Towards a Direct Measurement of the Quark Orbital Angular Momentum Distribution

Simonetta Liuti University of Virginia

XXIII International DIS Workshop
Dallas, Texas, April 27-May 1, 2015

In collaboration with: Aurore Courtoy, Michael Engelhardt, Abha Rajan

The spin crisis in a cartoon

Jaffe Manohar
Ji

$$
\frac{1}{2}=\frac{1}{2}+\mathcal{L}_{q}+G+\mathcal{L}_{g}
$$

$$
\frac{1}{2}=\frac{1}{2} \quad+L_{q}+J_{g}
$$

$$
\Delta G_{-}
$$

Lattice QCD

S. Syritsyn, PoS Lattice 2013

$\mathcal{L}_{q} L_{q}$ are also derived

Model dependent extractions of J_{u} and J_{d}

O. Gonzalez Hernandez et al., Phys. Rev. C88, 065206; arXiv:1206.1876

Angular Momentum Sum Rules

Express the various components, $\Delta \Sigma, \Delta G, L_{q}, J_{q}, J_{g}, \mathcal{L}_{q}, \mathcal{L}_{g}$ in terms of non-local light-cone operators of twist 2 and twist 3.

Jaffe Manohar: in LC gauge rewrite AM using Dirac eqn. to isolate spin terms

$$
\begin{array}{ccc}
M^{+12}=\psi^{\dagger} \sigma^{12} \psi+\psi^{\dagger}[\vec{x} \times(-i \partial)]^{3} \psi+\operatorname{Tr}\left(\varepsilon^{+-i j} F^{+j} A^{j}\right)+2 i \operatorname{Tr} F^{+j}(\vec{x} \times \partial) A^{j} \\
\Delta \Sigma & \mathcal{L}_{\mathrm{q}} & \Delta \mathrm{G}
\end{array}
$$

di:

$$
\frac{M^{+12}=\psi^{\dagger} \sigma^{12} \psi+\psi^{\dagger}[\vec{x} \times(-i \vec{D})]^{3} \psi+[\vec{x} \times(\vec{E} \times \vec{B})]^{3}}{\Delta \Sigma} \mathrm{~L}_{\mathrm{q}}
$$

The two sum rules give equivalently valid representations:

Different mechanisms for generating OAM in the proton can coexist

 The ones that will make physical sense are the ones that can be measuredOAM represents the correlation between the position and momentum of the quarks and gluons

Hatta (2011)

$$
\mathcal{L}_{q}, L_{q}=\int d x d^{2} b d^{2} k_{T}\left(\vec{b} \times \vec{k}_{T}\right)_{3} \mathcal{W}\left(x, \vec{b}, \vec{k}_{T}\right)
$$

Lorce, Pasquini (2011)

OAM Wigner Distribution

$$
\mathcal{W}\left(x, \vec{b}, \vec{k}_{T}\right)=\left.\int \frac{d^{2}{ }_{T}}{(2)^{2}} e^{i r^{\cdot b}} \int \frac{d^{2} z_{T} d^{2} z}{(2)^{3}} e^{i\left(x P^{+} z\right.} k_{\left.T^{\prime} \cdot z_{T}\right)}\left\langle P^{\prime},\left.\quad\right|^{-}(0)^{+} U(0, \infty \mid n) \quad(z) \mid P, \quad\right\rangle\right|_{z^{+}=0}
$$

Wilson-line gauge link, " n " defines the path along which we evaluate the vector potential

Burkardt's torque (2013)

Evaluate gauge links (Hatta Yoshida, 2012; Burkardt, 2013)
$\mathcal{L}_{q} \rightarrow$ "staple" gauge link,

