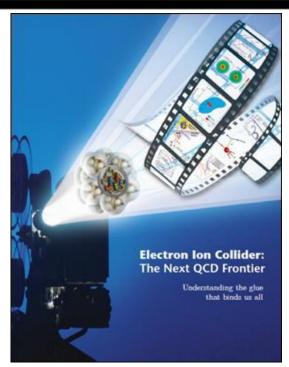


MEIC @ JLab Detector and Interaction Region

Zhiwen Zhao for JLab MEIC Study Group

DIS 2015


XXIII International Workshop on Deep-Inelastic Scattering and Related Subjects

> Dallas, Texas April 27 - May 1, 2015

EIC physics program

- A program for a generic EIC has been outlined in several documents
 - White paper, INT report, etc
- Both the proposed JLab and BNL implementations support the full generic program, although some unique capabilities are site-specific

- Highly polarized ($\sim 70\%$) electron and nucleon beams
- Ion beams from deuteron to the heaviest nuclei (uranium or lead)
- Variable center of mass energies from $\sim 20 \sim 100$ GeV, upgradable to ~ 150 GeV
- High collision luminosity $\sim 10^{33-34}$ cm⁻²s⁻¹
- Possibilities of having more than one interaction region

MEIC design goals

Energy

Full coverage of $\sqrt{\mathbf{s}}$ from **15** to **65** GeV Electrons 3-10 GeV, protons 20-100 GeV, ions 12-40 GeV/u

Ion species

Polarized light ions: **p**, **d**, ³**He**, and possibly **Li** Un-polarized light to heavy ions up to A above 200 (Au, Pb)

Space for at least 2 detectors

<u>Full acceptance</u> is critical for the primary detector High luminosity for the second detector

Luminosity

10³³ to 10³⁴cm⁻²s⁻¹ per IP in a broad CM energy range

Polarization

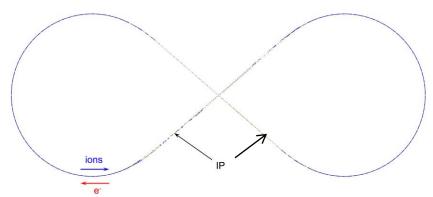
At IP: longitudinal for both beams, transverse for ions only All polarizations >70%

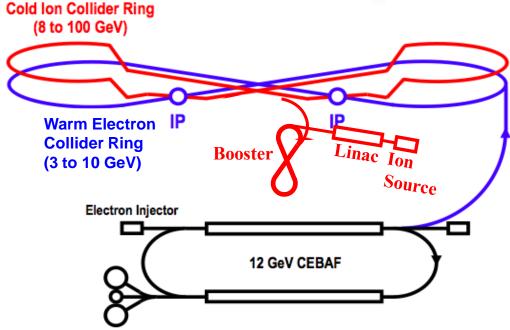
Upgrade to higher energies and luminosity possible

20 GeV electron, 250 GeV proton, and 100 GeV/u ion

Design goals consistent with the White Paper requirements

Science Requirements and

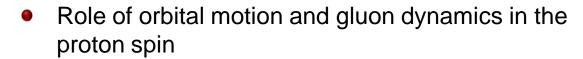

Conceptual Design for a Polarized Medium Energy


Electron-lon Collider at Jefferson Lab

MEIC baseline layout

IP Considerations:

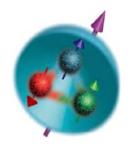
- Minimize synchrotron radiation
 - IP far from arc where electrons exit
 - Electron beam bending minimized in the straight before the IP
- Minimize hadronic background
 - IP close to arc where protons/ions exit

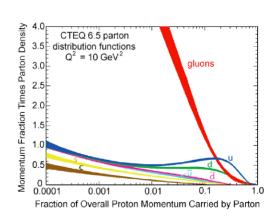


Some EIC physics highlights

3D structure of nucleons

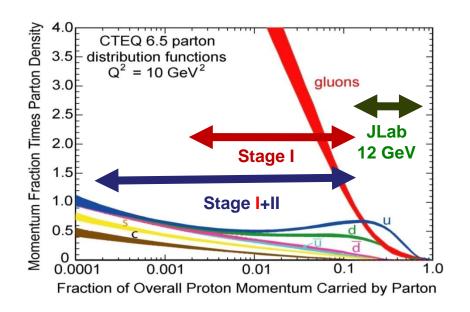
How do gluons and quarks bind into 3D hadrons?

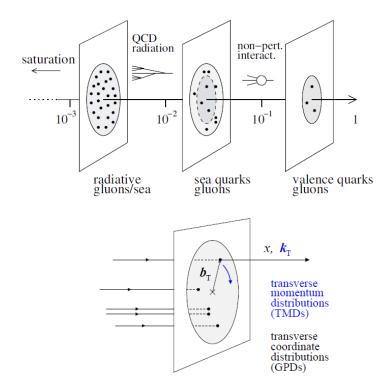



Why do quarks contribute only ~30%?

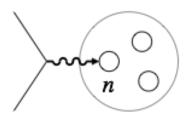
Gluons in nucleon and nuclei (light and heavy)

Does the gluon density saturate at small x?

