measurements

- PV asymmetries
 - Longitudinal asymmetry from aluminum (neutron radius a la PREX?)
 - Longitudinal asymmetry in resonance region
 - Longitudinal asymmetry (Delta) \rightarrow 2 beam energies
- Parity conserving (2-boson exchange) azimuthal asymmetries
 - Hydrogen elastic → constrains backgrounds in main measurement, but also provides information on 2photon exchange effects in form factor extraction
 - Hydrogen resonance (Delta)
 - Aluminum, carbon

The Qweak Collaboration

97 collaborators23 grad students10 post docs23 institutions

Institutions:

- ¹ University of Zagreb
- ² College of William and Mary
- ³ A. I. Alikhanyan National Science Laboratory
- ⁴ Massachusetts Institute of Technology
- ⁵ Thomas Jefferson National Accelerator Facility
- ⁶ Ohio University
- ⁷ Christopher Newport University
- ⁸ University of Manitoba,
- ⁹ University of Virginia
- ¹⁰ TRIUMF
- ¹¹ Hampton University
- ¹² Mississippi State University
- ¹³ Virginia Polytechnic Institute & State Univ
- ¹⁴ Southern University at New Orleans
- ¹⁵ Idaho State University
- ¹⁶ Louisiana Tech University
- ¹⁷ University of Connecticut
- ¹⁸ University of Northern British Columbia
- ¹⁹ University of Winnipeg
- ²⁰ George Washington University
- ²¹ University of New Hampshire
- ²² Hendrix College, Conway
- ²³ University of Adelaide

D. Androic,¹ D.S. Armstrong,² A. Asaturyan,³ T. Averett,² J. Balewski,⁴ J. Beaufait,⁵ R.S. Beminiwattha,⁶ J. Benesch,⁵
F. Benmokhtar,⁷ J. Birchall,⁸ R.D. Carlini,^{5, 2} G.D. Cates,⁹ J.C. Cornejo,² S. Covrig,⁵ M.M. Dalton,⁹ C.A. Davis,¹⁰ W. Deconinck,²
J. Diefenbach,¹¹ J.F. Dowd,² J.A. Dunne,¹² D. Dutta,¹² W.S. Duvall,¹³ M. Elaasar,¹⁴ W.R. Falk,⁸ J.M. Finn,², T. Forest,^{15, 16} D. Gaskell,⁵
M.T.W. Gericke,⁸ J. Grames,⁵ V.M. Gray,² K. Grimm,^{16, 2} F. Guo,⁴ J.R. Hoskins,² K. Johnston,¹⁶ D. Jones,⁹ M. Jones,⁵ R. Jones,¹⁷
M. Kargiantoulakis,⁹ P.M. King,⁶ E. Korkmaz,¹⁸ S. Kowalski,⁴ J. Leacock,¹³ J. Leckey,² A.R. Lee,¹³ J.H. Lee,^{6, 2}, L. Lee,¹⁰
S. MacEwan,⁸ D. Mack,⁵ J.A. Magee,² R. Mahurin,⁸ J. Mammei,¹³, J.W. Martin,¹⁹ M.J. McHugh,²⁰ D. Meekins,⁵ J. Mei,⁵ R. Michaels,⁵
A. Micherdzinska,²⁰ A. Mkrtchyan,³ H. Mkrtchyan,³ N. Morgan,¹³ K.E. Myers,²⁰ A. Narayan,¹² L.Z. Ndukum,¹² V. Nelyubin,⁹
Nuruzzaman,^{11, 12} W.T.H van Oers,^{10, 8} A.K. Opper,²⁰ S.A. Page,⁸ J. Pan,⁸ K.D. Paschke,⁹ S.K. Phillips,²¹ M.L. Pitt,¹³ M. Poelker,⁵
J.F. Rajotte,⁴ W.D. Ramsay,^{10, 8} J. Roche,⁶ B. Sawatzky,⁵ T. Seva,¹ M.H. Shabestari,¹² R. Silwal,⁹ N. Simicevic,¹⁶ G.R. Smith,⁵
P. Solvignon,⁵ D.T. Spayde,²² A. Subedi,¹² R. Subedi,²⁰ R. Suleiman,⁵ V. Tadevosyan,³ W.A. Tobias,⁹ V. Tvaskis,^{19, 8}
B. Waidyawansa,⁶ P. Wang,⁸ S.P. Wells,¹⁶S.A. Wood,⁵ S. Yang,² R.D. Young,²³ and S. Zhamkochyan ³

Spokespersons Project Manager Grad Students