Recent Spin structure results from inclusive electron scattering experiments at Jefferson Lab.

Nilanga Liyanage University of Virginia

Spin physics at Jefferson Lab

Jefferson lab:

- high quality polarized beam
- high luminosity polarized targets
- large acceptance spectrometers
- \Rightarrow high precision spin structure data in the high $x_{B,i}$ valence quark region.

What is special about the high- X_{Bj} region?

Nucleon wave function dominated by valence quarks.

- A good place to test quark models; understand quark-gluon dynamics and SU6 symmetry breaking mechanisms.
 - Firm pQCD predictions for x->1

Inclusive Electron Scattering

$$e = (E, \vec{k})$$

$$q = (v, \vec{q})$$

$$p = (M, \vec{0})$$

4-momentum transfer squared

$$Q^2 = -q^2 = 4EE'\sin^2\frac{\theta}{2}$$

Invariant mass squared

$$W^2 = M^2 + 2M\nu - Q^2$$

Bjorken variable

$$x = \frac{Q^2}{2M\nu}$$

Unpolarized
$$\begin{cases} \frac{d^2\sigma}{d\Omega dE'} = \sigma_{Mott} \left[\frac{1}{v} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) \tan^2 \frac{\theta}{2} \right] \end{cases}$$

Polarized case
$$\begin{cases} \frac{d^2 \sigma^{\uparrow \uparrow}}{d\Omega dE'} - \frac{d^2 \sigma^{\downarrow \uparrow}}{d\Omega dE'} = \frac{4\alpha^2 E'}{vEQ^2} \Big[(E + E'\cos\theta)g_1(x,Q^2) + 2Mxg_2(x,Q^2) \Big] \end{cases}$$

Virtual Photon Asymmetry

$$A_{1} = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} \approx \frac{g_{1}}{F_{1}}$$

Nucleon Structure at large x_{B_i}

Neutron Wavefunction (Spin and Flavor Symmetric)

$$\left| \begin{array}{c} n \uparrow \rangle = \frac{1}{\sqrt{2}} \left| d \uparrow (ud)_{S=0} \right\rangle + \frac{1}{\sqrt{18}} \left| d \uparrow (ud)_{S=1} \right\rangle - \frac{1}{3} \left| d \downarrow (ud)_{S=1} \right\rangle \\ - \frac{1}{3} \left| u \uparrow (dd)_{S=1} \right\rangle - \frac{\sqrt{2}}{3} \left| u \downarrow (dd)_{S=1} \right\rangle \end{array}$$

Nucleon Model	F ₂ ⁿ /F ₂ ^p	d/u	∆u/u	∆d/d	A ₁ ⁿ	A ₁ ^p
SU(6)	2/3	1/2	2/3	-1/3	0	5/9
Valence Quark	1/4	0	1	-1/3	1	1
pQCD	3/7	1/5	1	1	1	1

SU6 symmetry breaking terms in Valence quark models: higher energy for axial-vector spectator di-quark pair terms compared to scaler di-quark pair terms due to hyperfine interaction.

$$\left| \begin{array}{c} n \uparrow \rangle = \boxed{\frac{1}{\sqrt{2}}} \left| d \uparrow (ud)_{S=0} \right\rangle + \frac{1}{\sqrt{18}} \left| d \uparrow (ud)_{S=1} \right\rangle - \frac{1}{3} \left| d \downarrow (ud)_{S=1} \right\rangle \\ - \frac{1}{3} \left| u \uparrow (dd)_{S=1} \right\rangle - \frac{\sqrt{2}}{3} \left| u \downarrow (dd)_{S=1} \right\rangle \end{array}$$

Nucleon Model	F ₂ n/F ₂ p	d/u	Δu/u	∆d/d	A ₁ ⁿ	A ₁ ^p
SU(6)	2/3	1/2	2/3	-1/3	0	5/9
Valence V Quark	1/4	0	1	-1/3	1	1
pQCD	3/7	1/5	1	1	1	1

pQCD: as x->1, the struck quark has the same helicity as the parent nucleon.

$$\left| \begin{array}{c} n \uparrow \rangle = \overline{\frac{1}{\sqrt{2}}} \left| d \uparrow (ud)_{S=0} \right\rangle + \frac{1}{\sqrt{18}} \left| d \uparrow (ud)_{S=1} \right\rangle + \frac{1}{3} \left| d \downarrow (ud)_{S=1} \right\rangle$$

$$-\frac{1}{3} \left| u \uparrow (dd)_{S=1} \right\rangle + \frac{\sqrt{2}}{3} \left| u \downarrow (dd)_{S=1} \right\rangle \leftarrow \text{Suppressed by an extra } (1-x)^{2}$$

Nucleon Model	F ₂ ⁿ /F ₂ ^p	d/u	∆u/u	∆d/d	A ₁ ⁿ	A ₁ ^p
SU(6)	2/3	1/2	2/3	-1/3	0	5/9
Valence Quark	1/4	0	1	-1/3	1	1
pQCD	3/7	1/5	1	1	1	1