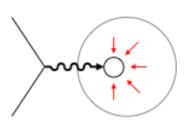



5

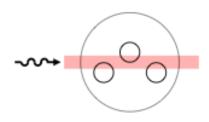
Kinematic coverage of an EIC


- JLab 12 GeV: valence quarks
- EIC stage I (MEIC): non-perturbative sea quarks and gluons
- EIC stage II: extends coverage into radiation-dominated region

A stage I EIC (Jlab MEIC) covers the x and Q² range between JLab 12 GeV and HERA (or a future LHeC)



Physics opportunities with light ions


Neutron structure

Flavor decomposition of quark spin, Δg , etc Binding, final-state interactions, polarization?

Bound nucleon in QCD

- Modification of quark/gluon structure by nuclear medium
- QCD origin of nuclear forces Understand nuclear environment?

Coherence and saturation

Interaction of high-energy probe with coherent quark-gluon fields

Onset of coherence, signature of saturation?

[Nucleus rest frame view]

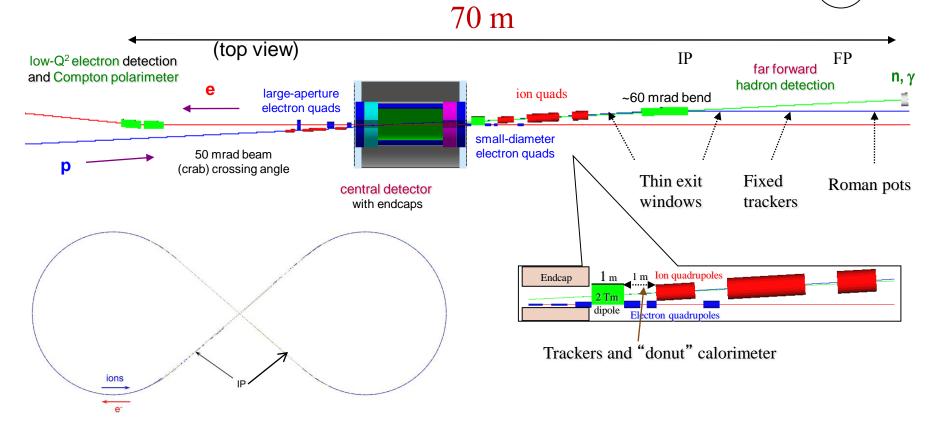
W. Cosyn, V. Guzey, D.W. Higinbotham, C. Hyde, S. Kuhn, W. Melnichouk, PNT, K. Park, M. Sargsian, M. Strikman, C., JLab LDRD-funded project

Experimental considerations

- Spectator tagging requires high-resolution forward hadron spectrometers
 - Large-acceptance magnets required for good p_T coverage (e.g., SRC)

- Inclusive measurements at low x and Q² are systematics limited
 - Polarimetry and tagger is essential
 - Radiative corrections and detector coverage important at extreme values of y

- Exclusive- and semi-inclusive reactions pose a wide range of challenges
 - Drive design of central detector
 - Spectator tagging equally important as for inclusive (e.g., DVCS on neutron)!

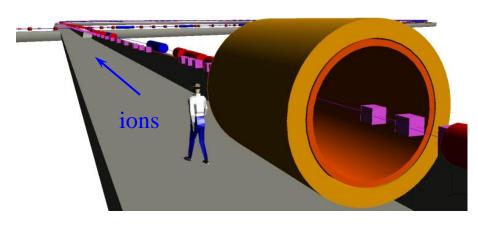

Interaction region

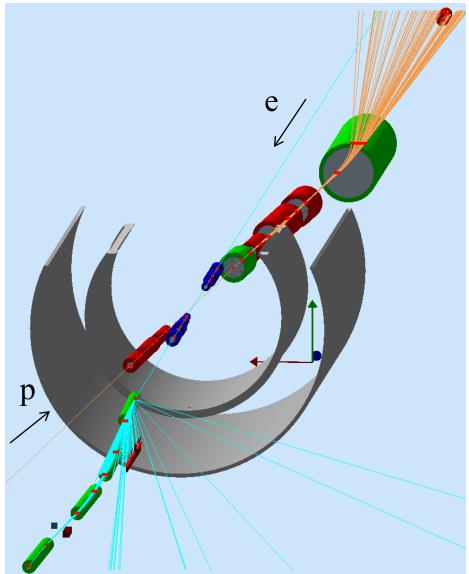
Fully-integrated detector and interaction region satisfying

Detector requirements: full acceptance and high resolution
 Beam dynamics requirements: consistent with non-linear Crossing Angle

Beam dynamics requirements: consistent with non-linear dynamics requirements

Geometric constraints: matched collider ring footprints

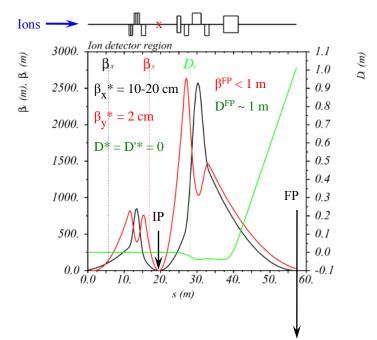



50mrad

Interaction region

Design goals:

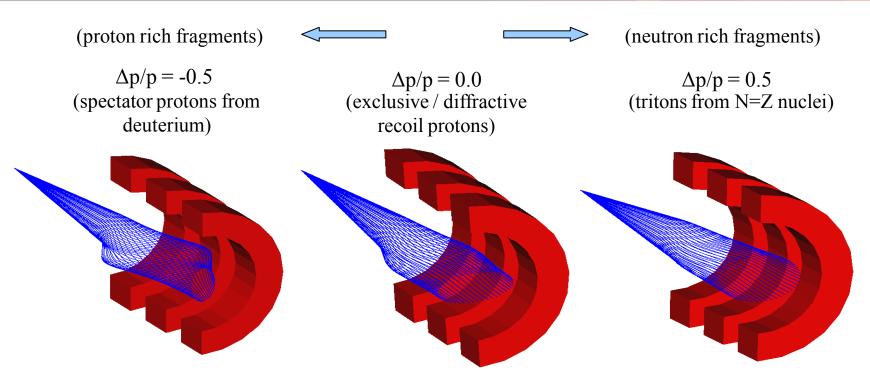
- 1. Detection/identification of complete final state
- 2. Spectator p_T resolution <
 Fermi momentum
- 3. Low-Q² electron tagger for quasi-real photoproduction
- 4. Compton polarimeter with e⁻ and γ detection

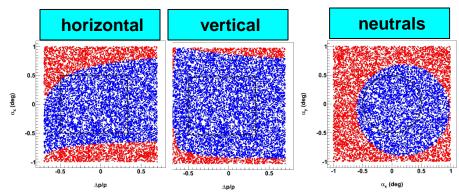


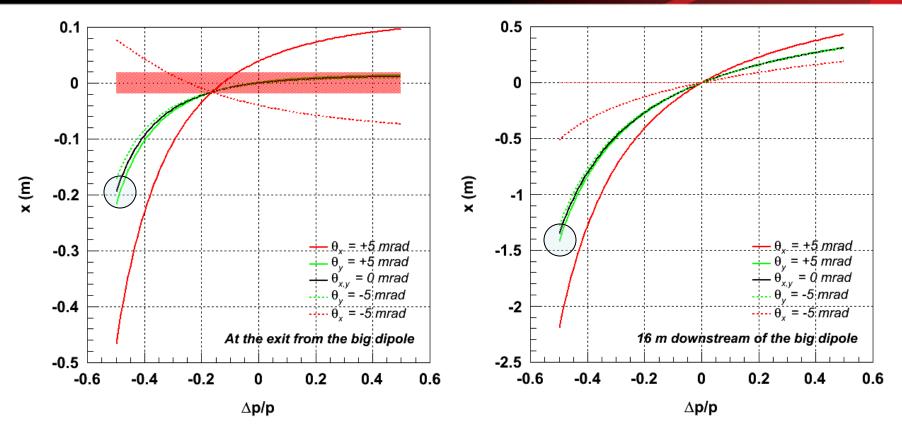


Far-Forward Hadron Detection

- Good acceptance for ion fragments
 - Large downstream magnet apertures/ small downstream magnet gradients
- Good acceptance for low-p_T recoil baryons
 - Small beam size at second focus
 - Large dispersion
- Good momentum and angular resolution
 - Large dispersion
 - No contribution from D' to angular spread at IP
 - Long instrumented magnet-free drift space
- Sufficient separation between the beam lines

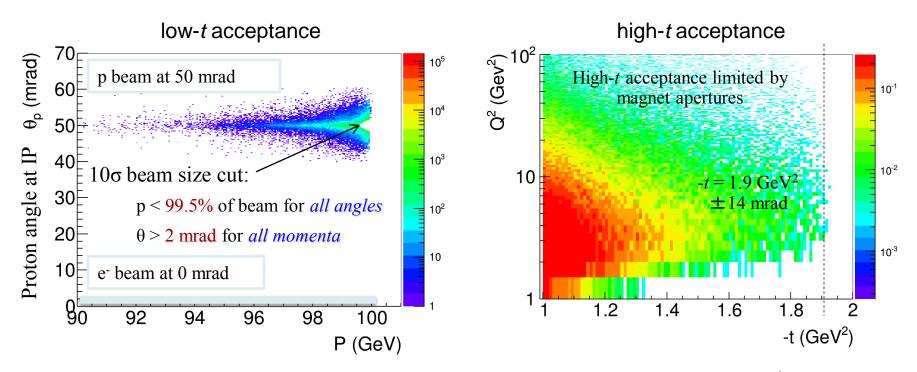

Asymmetric IR (minimizes chromaticity)