$\mathrm{L}_{\mathrm{q}} \rightarrow$ "straight" gauge link

The difference of the two gives a torque,
$\mathcal{L}_{q} \quad L_{q}=\left.\int \frac{d^{2} z_{d} d z}{(2)^{3}}\left\langle P^{\prime},\left.\quad\right|^{-}(z)+(g)\right]_{z}^{\infty} d y U[\underbrace{z_{1} G^{+1}(y) \quad z_{2} G^{+2}(y)}] U(z)|P, \quad\rangle\right|_{z^{+}=0}$ $\vec{\tau}=\vec{r} \times \vec{F} \rightarrow$ "Chromodynamic torque"*
*a Qiu-Sterman term type term analogous to $f_{1 T}{ }^{\text {per }}$

Polyakov's relation (2000)

Polyakov et al. (2000), Hatta, Yoshida (2012): Define twist three GPDs
$W_{\Lambda^{\prime} \Lambda}^{\gamma^{i}}=\frac{1}{2 P^{+}} \bar{U}\left(p^{\prime}, \Lambda^{\prime}\right)\left[\frac{\Delta_{T}^{i}}{M} G_{1}+\frac{i \sigma^{j i} \Delta}{M} G_{2} \frac{M i \sigma^{i+}}{P^{+}} G_{4}+\frac{\Delta_{T}^{i}}{P^{+}} \gamma^{+} G_{3}\right] U(p, \Lambda)$,
\checkmark Derive Wandzura Wilczeck relation using OPE tw 2 and tw 3 operators.
\checkmark Take off-forward matrix elements
Similarly to the forward case,

$$
G_{2}\left(x, 0, t, Q^{2}\right)=\left[\int_{x}^{1} \frac{d y}{y}(H+E)-\int_{x}^{1} \frac{d y}{y^{2}} \tilde{H}\right]+\bar{G}_{2} \longleftarrow \quad \begin{aligned}
& \text { genuine } \\
& \text { twist three }
\end{aligned}
$$

In the hypothesis that the genuine twist three integrates to 0 , Ji's OAM distribution is identified with a twist 3 GPD

$$
L_{q}(x)=x G_{2}(x)
$$

Generalized Wandzura Wilczek relation

$$
\underbrace{x G_{2}(x)}_{t=3}=-x \underbrace{\int_{x}^{1} \frac{d y}{y}[H(x, 0,0)+E(x, 0,0)]+x \int_{x}^{1} \frac{d y}{y^{2}} \tilde{H}(x, 0,0)}_{G_{2}^{W W} \rightarrow \tau=2}+\underbrace{\left[\bar{G}_{2}^{t w 3}-\int_{x}^{1} \frac{d y}{y} \bar{G}_{2}^{t w 3}\right]}_{\tau=3}
$$

k_{T} substructure

Burkardt, Hatta (2011)

$$
\mathcal{L}_{q}(x)=\int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} F_{14}^{\text {"staple" }}\left(x, \xi=0, \vec{k}_{T}, t=0\right)=L_{q}(x)+\text { "Qiu-Sterman" }
$$

$$
\mathrm{F}_{14} \text { (Meissner, Metz, Schlegel, 2009) }
$$

Both Jaffe Manohar and Ji OAM are identified with a k_{T} moment of a twist 2 GTMD

Courtoy et al. (2014)

Ji's OAM is identified with the integral of twist 3 GTMDs

$$
\begin{aligned}
& \mathrm{F}_{27}, \mathrm{~F}_{28} \text { (Meissner, Metz, Schlegel, 2009) }
\end{aligned}
$$

Spin correlations

$$
W_{\Lambda^{\prime} \Lambda}^{\left[\gamma^{+}\right]}=\frac{1}{2 M} \bar{u}\left(p^{\prime}, \Lambda^{\prime}\right)\left[F_{11}+\frac{i \sigma^{k_{\perp}+}}{P^{+}} F_{12}+\frac{i \sigma^{\Delta_{\perp}+}}{P^{+}} F_{13}+\frac{i \sigma^{k_{\perp} \Delta_{\perp}}}{M^{2}} F_{14}\right] u(p, \Lambda)
$$

