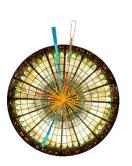
Precision measurements of Standard Model parameters with the ATLAS detector


Measurement of the forward-backward asymmetry of electron and muon pair-production in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

Submitted to JHEP [arXiv:1503.03709]

Gerhard Brandt
(Universität Göttingen)
on behalf of the
ATLAS Collaboration

Dallas, Texas April 27 – May 1, 2015

Unterstützt von / Supported by

Introduction

- With m_H all parameters of the Standard Model are now known.
- Now we need to measure them with higher precision to test consistency.
- ullet Presenting a new ATLAS measurement of the weak mixing angle $\sin heta_W$

$$\sin^2 \theta_{\rm W} = \left(\frac{e}{g}\right)^2 = 1 - \frac{m_{\rm W}^2}{m_{\rm Z}^2}$$
 at tree level.

• The weak mixing angle θ_W can be measured from Drell-Yan Z production

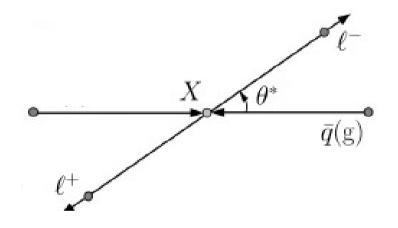
 $q \bar{q}
ightarrow Z/\gamma^*
ightarrow \ell^+ \ell^- \, {
m using} \, {
m d} \sigma$

$$\frac{d\sigma}{d(\cos\theta)} = \frac{4\pi\alpha^2}{3\hat{s}} \left[\frac{3}{8} A(1 + \cos^2\theta) + B\cos\theta \right]$$

where A and B depend on $\sqrt{\hat{s}}$ and the ew. couplings.

• Linear term leads to asymmetry $A_{\rm FB}$ in polar angle distribution of the lepton

$$A_{\rm FB} = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}}$$


where forward (f) and backward (b) are defined with respect of the incoming quark

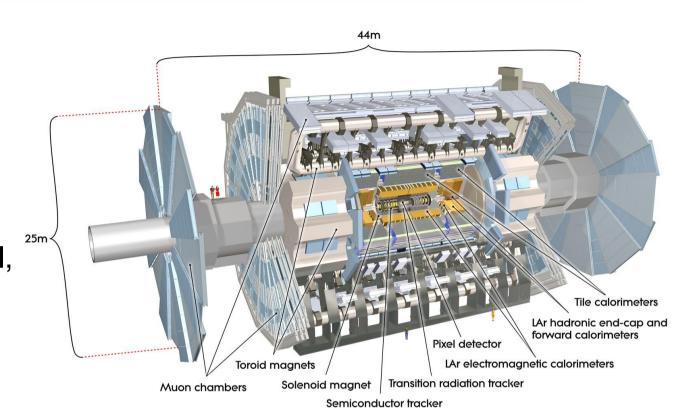
Measuring A_{FR} in pp collisions

- In pp collisions the incoming quark 4-momentum can not be measured if not collinear with the beam (if $p_T^Z > 0$)
- Measure in the rest frame of the lepton pair $\ell^+\ell^-$ (Collins-Soper frame)

$$\cos \theta_{\text{CS}}^* = \frac{p_{\text{z},\ell\ell}}{|p_{\text{z},\ell\ell}|} \frac{2(p_1^+ p_2^- - p_1^- p_2^+)}{m_{\ell\ell} \sqrt{m_{\ell\ell}^2 + p_{\text{T},\ell\ell}^2}}$$

with
$$p_i^{\pm} = \frac{1}{\sqrt{2}} (E_i \pm p_{z,i})$$

- Forward direction assumed to be the direction of the boost of the lepton
 - In some cases this is wrong:


Dilution

Only valence quarks give rise to an asymmetry: PDF dependence

Electron and Muon ID with the ATLAS Detector

 Analysis uses 4.8 fb⁻¹ of 7 TeV data

 Measuring Z decays in two electron final state topologies (central-central, CC and central-forward, CF) and in the muon final state

Central electrons

 $|\eta| < 2.47$

tracking via Inner detector + calorimeters (em. Lar + had. Tile)