Far-Forward Hadron Detection

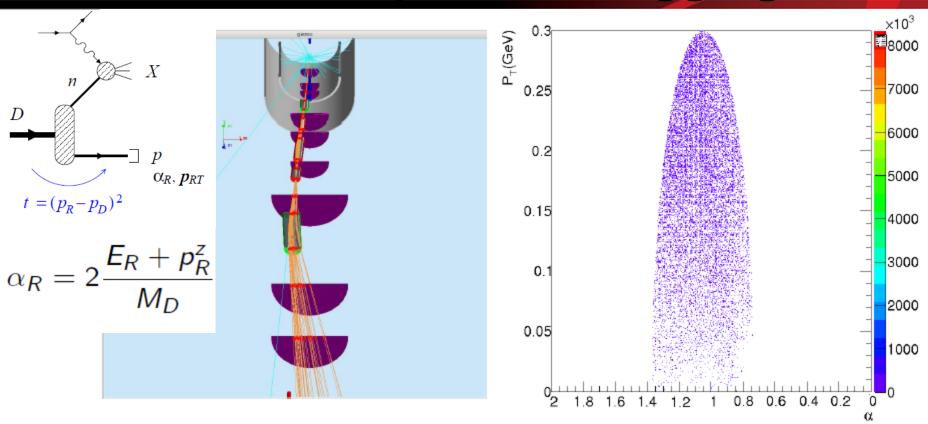
Red: detected *before* ion quadrupoles Blue: detected *after* ion quadrupoles Spectator protons from d: $dp/p \sim -0.5$

Spectator angles after dipole

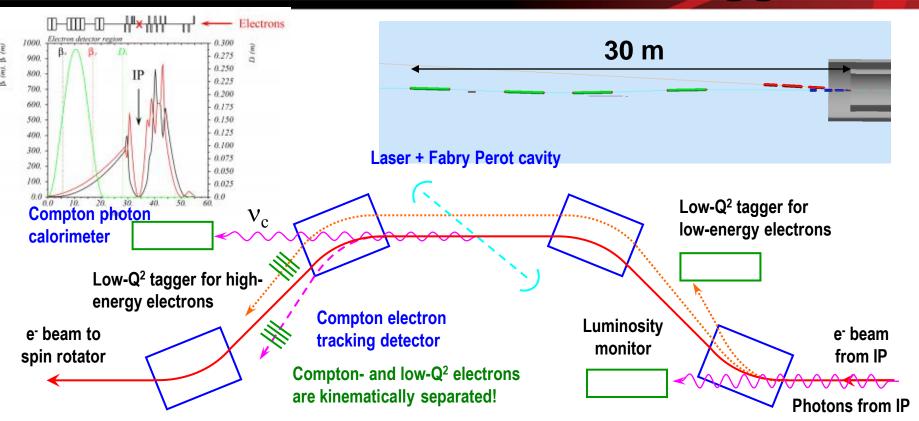


- True spectator fragments have very small scattering angles at the IP (black curve)
- Spectator protons from deuterium have $\Delta p/p = -0.5$
- After passing the large bending dipole, the spectator angle with respect to the ion beam is large
- The angle in the magnet-free drift section after the dipole can be calculated from the displacement at the dipole exit and a point 16 m further downstream:

$$\theta$$
 = atan ((1.4- 0.2)/16) = 75 mrad (= 4.3°)

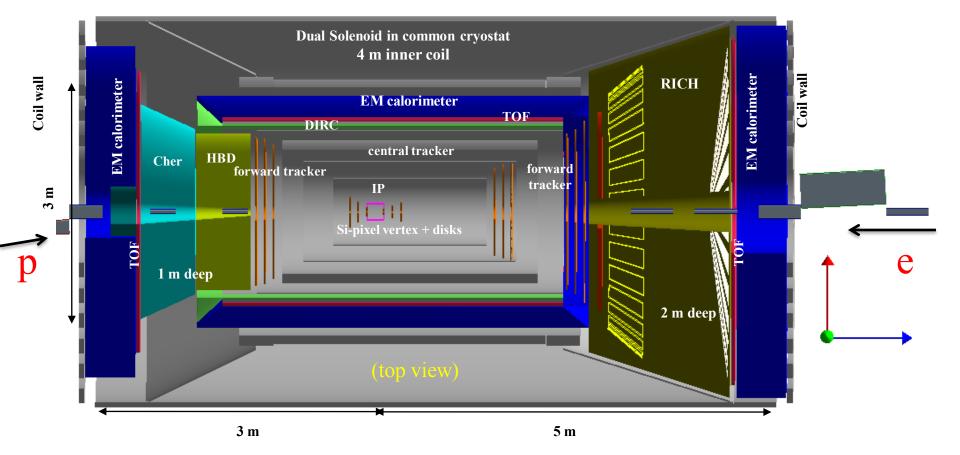

DVCS recoil proton acceptance

- **Kinematics:** 5 GeV e⁻ on 100 GeV p at a crossing angle of 50 mrad.
 - Cuts: $Q^2 > 1$ GeV², x < 0.1, $E'_e > 1$ GeV, recoil proton 10 σ outside of beam
- **DVCS generator:** MILOU (from HERA, courtesy of BNL)
- **GEANT4 simulation:** tracking through all magnets done using the JLab GEMC package


- Recoil proton angle is independent of electron beam energy: $\theta_p \approx p_T/E_p \approx \sqrt{(-t)/E_p}$
- A wider angular distribution at lower energies makes precise tracking easier