F_{14}

$$
W_{\Lambda^{\prime} \Lambda}^{\gamma^{i}}=\frac{1}{2 P^{+}} \bar{U}\left(p^{\prime}, \Lambda^{\prime}\right)\left[\frac{\Delta_{T}^{i}}{M} G_{1}+\frac{i \sigma^{j i} \Delta \int_{j}}{M} G_{2} \frac{M i \sigma^{i+}}{P^{+}} G_{4}+\frac{\Delta_{T}^{i}}{P^{+}} \gamma^{+} G_{3}\right] U(p, \Lambda),
$$

G_{2}

There exists a connection between F_{14} and G_{2} that uncovers different types of quarkgluon interactions behind the Jaffe Manohar and Ji mechanisms for generating OAM (A. Courtoy, M. Engelhardt, S. L., A. Rajan, 2015)

a unique probe of quark-gluon interactions

Using directly the unintegrated quark-quark correlator defining GTMDs,

$$
W_{\Lambda \Lambda^{\prime}}^{\sigma^{\prime \prime} \gamma_{S}}=\left.\int \frac{d^{2} z_{T} d^{2} z^{-}}{(2 \pi)^{3}} e^{i P^{+} z^{-}-i \bar{k}_{T} \bar{z}_{T}}\left\langle P^{\prime}, \Lambda^{\prime}\right| \bar{\psi}(0) i \sigma^{i+} \gamma_{5} \psi(z)|P, \Lambda\rangle\right|_{z^{+}=0}
$$

Insert the Equations of Motion,

$$
\left.\int \frac{d^{2} z_{T} d^{2} z^{-}}{(2 \pi)^{3}} e^{i x P^{+} z^{-}-i \vec{k}_{r} \vec{z}_{T}}\left\langle P^{\prime}, \Lambda^{\prime}\right| \bar{\psi}(0) i \sigma^{i+[i D(0)-m]} \psi(z)|P, \Lambda\rangle\right|_{z^{+}=0}=0
$$

$$
i D D=i \quad+\quad{ }_{T} \times{ }_{T}+g A
$$

$$
\begin{aligned}
& k^{+} W_{\Lambda \Lambda^{\prime}}^{\gamma i \gamma_{5}}+i k^{+} W_{\Lambda \Lambda^{\prime}}^{\gamma i}=k_{T}^{i} W_{\Lambda \Lambda^{\prime}}^{\gamma^{+} \gamma_{5}}+i k_{T}^{i} W_{\Lambda \Lambda^{\prime}}^{\gamma^{+}} \\
& +\left.\int \frac{d^{2} z_{T} d^{2} z^{-}}{(2 \pi)^{3}} e^{i x P^{+} z^{-}-i \vec{k}_{T^{\prime}} \vec{z}_{T}}\left\langle P^{\prime}, \Lambda^{\prime}\right| \bar{\psi}(0) \gamma^{+} g A_{T}(0) \psi(z)|P, \Lambda\rangle\right|_{z^{+}=0}
\end{aligned}
$$

For longitudinal polarization and Integrating over k_{T}

$$
\begin{aligned}
& \underbrace{x \tilde{G}_{2}(x)+x G_{2}(x)}_{t=3}=\underbrace{\int d^{2} k_{T} \frac{k_{T} \cdot \Delta_{T}}{\Delta_{T}^{2}} G_{14}\left(x, 0, \vec{k}_{T}\right)+\int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} F_{14}\left(x, 0, \vec{k}_{T}\right)}_{\tau=2}+\underbrace{\bar{G}_{2}^{t w 3}}_{\tau=3} \\
& x \tilde{G}_{2}(x)+x G_{2}(x)=G_{14}^{(1)}+F_{14}^{(1)}+\bar{G}_{2}^{t w 3} \quad \text { A sum rule relating Ii and JM OAM } \\
& \underbrace{x G_{2}(x)}_{t=3}=-x \underbrace{\int_{x}^{1} \frac{d y}{y}[H(x, 0,0)+E(x, 0,0)]+x \int_{x}^{1} \frac{d y}{y^{2}} \tilde{H}(x, 0,0)}_{G_{2}^{W W} \rightarrow \tau=2}+\underbrace{\left.\bar{G}_{2}^{t w 3}-\int_{x}^{1} \frac{d y}{y} \bar{G}_{2}^{t w 3}\right]}_{\tau=3} \\
& \hline
\end{aligned}
$$