Experimental Hall A

RF Drive Coil

BigBite

Detector Stack

Experimental Hall B

Experimental Hall C

scattered e

Spin structure functions at large x

Hall A Experiment E06-014

Polarized 3He target, scattered electrons in Bigbite and HRS

Spin structure functions at large x

Spin structure functions at large x

From Parno et al., Phys.Lett. B744 (2015) 309-314

Moments of spin structure functions

- Related to matrix elements of local operators in principle accessible to lattice QCD calculations
- Sum rules relate moments to the total spin carried by quarks in the nucleon and to the axial vector coupling $g_{\rm A}$ of the nucleon
- At high Q^2 , can be expanded in a power series (higher twist, OPE)
- At low Q², amenable to Chiral Perturbation Theory; constrained by GDH Sum Rule

Bjorken Sum Rule:
$$\Gamma_1^p - \Gamma_1^n = \frac{g_A}{6} + \text{QCD corr.}$$
 $\Gamma_1(Q^2) = \int_0^1 g_1(x,Q^2) dx$

GDH Sum Rule:
$$\Gamma_1(Q^2 \to 0) \to -\frac{Q^2}{2M^2} \frac{\kappa^2}{4}$$
 Γ_1

$$\Gamma_2(Q^2) = \int_0^1 g_2(x,Q^2) dx$$
 (= 0) Burkhardt-
Cottingham Sum
Rule

$$d_2(Q^2) = 3 \int_0^1 x^2 g_2^{HT}(x, Q^2) dx$$
 Twist 3 OPE matrix element (color force)

operator product expansion

'quark models

ChPT Lattice QCD?

Q2 (GeV2)

...and γ_{0} , δ_{LT} (connection to Compton scattering)

GDH sum rule

Why is g_2 interesting?

- tests twist-3 effects = quark-gluon correlations.
- d2 matrix element from the HT part of the g2.

$$d_2 = 3 \int_0^1 dx x^2 \bar{g}_2(x) = \int_0^1 dx x^2 \left[3g_2(x) + 2g_1(x) \right]$$

- Test predictions for d₂ from lattice QCD, QCD sum rules and quark models.
- d₂ related to transverse color Lorentz forces on the struck quark (Matthias Burkardt) - "chromodynamic lensing": Phys. Rev. D 88, 114502 (2013).
 - sign of d2 related to sign of transverse deformation (anomalous κ^q)
- polarizabilities of color fields (with twist-4 matrix element f2)

$$F_E = -\frac{M^2}{4} \chi_E = -\frac{M^2}{4} \left[\frac{2}{3} (2d_2 + f_2) \right]$$

$$F_B = -\frac{M^2}{2} \chi_B = -\frac{M^2}{2} \left[\frac{1}{3} (4d_2 - f_2) \right]$$

Moments of g_2 : BC sum rule

SLAC E155x
Hall C RSS
Hall A E94-010
Hall A E97-110 (preliminary)
Hall A E01-012 (preliminary)

Moments of $g_2:d_2^n$

New results from Hall A Experiment E06-014

Moments of $g_2:d_2^p$

12 GeV: NEW Capabilities - Hall A

Vacuum snout

Pring Chamber

Front Tracker

Front Tracker

Hadron Calc

Beam Line shield

Super Big Bite (SBS)

Bigbite with GEM tracker

SoLID

- Large acceptance (2π)
- Kinematic coverage out to moderately large P_T
- Capable of quite high luminosity (10³⁶ cm⁻²s⁻¹)

Possibilities with Bigbite and Super-Bigbite

- VERY large acceptance
- Full PID (K and π)
 (K ID requires major new funds for RICH)
- Moderately high luminosity (10³⁵ cm⁻²s⁻¹) (matched to NH₃, ND₃)

Polarized Targets

- Standard DNP longitudinal NH₃, ND₃ targets (funded by NSF MRI, under construction)
- HD-Ice target (suitability for e⁻ beam remains to be demonstrated)

12 GEV: NEW CAPABILITIES – HALL B

Future longitudinally polarized target for CLAS12 (11 GeV program at Jefferson Lab)

- Horizontal ⁴He evaporation cryostat
- 5 T B-field provided by central detector

Hall B experiment E12-06-109: A_1^p and A_1^d

Hall C experiment E12-06-110: A_1^n

- · SHMS + HMS pair
- 60 μ A, ~ 90% polarized 11 GeV beam
- · Polarized 3He target
 - 60% polarization
- · 850 hours (35 days) of data

Hall C experiment E12-06-110: A₁ⁿ

Summary

- Jefferson lab polarized beam combined with high luminosity polarized targets and large acceptance spectrometers in halls A, B and C provides a unique opportunity to probe nucleon spin structure in the valence region with unprecedented precision.
 - recent results on A_1 , A_2 , g_1 , g_2 for proton and neutron
 - Δu/u, Δd/d
 - · crucial steps in understanding valence nucleon structure
 - New results on g2 and d2 for both neutron and proton
- Much more to expect with 12 GeV