• Forward electrons $2.5 < |\eta| < 4.9$

calorimetric info only Lar, Tile and forward Cal

 $(3.1 < |\eta| < 4.9)$

Muons

 $|\eta| < 2.7$

muon spectrometer

Signal and Background Modelling

- Signal from PYTHIA 6.4 (MSTW2008LO) + POWHEG
 - Final state radiation using PHOTOS
 - Normalized to cross section at NNLO from PHOZPR (MSTW2008 NNLO)
- Backgrounds estimated from MC simulations at (N)NLO

• Z --> tau tau

PYTHIA 6.4 (like signal)

Diboson

HERWIG 6.510 (MŘSTMCal)

Top quark pair-production

MC@NLO 4.01 (CTEQ6L1) + HERWIG

- Multijet and W+jets Backgrounds estimated together from data-driven Methods
 - CC electron

• m_" < 125 GeV:

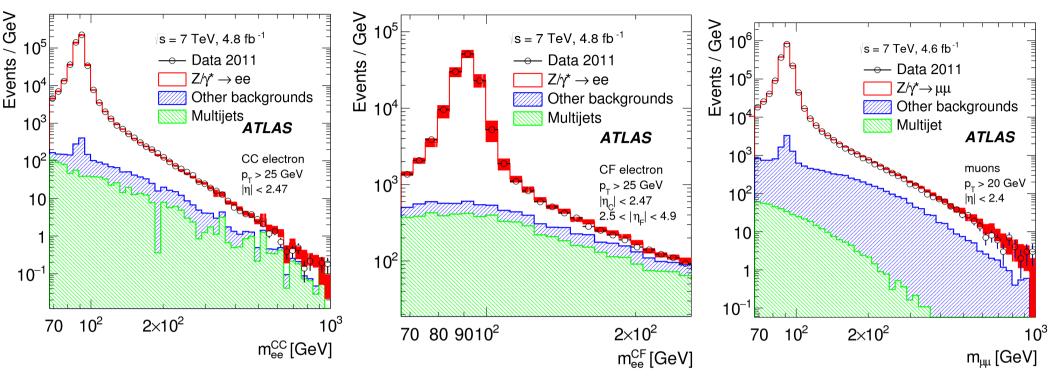
Reverse identification

• $m_{\parallel} > 125 \text{ GeV}$:

Fake-factor method

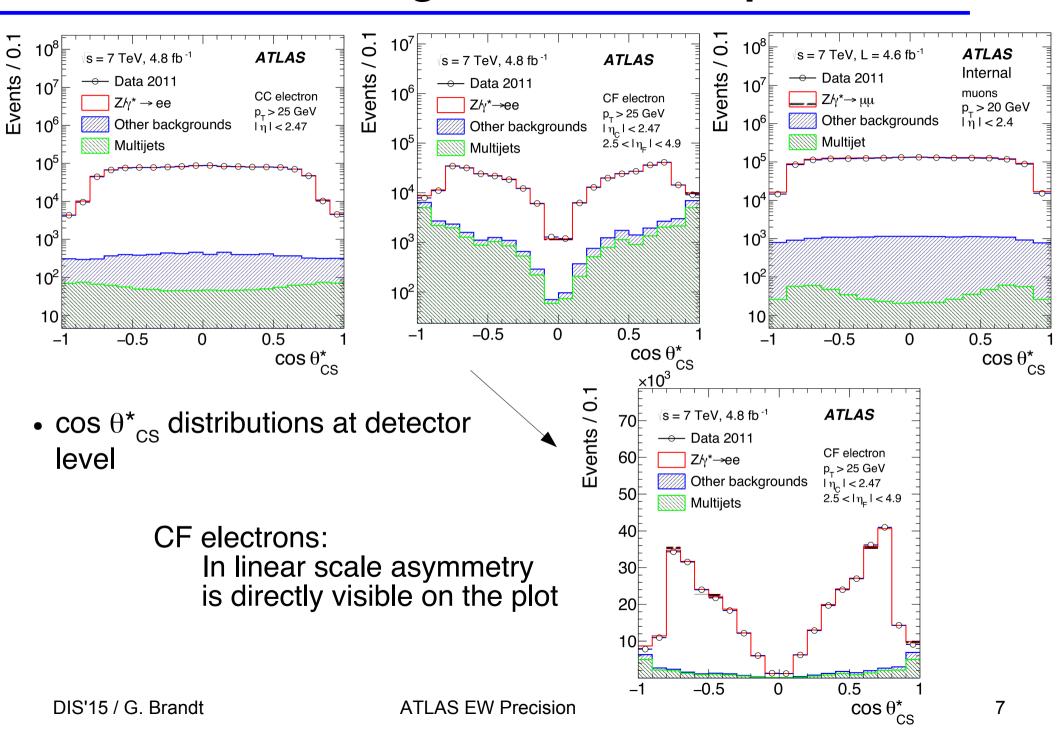
• $110 < m_{\parallel} < 200 \text{ GeV}$:

Both methods combined


• CF electron $(m_{\parallel} < 250 \text{ GeV})$:

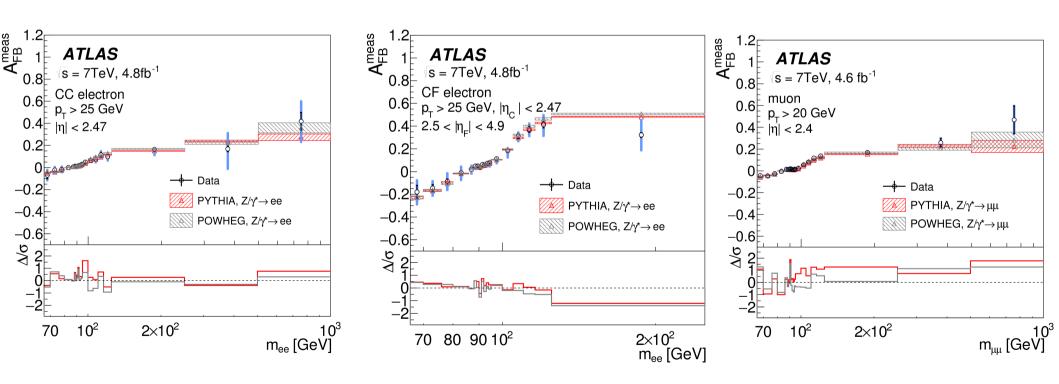
Reverse identification

Muon

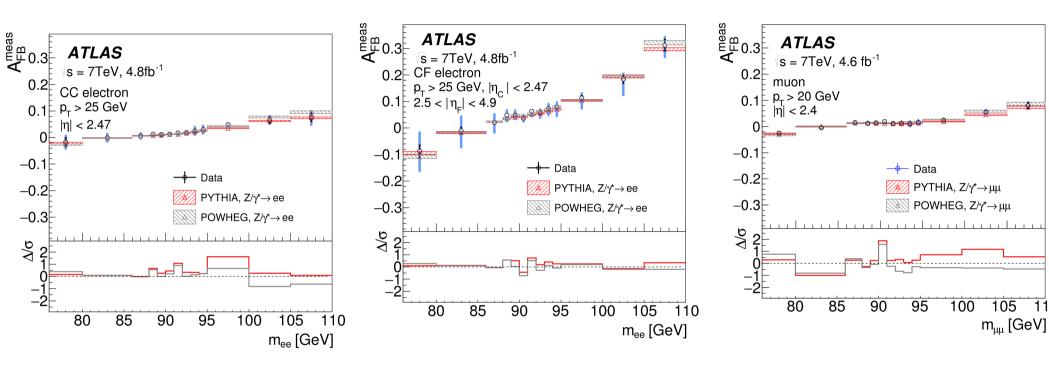

Inverted isolation criterium

Di-Lepton Invariant Mass Distributions

- Detector Level Distributions
 - Red bands contain all experimental systematic uncertainties
- CC and muon channel measure up to m<sub>
 //</sub> < 1000 GeV
 - Backgrounds in Z peak region ~ 1%
- $_{\rm e}$ CF electron only up to $\rm m_{\it ee}^{\rm CF}$ < 250 GeV due to large backgrounds above
 - Backgrounds in *Z* peak region ~ 5%