Compare with gauge-links derivation

$$
\int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} F_{14}^{J M}\left(x, 0, \vec{k}_{T}\right)=\int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} F_{14}^{J i}\left(x, 0, \vec{k}_{T}\right)+\text { "Qiu-Sterman" }
$$

$$
\int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} F_{14}^{J M}\left(x, 0, \vec{k}_{T}\right)=\int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} F_{14}^{J i}\left(x, 0, \vec{k}_{T}\right)+" t w 3^{J i} "-" t w 3^{J M} "
$$

We are investigating further this connection

$$
L_{q}(x, 0,0)=x \int_{x}^{1} \frac{d y}{y}\left(H_{q}(y, 0,0)+E_{q}(y, 0,0)\right)-x \int_{x}^{1} \frac{d y}{y^{2}} \widetilde{H}_{q}(y, 0,0), \quad \neq \mathrm{F}_{14}!
$$

Preliminary results in reggeized diquark model (With Abha Rajan)

$\mathrm{Q}^{2}=2 \mathrm{GeV}^{2}$

Effect of evolution

GPDs calculated in Reggeized diquark model GGL PRD (2010), O. Gonzalez et al, PRC (2013)

$$
\underbrace{g_{2}(x)}_{t=3}=-\underbrace{g_{1}(x)+\int_{x}^{1} \frac{d y}{y} g_{1}(x)}_{g_{2}^{W W} \rightarrow \tau=2}+\underbrace{\left[\bar{g}_{2}^{t w 3}-\int_{x}^{1} \frac{d y}{y} \bar{g}_{2}^{t w 3}\right]}_{\tau=3}
$$

$\mathrm{g}_{2}{ }^{\mathrm{n}}$ Hall A

A few observations

\checkmark The new expression relates a GTMD $\left(F_{14}\right)$ with a twist 3 GPD $\left(G_{2}\right)$, intrinsic k_{T} enters even if integrated over \rightarrow it establishes a connection between transverse spatial and momentum dependences
\checkmark Similar to the Sivers effect but here the function vanishes for a straight link, only staple links are probed
\checkmark A unique setup to study/test transverse momentum dependence and related effects, factorization issues, renormalization issues...
\checkmark A unique handle on quark-gluon interactions through the explicit appearance of the quark-gluon-quark correlator in the sum rule
\checkmark The role of partonic k_{T} and off-shellness, k^{2} is manifest.
\checkmark Similarities with g_{2}