Deuteron Spectator Tagging

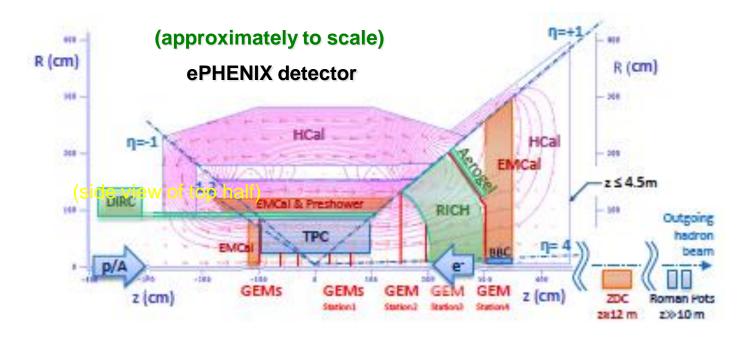
Left: MEIC beam-line with spectator proton (red rays) and scattered electrons (blue rays), Right: Acceptance as function of p_T , α_R at the exit of the second dipole. Acceptance drops at smaller α_R and p_T due to the second dipole geometry. Note that α_R goes the same way with bending spectator proton at the second dipole.


Polarimeters and low-Q² tagger

- One IP will have much larger version of the JLab Compton chicane
 - Detection of both electron and photon, the latter with low synchrotron background
- Second IP will have a similar chicane optimized for electron detection
 - Goal is to push the uncertainty of the polarimeter towards 0.5 -1 %

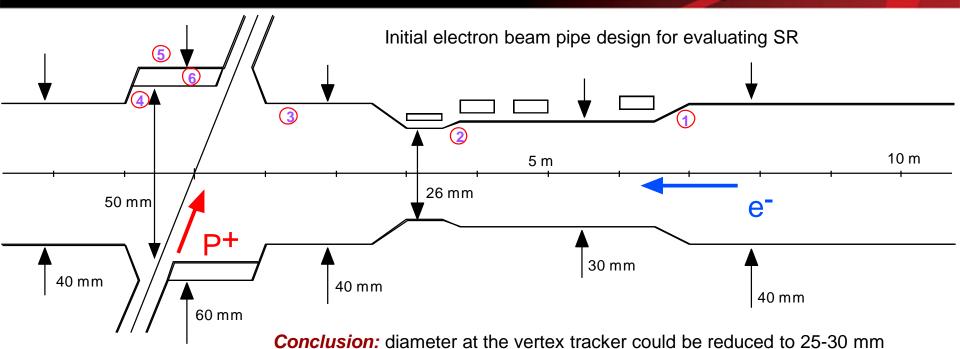
Full-acceptance Central Detector

- Dual Solenoid Magnet, inner size similar to CLEO/BaBar magnet
- Various detector concepts under development
- Possible to add hadron calorimeter outside



High luminosity central detector

- MEIC IP1 (full-acceptancen central detector)
 - Focus on exclusive processes and semi-inclusive DIS
 - Several solenoid options available


ePHENIX

- Focus on jet-physics
- Possible to move ePHENIX to MEIC IP2 ?

Synchrotron radiation background

Surface:	1	2	3	4	5	6
Power (W) @ 5 GeV	3.0	5.7	0.2	0.8	-	0.03
γ>10 keV @ 5GeV	5.6x10 ⁵	3.4x10 ⁵	1.4x10 ⁴	5.8x10 ⁴	167	3,538
Power (W) @ 11 GeV	4.2	8.0	0.3	1.1	-	0.04
γ>10 keV @ 11 GeV	5.6×10^5	$2.8x10^5$	$9.0x10^4$	$3.8x10^5$	271	13,323

Photon numbers are per bunch

Simulation by M. Sullivan (SLAC)

Hadronic backgrounds

Random hadronic background

- Assumed to be dominated by scattering of beam ions on residual gas (mainly ²H) in the beam pipe between the ion exit arc and the detector.
- Correlated background from photoproduction events is discussed separately

The conditions at the MEIC compare favorably with HERA

- Typical values of s are 4,000 GeV² at the MEIC and 100,000 GeV² at HERA
- Distance from arc to detector: 65 m / 120 m = 0.54
- $_{-}$ p-p cross section ratio σ(100 GeV) / σ(920 GeV) < 0.8
- Average hadron multiplicity per collision $(4000 / 100000)^{1/4} = 0.45$
- Proton beam current ratio: 0.5 A / 0.1 A= 5
- At the same vacuum the MEIC background is 0.54 * 0.8 * 0.45 * 5 = 0.97 of HERA
- But MEIC vacuum should be closer to PEP-II (10-9 torr) than HERA (10-7 torr)

The signal-to-background ratio will be even better

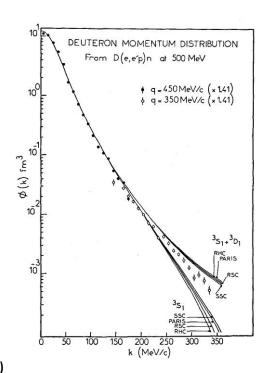
- HERA luminosity reached ~ 5 x 10³¹ cm⁻²s⁻¹
- The EIC (and the MEIC in particular) aims to be close to 10³⁴ cm⁻²s⁻¹