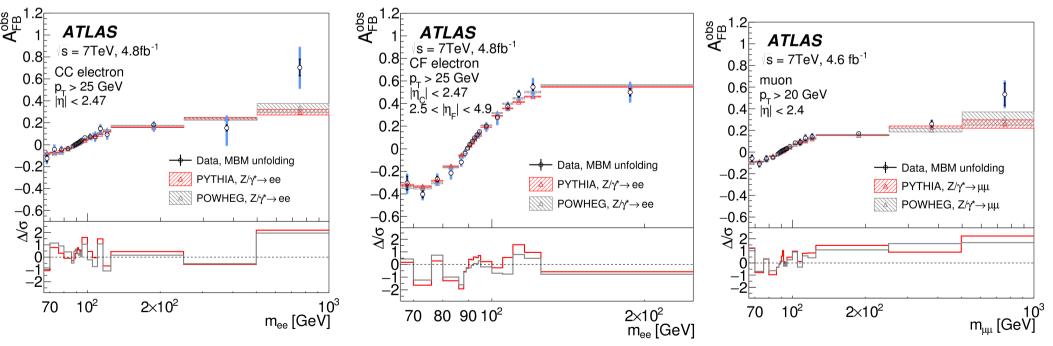

Cosine of Polar Angle in Collins-Soper frame

Detector Level A_{FB}^{meas}


• Calculate A_{FB} from $\cos \theta^*_{CS}$ distributions at detector level after background subtraction

$$A_{\rm FB} = \frac{N_{\cos\theta_{\rm CS}^* \ge 0} - N_{\cos\theta_{\rm CS}^* < 0}}{N_{\cos\theta_{\rm CS}^* \ge 0} + N_{\cos\theta_{\rm CS}^* < 0}}$$

Good agreement of data with PYTHIA and POWHEG predictions


Detector Level A_{FB}^{meas} around Z-pole

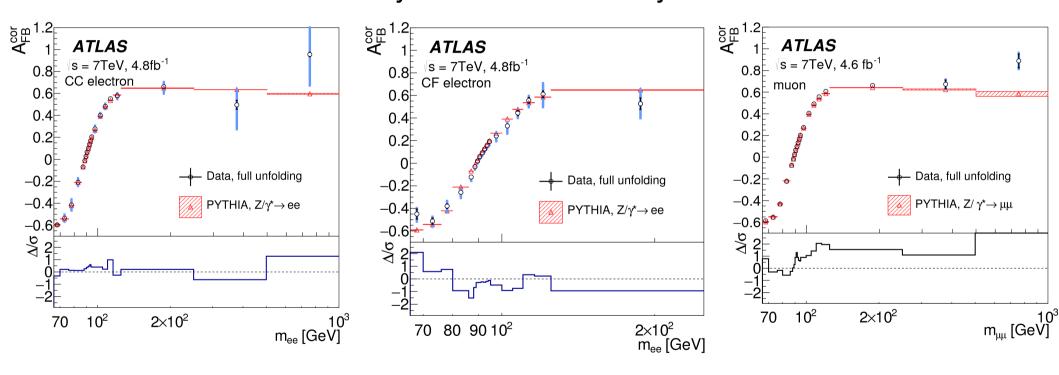
- A closer look around the Z peak
- Good agreement of data with PYTHIA and POWHEG predictions

Unfolding to Particle Level: A_{FB}obs

- Use Bayesian iterative procedure using PYTHIA signal sample to correct for
 - Detector effects
 - Cross checked with PYTHIA LO
 - QED Final State Radiation (back to "Born level")
 - Cross checked with SHERPA + PHOTONS++
 - Cross check on EWK corrections using HORACE MC
 - Cross check on NLO QCD effects using POWHEG pseudo data
 - → All cross check effects smaller than statistical unfolding error!

Good agreement of A_{FB}^{obs} and PYTHIA, POWHEG predictions

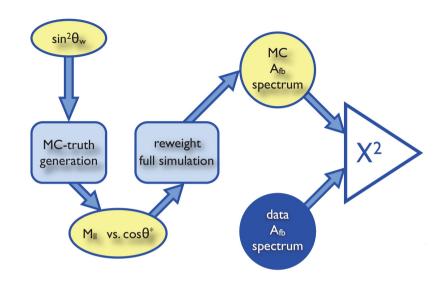
10


Summary of Systematic Uncertainties on A_{FB}^{ODS}

- Unfolding uncertainty from data reweighting and response matrix statistics
- PDF from response matrix reweighted to CT10 eigenvectors at 68%CL
- "Other" contains experimental uncertainties
- Background uncertainty from difference between methods (negligible in CC e and muons)
- No single dominating uncertainty overall