Observability: Cross section and asymmetries

$$
\begin{aligned}
& \frac{d^{4} \sigma}{d x_{B j} d y d \phi d t}=\Gamma\left\{\left[F_{U U, T}+\epsilon F_{U U, L}+\epsilon \cos 2 \phi F_{U U}^{\cos 2 \phi}+\sqrt{2 \epsilon(\epsilon+1)} \cos \phi F_{U U}^{\cos \phi}+\sqrt{\sqrt{2 \epsilon(1-\epsilon)}} \sin \phi F_{L U}^{\sin \phi}\right.\right. \\
& \left.+S_{\|} \sqrt{2 \epsilon(\epsilon+1)} \sin \phi F_{U L}^{\sin \phi}+\epsilon \sin 2 \phi F_{U L}^{\sin 2 \phi}+h\left(\sqrt{1-\epsilon^{2}} F_{L L}+\sqrt{2 \epsilon(1-\epsilon)} \cos \phi F_{L L}^{\cos \phi}\right)\right] \\
& +S_{\perp} \sin \left(\phi-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi-\phi_{S}\right)}+\epsilon F_{U T, 4}^{\sin \left(\phi-\phi_{S}\right)}\right)+\epsilon\left(\sin \left(\phi+\phi_{S}\right) F_{U T}^{\sin (\phi+\beta s)}+\sin \left(3 \phi-\phi_{S}\right) F_{U T}^{\sin (3 \phi-\phi S)}\right) \\
& \left.+\sqrt{2 \epsilon(1+\epsilon)}\left(\sin \phi_{S} F_{U T}^{\sin \phi_{S}}+\sin \left(2 \phi-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi-\beta^{S}\right)}\right)\right] \\
& \left.\left.\left.+S_{\perp} h\left[\sqrt{1-\epsilon^{2}} \cos \left(\phi-\phi_{S}\right) F_{L T}^{\cos (\phi-\phi}\right)^{2}\right)+\sqrt{2 \epsilon(1-\epsilon)}\left(\cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\cos \left(2 \phi-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi-\phi_{S}\right)}\right)\right]\right\} \\
& A_{L U}=\sqrt{\epsilon(1-\epsilon)} \frac{F_{L U}^{\sin \phi}}{F_{U U, T}+\epsilon F_{U U, L}} \\
& A_{U L}=\frac{N_{s_{z}=+}-N_{s_{z}=-}}{N_{s_{z}=+}+N_{s_{z}=-}}=\frac{\sqrt{\epsilon(\epsilon+1)} \sin \phi F_{U L}^{\sin \phi}}{F_{U U, T}+\epsilon F_{U U, L}}+\frac{\epsilon \sin 2 \phi F_{U L}^{\sin 2 \phi}}{F_{U U, T}+\epsilon F_{U U,}} \\
& A_{L L}=\frac{N_{s_{z}=+}^{\rightarrow}-N_{s_{z}=-}^{\rightarrow}+N_{s_{z}=+}^{\leftarrow}-N_{s_{z}=-}^{\leftarrow}}{N_{s_{z}=+}+N_{s_{z}=-}}=\frac{\sqrt{1-\epsilon^{2}} F_{L L}}{F_{U U, T}+\epsilon F_{U U, L}}+\frac{\sqrt{\epsilon(1-\epsilon)} \cos \phi F_{L L}^{\cos \phi}}{F_{U U, T}+\epsilon F_{U U, L}}
\end{aligned}
$$

We identified the quark-proton helicity amplitudes combinations

In terms of quark-proton helicity amplitudes,

$$
\begin{aligned}
i(\mathbf{k} \times \Delta)_{3} F_{14} & =A_{++,++}^{t w 2}+A_{+-,+-}^{t w 2}-A_{-+,-+}^{t w 2}-A_{--,--}^{t w 2} \\
\mathrm{G}_{2} \quad\left(k_{1}-i k_{2}\right) F_{27}+\left(\Delta_{1}-i \Delta_{2}\right) F_{28} & =A_{+-*,++}^{t w 3}-A_{+-,++^{*}}^{t w 3}-A_{--{ }^{*},-+}^{t w 3}+A_{---,-}^{t w 3}
\end{aligned}
$$

Direct measurement of OAM via G_{2} : DVCS on a longitudinally polarized target

$$
A_{U L, L}=\frac{N_{s_{z}=+}-N_{s_{z}=-}}{N_{s_{z}=+}+N_{s_{z}=-}}=\frac{\sqrt{2 \epsilon(\epsilon+1)} \sin \phi F_{U L}^{\sin \phi}}{F_{U U, T}+\epsilon F_{U U, L}}+\frac{\epsilon \sin 2 \phi F_{U L}^{\sin 2 \phi}}{F_{U U, T}+\epsilon F_{U U, L}}
$$

Direct measurement of (k_{T} moment of) F_{14}

UL correlation

F_{14} is Parity even: its matrix element transforms like:

$$
S_{z}=p_{z}
$$

it can therefore in principle represent OAM!
Most of the criticism in Kanazawa et al. (2014) is unfounded, it raised a controversy on an issue that is uncontroversial!