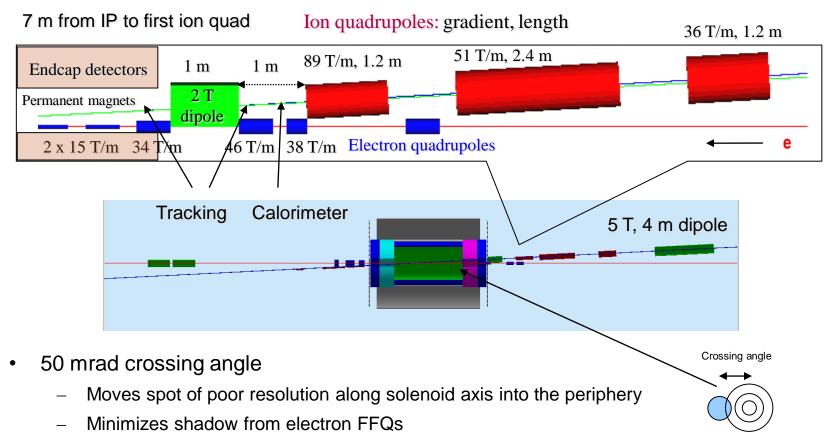
Asynchronous triggering

- The MEIC will use a "smart" asynchronous trigger and pipelined electronics
 - The MEIC L1 rate is expected to be comparable to GlueX (200 kHz)
 Low-Q² (photoproduction) events will be pre-scaled
 - Simple tracking at L2 will suppress random background (not from vertex)
 Already planned for CLAS12
- Data-driven, asynchronous triggers are well-established
 - The bunch spacing of MEIC ~2ns (476MHz), close to CEBAF and similar to most e⁺e⁻ colliders
 - If the number of collisions of interest per bunch crossing is << 1,
 synchronizing the trigger to each RF clock cycle becomes inefficient
 - Sampling rate requirements for the pipelined electronics depend on signal properties and backgrounds, not the bunch crossing frequency
 JLab 12 GeV uses flash ADCs with 250 MHz (4 ns) sampling
 - When a trigger condition is fulfilled (e.g., e⁻ found), memory buffers are written to disk or passed to L3 (at PANDA signals will go directly to L3)
 - Correlations with the RF are made offline
 - T0 is obtained from tracking high-β particles (e.g., electrons in CLAS)

Summary

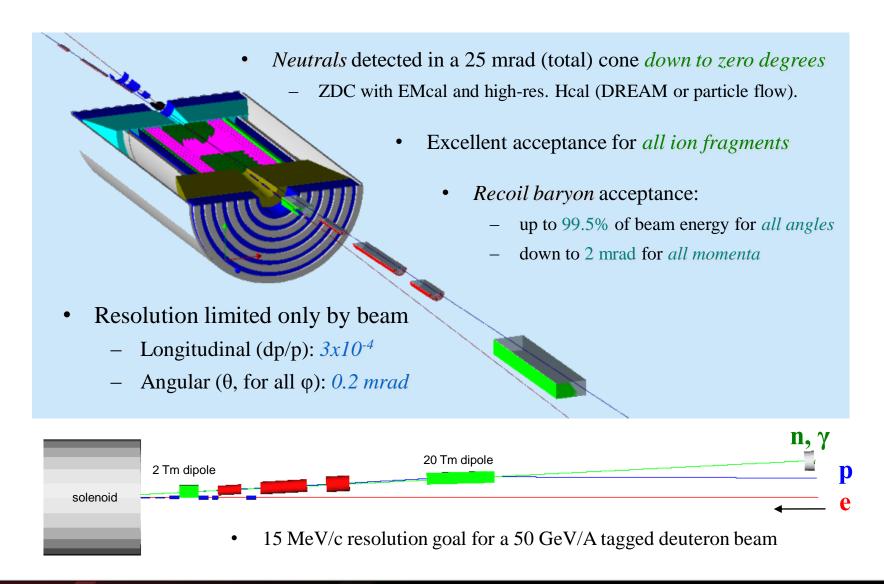
- EIC is the next-generation US QCD facility
- MEIC baseline design fulfills the white paper requirements
- MEIC detector and interaction region are in a coherent design
- MEIC detectors offer wide opportunities for various inclusive, semi-inclusive and exclusive measurements to fulfill physics goals of EIC
- R&D continues with increasing effort.


Backup


Forward detection – processes

- Recoils in exclusive (diffractive) processes
 - Recoil baryons

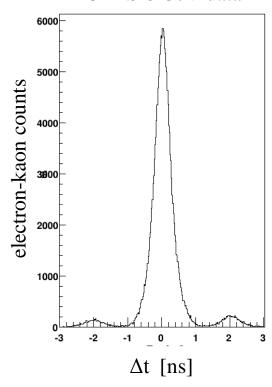
 Large $t(p_T)$ range and good resolution desirable
 - Coherent nuclear processes
 Good small-p_T acceptance extends detectable mass range
 Suppression of incoherent background for heaviest nuclei through detection of all fragments and photons
- Partonic fragmentation in SIDIS
 - Correlations of current and target jets
 - Decays of strange and charmed baryons
- Nuclear spectators and fragments
 - Spectator tagging with polarized light ions
 p_⊤ resolution < Fermi momentum
 - Final state in heavy-ion reactions
 Centrality of collision (hadronization, shadowing, saturation, etc)
- Heavy flavor photoproduction (low-Q² electron tagging)