			ГВ				
CC electrons							
Uncertainty	$66-70\mathrm{GeV}$	$70-250\mathrm{GeV}$	$2501000\mathrm{GeV}$				
Unfolding	$\sim 1 \times 10^{-2}$	$(2-5)\times10^{-3}$	$\sim 4 \times 10^{-4}$				
Energy scale/resolution	$\sim 7 \times 10^{-3}$	$(0.5-2)\times10^{-3}$	$\sim 2 \times 10^{-2}$				
MC statistics	$\sim 5 \times 10^{-3}$	$(0.1-1)\times10^{-3}$	$(3-20)\times10^{-3}$				
PDF	$\sim 2 \times 10^{-3}$	$(1-8)\times10^{-4}$	$(0.7-3)\times10^{-3}$				
Other	$\sim 1 \times 10^{-3}$	$(0.1-2)\times10^{-3}$	$(5-9)\times10^{-3}$				
CF electrons							
Uncertainty	$66-70\mathrm{GeV}$	$70-250{ m GeV}$	$250-1000{ m GeV}$				
Unfolding	$\sim 2 \times 10^{-2}$	$(0.5-2)\times10^{-2}$	_				
Energy scale/resolution	$\sim 1 \times 10^{-2}$	$(0.5-7)\times10^{-2}$	_				
MC statistics	$\sim 1 \times 10^{-2}$	$(1-7)\times10^{-3}$	_				
Background	$\sim 3 \times 10^{-2}$	$(0.5-1)\times10^{-2}$	_				
PDF	$\sim 4 \times 10^{-3}$	$(2-6)\times10^{-4}$	_				
Other	$\sim 1 \times 10^{-3}$	$(1-5)\times10^{-4}$	_				
Muons							
Uncertainty	$66-70\mathrm{GeV}$	$70-250\mathrm{GeV}$	250-1000GeV				
Unfolding	$\sim 1 \times 10^{-2}$	$(1-4)\times10^{-3}$	$\sim 5 \times 10^{-4}$				
Energy scale/resolution	$\sim 8 \times 10^{-3}$	$(3-6) \times 10^{-3}$	$\sim 5 \times 10^{-3}$				
MC statistics	$\sim 5 \times 10^{-3}$	$(0.1-1)\times10^{-3}$	$(2-30)\times10^{-3}$				
PDF	$\sim 2 \times 10^{-3}$	$(1-8) \times 10^{-4}$	$(0.3-3)\times10^{-3}$				
Other	$\sim 1 \times 10^{-3}$	$(0.5-1)\times10^{-3}$	$(3-10)\times10^{-3}$				

Dilution and Acceptance Correction: A_{FB}^{cor}


- Unfold A_{FB}^{obs} again to A_{FB}^{cor} using PYTHIA signal MC sample to correct for
 - Dilution
 - Geometrical acceptance
- Introduces large dependence on generator
- PDFs become dominant systematic uncertainty

- Discrepancy at $m_{\parallel} > m_{_{7}}$ in the muon channel enhanced by unfolding
- Possibly from incomplete knowledge of PDFs and higher-order effects in MC used for correction (dilution unfolding only meaningful at LO)

Measurement of $\sin^2 \theta_{ m eff}^{ m lept}$

- Use PYTHIA templates to extract the weak angle from A_{FB}^{meas}
- Reweight to a set of A_{FB} rew using different weak angles at generator level
 Perform χ² fits in the mass
- Perform χ^2 fits in the mass range 70 250 GeV

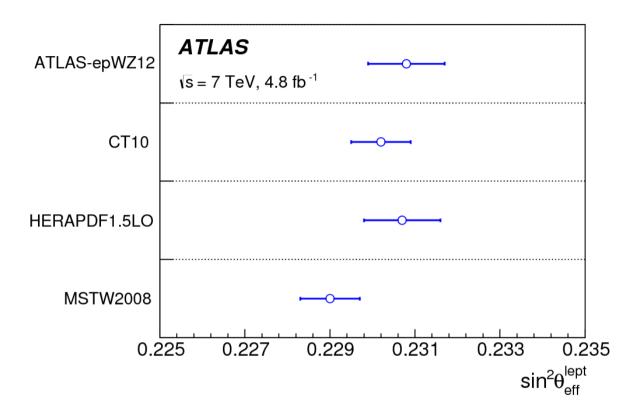
Some notes on cross checks and systematics:

- FSR effects (estimated with SHERPA): negligible
- NLO QCD corrections uncertainty (estimated with MCFM)
- Background uncertainty (estimated by extraction before subtraction): ~10%
- Impact of PDFs
 - A_{FR} depends on flavour and charge of initial partons -> sensitive to PDFs
 - A special LO PDF fit based on ATLAS-epWZ NNLO and NLO using the latest ATLAS data was prepared:

ATLAS-epWZ12 LO

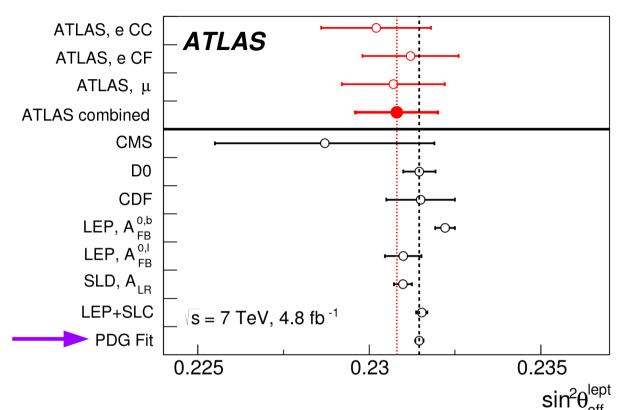
ATLAS Results for $\sin^2 \theta_{ m eff}^{ m lept}$

	$\sin^2 heta_{ m eff}^{ m lept}$		
CC electron	$0.2302 \pm 0.0009 \text{(stat.)} \pm 0.0008 \text{(syst.)} \pm 0.0010 \text{(PDF)} = 0.2302 \pm 0.0016$		
CF electron	$0.2312 \pm 0.0007 \text{(stat.)} \pm 0.0008 \text{(syst.)} \pm 0.0010 \text{(PDF)} = 0.2312 \pm 0.0014$		
Muon	$0.2307 \pm 0.0009(\text{stat.}) \pm 0.0008(\text{syst.}) \pm 0.0009(\text{PDF}) = 0.2307 \pm 0.0015$		
El. combined	$0.2308 \pm 0.0006 \text{(stat.)} \pm 0.0007 \text{(syst.)} \pm 0.0010 \text{(PDF)} = 0.2308 \pm 0.0013$		
Combined	$0.2308 \pm 0.0005 \text{(stat.)} \pm 0.0006 \text{(syst.)} \pm 0.0009 \text{(PDF)} = 0.2308 \pm 0.0012$		


- Combination of channels by quadratic error weighting
 - Experimental uncertainties taken as completely uncorrelated (due non-overlapping detector regions or statistical origin)
 - Theoretical uncertainties taken as completely correlated
- Final uncertainty dominated by PDF uncertainty
 - Evaluated from ATLAS-epWZ12 LO PDF eigenvalue set
- Most accurate result from CF electrons
 - Direction of incoming quark is constrained best least dilution

Syst. Uncertainties on $\sin^2\! heta_{ m eff}^{ m lept}$

	CC electrons	CF electrons	Muons	Combined
Uncertainty source	$[10^{-4}]$	$[10^{-4}]$	$[10^{-4}]$	$[10^{-4}]$
PDF	10	10	9	9
MC statistics	5	2	5	2
Electron energy scale	4	6	_	3
Electron energy resolution	4	5	_	2
Muon energy scale	_	_	5	2
Higher-order corrections	3	1	3	2
Other sources	1	1	2	2


- Main error from PDF
 - Can be constrained better using future LHC electroweak measurements (W, Z cross sections, esp. angular distributions)
 - Will also help reduce theoretical uncertainties (angles not well modelled)

Impact of different PDF sets on $\sin^2\! heta_{ m eff}^{ m lept}$

- Variation of PDF set itself leads to significant shifts in $\sin^2 \theta_{
 m eff}^{
 m lept}$
 - Eg. by choosing MSTW2008 sin2th shifts down by \sim -0.002
 - How serious is this? In this PDF, there are known deficiencies
 Need further precision measurements to constrain PDFs
 - For example W and Z rapidity distributions and W,Z+heavy flavour production

Comparison to other experiments

- Agreement with PDG global fit at 0.6σ level
- ATLAS result still 10 times less precise than LEP+SLC result
 Limited by PDF uncertainty

eff						
		Δ/σ	Δ/σ			
	$\sin^2 heta_{ m eff}^{ m lept}$	(wrt LEP+SLC)	(wrt ATLAS)			
ATLAS	0.2308 ± 0.0012	-0.6	_			
CMS [6]	0.2287 ± 0.0032	-0.9	-0.6			
D0 [5]	0.23146 ± 0.00047	-0.1	0.5			
CDF [4]	0.2315 ± 0.0010	-0.03	0.4			
LEP, $A_{FB}^{0,b}$ [3]	0.23221 ± 0.00029	_	1.2			
LEP, $A_{\mathrm{FB}}^{\overline{0},\overline{l}}$ [3]	0.23099 ± 0.00053	_	-0.1			
SLC, A_{LR} [3]	0.23098 ± 0.00026	_	-0.1			
LEP+SLC [3]	0.23153 ± 0.00016	_	0.6			
PDG global fit [46]	0.23146 ± 0.00012	-0.4	0.6			