However, because F_{14} transforms opposite to helicity, we did raise an issue about its observability in terms of helicity amplitudes!!

Parity predicts a lack of a UL correlation at twist 2
TMDs

GPDs

	U	T_{x}	T_{y}	L
U	f_{1}	$-i \frac{k_{y}}{M} h_{1}^{\perp}$	$i \frac{k_{x}}{M} h_{1}^{\perp}$	
T_{x}	$-i \frac{k_{y}}{M} f_{1 T}$	$h_{1}+\frac{k_{x}^{2}-k_{y}^{2}}{2 M^{2}} h_{1 T}^{\perp}$	$\frac{k_{x} k_{y}}{M^{2}} h_{1 T}^{\perp}$	$\frac{k_{x}}{M} g_{1 T}$
T_{y}	$i \frac{k_{x}}{M} f_{1 T}$	$\frac{k_{x} k_{y}}{M^{2}} h_{1 T}^{\perp}$	$h_{1}-\frac{k_{x}^{2}-k_{y}^{2}}{2 M^{2}} h_{1 T}^{\perp}$	$\frac{k_{y}}{M} g_{1 T}$
L		$\frac{k_{x}}{M} h_{1 L}^{\perp}$	$\frac{k_{y}}{M} h_{1 L}^{\perp}$	$g_{1 L}$

	U	T_{x}	T_{y}	L
U	H	$i \frac{\Delta_{y}}{2 M}\left(2 \tilde{H}_{T}+E_{T}\right)$	$-i \frac{\Delta_{x}}{2 M}\left(2 \tilde{H}_{T}+E_{T}\right)$	
T_{x}	$i \frac{\Delta_{y}}{2 M} E$	$H_{T}-\frac{\Delta_{x}^{2}-\Delta_{y}^{2}}{4 M^{2}} \tilde{H}_{T}$	$-\frac{\Delta_{x} \Delta_{y}}{2 M^{2}} \tilde{H}_{T}$	
T_{y}	$-i \frac{\Delta_{x}}{2 M} E$	$-\frac{\Delta_{x} \Delta_{y}}{2 M^{2}} \tilde{H}_{T}$	$H_{T}+\frac{\Delta_{x}^{2}-\Delta_{y}^{2}}{4 M^{2}} \tilde{H}_{T}$	
L				\tilde{H}

\checkmark The amps will cancel unless they are imaginary:

$$
A_{++,++}=A_{-,,--}^{*} ; A_{+-,+-}=A_{-+,-+}^{*}
$$

\checkmark But this cannot be when the scattering happens in one single hadronic plane. In this case there can be no relative phase between helicity amps (this is what we referred to as Parity Odd, not F_{14} itself!).
\checkmark Different from GPD E where the amplitude's phase is a consequence of helicity flip and off-forward spinor rotation
\checkmark The phase in F_{14} is obtained by introducing two scattering planes

Off forward SIDIS

$>$ To measure F_{14} one has to be in a frame where the reaction cannot be viewed as a two-body quark-proton scattering
$>$ In the CoM the amplitudes are imaginary \rightarrow UL connection goes to 0

The way to accomplish this is to define two planes

virtual photon

 coming at you
A.V. Belitsky et al./ Nuclear Physics B 629 (2002) 323-392

... "off-forward SIDIS" allows us to introduce additional degrees of freedom:

$$
F_{14} \propto g_{1,+, 0 ; 1,+0}+g_{-1,+, 0 ;-1,+0}-g_{1,-,, 0 ; 1,-0}-g_{-1,-, 0 ;-1,-0}
$$