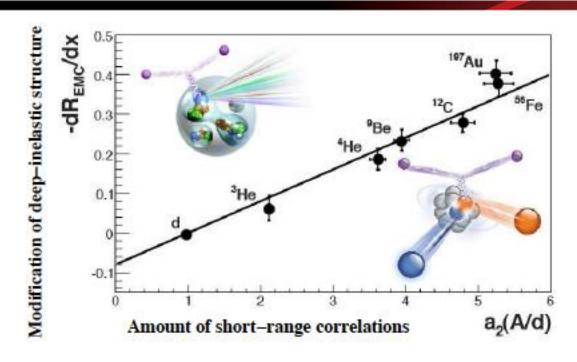
Forward detection before ion quads

- Dipole before quadrupoles further improves resolution in the few-degree range
- Low-gradient quadrupoles allow large apertures for detection of all ion fragments
 - Peak field = quad gradient x aperture radius

Far-forward detection summary

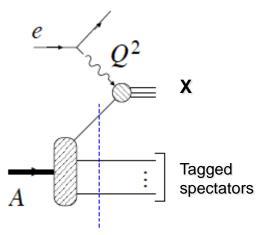

Bunch spacing and identification

- Detectors (CLAS, BaBar, etc) at machines with high bunch crossing rates have not had problems in associating particle tracks with a specific bunch.
 - Having more bunches lowers the average number of collisions per crossing
- Example: CLAS detector at JLab 6 GeV
 - 2 ns bunch spacing (500 MHz rep. rate)
 - 0.2 ns TOF resolution (0.5 ns FWHM)
 - The figure shows time matching of kaons in CLAS with electrons in the (low-Q²) tagger, in turn matched to the accelerator RF signal

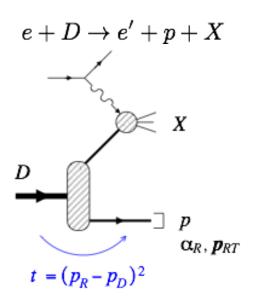

The 2 ns bunch structure is clearly resolved

- CLAS12 aims at a TOF resolution of 80 ps
- The bunch spacing in the MEIC is similar to CLAS and most e⁺e⁻ colliders
 - PEP-II/BaBar, KEKB/Belle: 8 ns
 - Super KEKB/Belle II: 4 ns (2 ns with all RF buckets full)
 - MEIC: 1.3 ns [750 MHz]
 - CERN Linear Collider (CLIC): 0.5 ns [2 GHz]

K-e coincidence time in CLAS 6 GeV data



In-medium nucleon

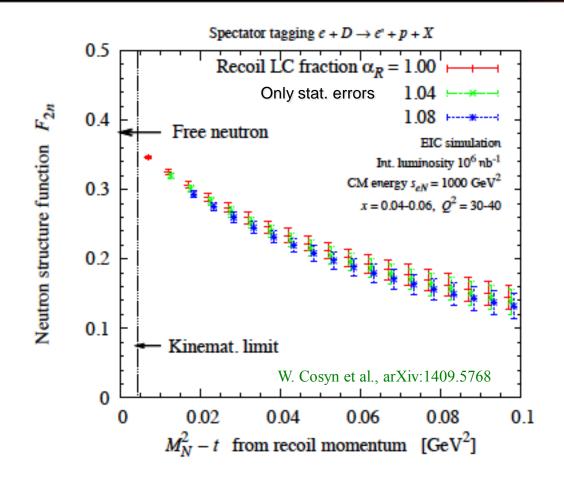


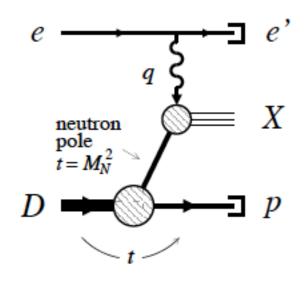
- EMC effect and Short-Range Correlations
- At an EIC we can map out the recoil-momentum dependence in DIS on light nuclei
 - Large p_T acceptance for spectators (~ 0-2 GeV/c)

Measuring neutron structure

Light-front time x+

- High-resolution spectator tagging
- Polarized deuterium
 - Needs to be theoretically understood also for ³He
 - Light-cone wave function simple and known
 - Limited possibilities for final-state interactions
 - Coherent effects at N=2
 Complementary to saturation in heavy nuclei
- Simplest case: tagged DIS on neutron
 - Recoil-proton light-cone momentum

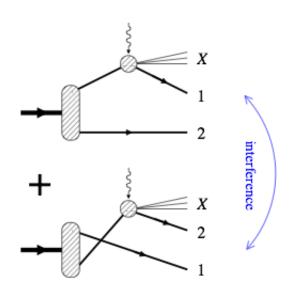

$$\alpha_R = (E_R + p_{R||})/(E_D + p_{D||})$$
 and \mathbf{p}_{RT}

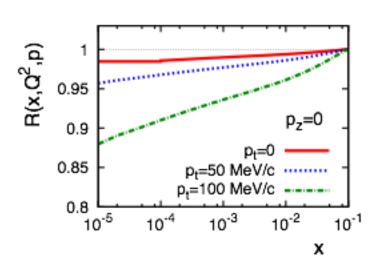

Cross section in impulse approximation

$$\frac{d\sigma}{dx\,dQ^2\left(d\alpha_R/\alpha_R\right)d^2p_{RT}} \propto |\psi_D^{LC}(\alpha_R,p_{RT})|^2 F_{2n}[x/(2-\alpha_R),Q^2]$$
 Deuteron LCWF Neutron SF