Extraction of Asymmetry Parameter A_{μ}

Asymmetry parameters are related to ew. couplings

$$A_{q/\mu} = \frac{2g_{\rm V}^{q/\mu}g_{\rm A}^{q/\mu}}{(g_{\rm V}^{q/\mu})^2 + (g_{\rm A}^{q/\mu})^2} = \frac{2g_{\rm V}^{q/\mu}/g_{\rm A}^{q/\mu}}{1 + (g_{\rm V}^{q/\mu}/g_{\rm A}^{q/\mu})^2}$$

and to the weak angle via

$$g_{\rm V}^{q/\mu}/g_{\rm A}^{q/\mu} = 1 - 4|Q_{q/\mu}|\sin^2\theta_{\rm eff}^{q/\mu}$$

- Can be estimated from $A_{\rm FB}^{0,\ell} = \frac{3}{4} A_q A_\ell$ Need to assume SM value of $A_{\rm a}$

• Need to assume SM value of
$$A_{\rm q}$$

• Using the estimate $\sin^2\theta_{\rm eff}^q = \sin^2\theta_{\rm eff}^{\rm lept} = \sin^2\theta_{\rm eff}^{\rm lept}$ we get

$$A_{\mu} = \frac{2(1 - 4\sin^2\theta_{\text{eff}}^{\text{lept}})}{1 + (1 - 4\sin^2\theta_{\text{eff}}^{\text{lept}})^2}$$

$$A_{\mu} = 0.153 \pm 0.007(\text{stat.}) \pm 0.009(\text{syst.}) = 0.153 \pm 0.012(\text{tot.})$$

Compatible with and similar precision as the most precise measurement

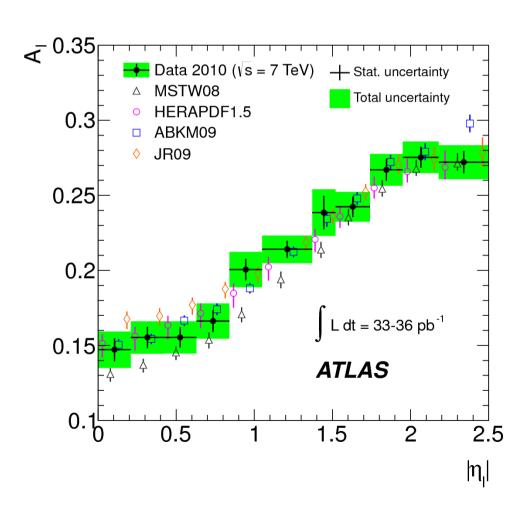
$$0.142 \pm 0.015$$
 (SLD Phys.Rept.427:257-454,2006 arXiv:hep-ex/0509008)

Summary

- ATLAS has measured the forward-backward asymmetry $A_{\rm FB}$ from Z/γ^* decays in 7 TeV pp collisions in electron and muon channels
- The measurement is used to extract the weak mixing angle

$$\sin^2 \theta_{\text{eff}}^{\text{lept}} = 0.2308 \pm 0.0005(\text{stat.}) \pm 0.0006(\text{syst.}) \pm 0.0009(\text{PDF})$$

= 0.2308 ± 0.0012(tot.)


- Good agreement of this result with results from e⁺e⁻ colliders, TeVatron and CMS
- Uncertainty dominated by knowledge of PDFs
 - Reduction possible using future ewk. measurements from LHC
- Extraction of the asymmetry parameter A_{μ} from the muon channel data and yields
- Good agreement with best previous measurements

$$A_{\mu} = 0.153 \pm 0.007(\text{stat.}) \pm 0.009(\text{syst.}) = 0.153 \pm 0.012(\text{tot.})$$

BACKUP

sin²θ_w measured using MSTW2008

- Using MSTW2008 produces a significant shift of -0.002 in $\sin^2\theta_{\rm W}$
- Well known problems of this pdf to describe low x as well as u- and d-valence quark distributions
- Visible in W asymmetry which depends on (u-d) valence distribution at LO

 Similar effect in custom LO pdf used for this measurement