Conclusions and Outlook

With observables in hand we can now state that OAM acquires different meanings depending on the way we probe it

The difference between JM and Ji sheds light on the working of the quark-gluon correlations (twist analysis)

Unique connection between (G)TMDs and GPDs, allows us to study in detail the role of quark-gluon correlations, and of transverse momentum or off-shellness

OAM was obtained so far by subtraction (also in lattice) We suggest an independent measurement of OAM

Many more interesting new connections: with transverse spin (Sivers effect, transverse spin) and axial vector sector (g_{2})

Test renormalization issues, evolution etc...

ADVERTISEMENT: Sum Rules in Deuteron

$$
C_{\lambda^{\prime} \lambda_{q}^{\prime}, \lambda \lambda_{q}}=\sum_{\lambda_{N}, \lambda_{N}} B_{\lambda^{\prime} \lambda_{N}^{\prime}, \lambda_{N}} \otimes A_{\lambda_{N}^{\prime} \lambda_{q}^{\prime}, \lambda_{N} \lambda_{Q},}
$$

$$
\mathrm{P}_{\mathrm{A}}^{\prime}=\mathrm{P}_{\mathrm{A}}-\Delta
$$

$$
\begin{aligned}
& \quad J_{q}=\frac{1}{2} \int d x x\left[H_{q}(x, 0,0)+E_{q}(x, 0,0)\right], \quad \longrightarrow J_{q}=\frac{1}{2} \int d x x H_{2}^{q}(x, 0,0), \\
& \text { Nucleon }
\end{aligned}
$$

$$
F_{1}+F_{2}=G_{M}
$$

B
 a
 C k
 U
 p

Twist 3 decomposition of hadronic tensor in various notations

Polyakov et al. [13]	$2 G_{1}$	G_{2}	G_{3}	G_{4}
Meissner et al. [3]	$2 \widetilde{H}_{2 T}$	$\widetilde{E}_{2 T}$	$E_{2 T}$	$H_{2 T}$
Belitsky et al. [16]	E_{+}^{3}	\widetilde{H}_{-}^{3}	$H_{+}^{3}+E_{+}^{3}$	$\frac{1}{\xi} \widetilde{E}_{-}^{3}$

TABLE I: Comparison of notations for different twist 3 GPDs.

Courtoy et al, PLB (2014)arXiv:1310.5157

The QCD Energy Momentum Tensor

$$
T=\frac{1}{4} i q^{-}(\vec{D}+\vec{D})+\operatorname{Tr}\left\{\begin{array}{llll}
F & F & \frac{1}{2} g & F^{2}
\end{array}\right\} \rightarrow \begin{array}{lll}
M \quad=x T & x T
\end{array}
$$

Sum Rule: Part I

First define the angular momentum components

$$
M=x T \quad x T \quad \square \quad J_{q}^{i}={ }^{i j k} d z d^{2} z M^{+j k}
$$

then parametrize the EMT in terms of form factors $\mathrm{A}, \mathrm{B}, \mathrm{C}$

$$
T=A(\bar{P}+\bar{P})+B\left(\frac{i}{2 M} \bar{P}+\frac{i}{2 M} \bar{P}\right)+\square-{ }^{2} g
$$

Finally, connect the EMT matrix element with AM components

$$
J_{q}=\frac{1}{2}\left(A_{q}+B_{q}\right) \quad J_{q}+J_{g}=\frac{1}{2} \quad \begin{aligned}
& \text { Jaffe Manohar (1990) } \\
& \text { Ji (1997) }
\end{aligned}
$$

Fig. 1. The final-state interaction in the semi-inclusive deep inelastic lepton scattering $\ell p^{\uparrow} \rightarrow \ell^{\prime} \pi X$.