Frankfurt, Strikman 1981

On-shell extrapolation t → M_N


- Free neutron at pole
 - Pole value not affected by final-state interactions


Sargsian, Strikman 2005: no-loop theorem

→ Talk by Vim Cosyn

- As Chew-Low extrapolation in πN, NN
 - Model-independent method
 - Also applicable to other observables and channels

Shadowing

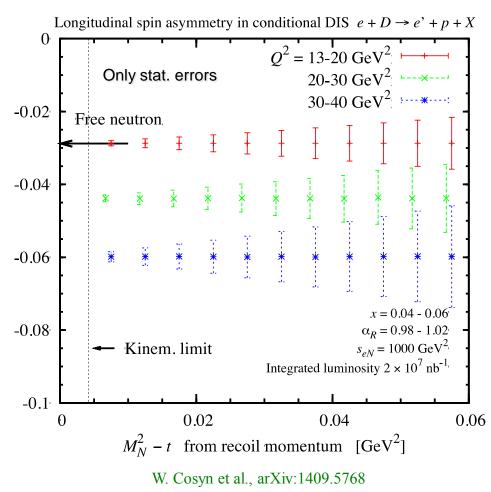
Shadowing at small x

- Interference between diffractive scattering on nucleons 1 and 2
- Nuclear effect calculable in terms of nucleon diffractive structure

Gribov 70's, Frankfurt, Strikman '98, Frankfurt, Guzey, Strikman '02+

- Determines approach to saturation in heavy nuclei
- Shadowing in tagged DIS
 - Strong p_T dependence
 - Clean coherent effect with N=2

Frankfurt, Guzery, Strikman 2011


Polarized structure functions

32

 As with unpolarized structure functions, on-shell extrapolation can also be performed in the polarized case

Spin asymmetry

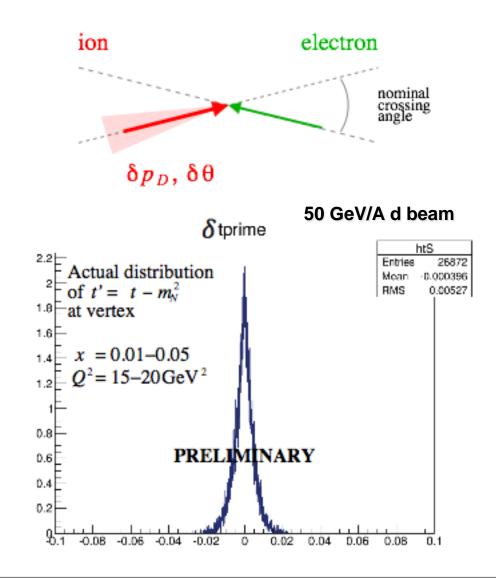
- g₁ⁿ accessible through longitudinal spin asymmetry A_{II}
- On-shell extrapolation of A_{\parallel} is easier than for F_2^n
 - Effects of FSI, etc, at higher values of M² – t are not included here
- Note that A_{||} increases with Q² at fixed x

CM-energy dependence of A_{II}

- At fixed x and Q², a lower cm-energy s increases the asymmetry
 - A_{II} can be large compared with systematic uncertainties from polarimetry
- FoM ~ event rate x $(P_eP_DA_{\parallel})^2$
- Good low-s performance important!

$$A_{\parallel} = \frac{dS(++) + dS(--) - dS(+-) - dS(-+)}{dS(++) + dS(--) + dS(+-) + dS(-+)}$$

$$= D\frac{g_{1n}}{F_{2n}} + ...$$


$$D = \frac{y(2-y)}{2-2y+y^2} \quad \text{Depolarization factor}$$

$$y = \frac{Q^2}{x_{Bj} \left(s_{eN} - M^2\right)} \gg \frac{Q^2}{x_{Bj} s_{eN}}$$

Uncertainty in spectator momentum

- Two contributions to uncertainty in measured spectator momentum
 - Resolution of detector
 Final-state resolution
 - Momentum spread in the beam Initial-state resolution
 - Ideal detector gives negligible contribution to uncertainty
 - Can be achieved!
 - Uncertainty entirely due to beam few x 10⁻⁴ longitudinal (dp/p) few x 10⁻⁴ rad angular (dθ/θ)
 - Simulation shows effect on resolution (binning) in t'
 - Uncertainty increases with the ion beam energy

Systematic uncertainty on p_T

- Smearing in p_T (left) gives systematic affecting on-shell extrapolation (right)
- The resolution σ ~ 0.02 GeV/c for a 50 GeV/A beam, is known to 10%
- Can achieve systematic uncertainties for on-shell extrapolation comparable with the statistical uncertainties