$$
\begin{array}{ll}
\frac{1}{4}\left(T_{1 \frac{1}{2} ; 1 \frac{1}{2}}+T_{1-\frac{1}{2} ; 1-\frac{1}{2}}+T_{-1 \frac{1}{2} ;-1 \frac{1}{2}}+T_{-1-\frac{1}{2} ; 1-\frac{1}{2}}\right)=T_{1}, & \mathrm{~F}_{1} \\
\frac{1}{4}\left(T_{1 \frac{1}{2} ; 1}-T_{1-\frac{1}{2} ; 1-\frac{1}{2}}+T_{-1 \frac{1}{2} ;-1 \frac{1}{2}}-T_{-1-\frac{1}{2} ;-1-\frac{1}{2}}\right)=\frac{\nu}{M^{2}} \sqrt{1+\frac{M^{2} Q^{2}}{\nu^{2}}} A_{1}, & \mathrm{~A}_{1} \\
\frac{1}{4}\left(T_{1 \frac{1}{2} ; 1 \frac{1}{2}}-T_{1-\frac{1}{2} ; 1-\frac{1}{2}}-T_{-1 \frac{1}{2} ;-1 \frac{1}{2}}+T_{-1-\frac{1}{2} ;-1-\frac{1}{2}}\right)=-\frac{\nu}{M^{2}} S_{1}+\frac{Q^{2}}{M^{2}} S_{2}+S_{3}, & \mathrm{G}_{1} \tag{1}\\
\frac{1}{4}\left(T_{1 \frac{1}{2} ; 1 \frac{1}{2}}+T_{1-\frac{1}{2} ; 1-\frac{1}{2}}-T_{-1 \frac{1}{2} ;-1 \frac{1}{2}}-T_{-1-\frac{1}{2} ;-1-\frac{1}{2}}\right)=\frac{\nu}{2 M^{2}} \sqrt{1+\frac{Q^{2} M^{2}}{\nu^{2}}} T_{3}, & \mathrm{~F}_{3}
\end{array}
$$

$W^{ \pm}, Z$
X.Ji, NPB402 (1993)

$$
\begin{aligned}
G_{1} \propto\left(g_{V}^{\prime} g_{V}+g_{A}^{\prime} g_{A}\right) \otimes\left(\begin{array}{ll}
\left(A_{++,++}-A_{-+,-+}+A_{--,--}-A_{+-,+-}\right) & g_{1} \\
+\left(g_{V}^{\prime} g_{A}+g_{A}^{\prime} g_{V}\right) & \otimes\left(\begin{array}{l}
\left(A_{++,++}-A_{-+,-+}-A_{--,--}+A_{+-,+-}\right)
\end{array}\right. \\
\mathrm{F}_{14} \\
\text { parity odd }
\end{array}\right. \\
\end{aligned}
$$

$$
\begin{aligned}
& A_{1} \propto\left(g_{V}^{\prime} g_{V}+g_{A}^{\prime} g_{g}\right) \otimes\left(A_{++,++}-A_{-+,-+}-A_{--,--}+A_{+-,+-}\right) \\
& \mathrm{F}_{14} \\
&+\left(g_{V}^{\prime} g_{A}+g_{A}^{\prime} g_{V}\right) \otimes\left(A_{++,++}-A_{-,+,-+}+A_{-,---}-A_{+-,+-}\right), \\
& g_{1}
\end{aligned}
$$

F_{14} is the contribution to g_{1} and the contribution to A_{1} !

Analogous situation as for E wrt. transverse spin (M. Burkardt)

E

The net b corresponds to net k_{T} in the opposite direction (attractive color force due to FSI)
$\left(A_{++,++}^{X}+A_{+,+}^{X}+A_{+,+}^{X}+A^{X},\right)+\left(A_{++,++}^{X}+A_{+,+}^{X} \quad A_{+,+}^{X} \quad A^{X}\right.$
$\approx H \quad i \quad{ }_{2} E$

