Measurements of The Neutrino Flux Using Fine-Grained Tracker

Xinchun Tian for the DUNE Collaboration

Department of Physics and Astronomy

DIS 2015 @ Dallas, TX, 4/27-5/1, 2015

Outline

Introduction

Deep Underground Neutrino Experiment (DUNE)

A High-Resolution Fine Grained Tracker as a ND for DUNE

Measure Absolute and Relative Flux using ND

The Neutrino Fluxes

$$U_{PMNS} = \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & C_{23} & S_{23} \ 0 & -S_{23} & C_{23} \end{array}
ight) \left(egin{array}{ccc} C_{13} & 0 & S_{13}e^{-i\delta_{\mathrm{CP}}} \ 0 & 1 & 0 \ -S_{13}e^{i\delta_{\mathrm{CP}}} & 0 & C_{13} \end{array}
ight) \left(egin{array}{ccc} C_{12} & S_{12} & 0 \ -S_{12} & C_{12} & 0 \ 0 & 0 & 1 \end{array}
ight)$$

Atmospheric + Accelerator

Reactor + Accelerator

Reactor + Solar

Flux uncertainty dominates the cross section measurements

"Measurement of the ν_{μ} charged current quasi-elastic cross-section on carbon with the T2K on-axis neutrino beam", arXiv/hep-ex:1503.07452.

"Measurement of Muon Neutrino Quasi-Elastic Scattering on a Hydrocarbon Target at $E_{\nu} \sim$ 3.5 GeV", MINER ν A, PRL 111, 022502 (2013).

Q_{OE}^2 (GeV ²)	I	II	III	IV	V	VI	Total	
0.0 - 0.025	0.06	0.04	0.02	0.04	0.09	0.03	0.13	
0.025 - 0.05	0.06	0.03	0.02	0.03	0.09	0.02	0.12	
0.05 - 0.1	0.06	0.03	0.02	0.03	0.09	0.02	0.12	
0.1 - 0.2	0.06	0.03	0.03	0.02	0.09	0.02	0.11	
0.2 - 0.4	0.05	0.02	0.03	0.03	0.09	0.01	0.11	
0.4 - 0.8	0.05	0.03	0.04	0.04	0.09	0.01	0.13	
0.8 - 1.2	0.08	0.07	0.07	0.15	0.09	0.02	0.22	
1.2 - 2.0	0.12	0.07	0.07	0.16	0.09	0.02	0.24	

"Measurement of Muon Antineutrino Quasi-Elastic Scattering on a Hydrocarbon Target at $E_{\nu} \sim$ 3.5 GeV", MINER ν A, PRL 111, 022501 (2013).

Q_{QE}^2 (GeV ²)	I	II	III	IV	V	VI	Total
0.0 - 0.025	0.05	0.04	0.00	0.02	0.11	0.02	0.13
0.025 - 0.05	0.05	0.04	0.01	0.01	0.11	0.02	0.13
0.05 - 0.1	0.05	0.04	0.01	0.01	0.11	0.01	0.13
0.1 - 0.2	0.04	0.04	0.01	0.01	0.11	0.01	0.12
0.2 - 0.4	0.03	0.06	0.01	0.02	0.11	0.01	0.13
0.4 - 0.8	0.05	0.07	0.02	0.03	0.11	0.01	0.15
0.8 - 1.2	0.11	0.11	0.02	0.02	0.11	0.02	0.20
1.2 - 2.0	0.13	0.15	0.04	0.04	0.12	0.02	0.23

Item	High energy region	Low energy region
Neutrino flux	-11.01% + 13.61%	-13.57% + 17.04%
M_A^{QE}	-0.89% + 2.25%	-0.08% + 0.39%
M_A^{RES}	-0.92% + 1.31%	-0.82% + 1.10%
$CC1\pi$ normalization ($E_{\nu} < 2.5 \text{ GeV}$)	-0.55% + 0.50%	-3.71% + 3.59%
$CC1\pi$ normalization ($E_{\nu} > 2.5 \text{ GeV}$)	-2.69% + 2.69%	-1.88% + 1.83%
CC coherent π normalization	-1.40% + 1.38%	-1.73% + 1.71%
CC other E_{ν} shape	-0.86% + 0.85%	-0.11% + 0.09%
$NC1\pi^0$ normalization	-0.65% + 0.65%	-0.40% + 0.40%
NC coherent π normalization	-0.10% + 0.10%	-0.09% + 0.09%
$NC1\pi^{\pm}$ normalization	-0.47% + 0.47%	-0.46% + 0.45%
NC other normalization	-0.33% + 0.31%	-0.75% + 0.74%
π -less Δ decay	-0.54% + 2.10%	-1.60% + 3.34%
Spectral function	-2.01% + 0.00%	-0.00% + 1.21%
Fermi momentum	-1.67% + 2.22%	-3.71% + 4.43%
Binding energy	-0.44% + 0.65%	-1.24% + 1.42%
Pion absorption	-0.20% + 0.81%	-0.80% + 1.20%
Pion charge exchange (low energy)	-0.15% + 0.18%	-0.22% + 0.28%
Pion charge exchange (high energy)	-0.11% + 0.13%	-0.11% + 0.11%
Pion QE scattering (low energy)	-0.66% + 0.71%	-0.84% + 0.79%
Pion QE scattering (high energy)	-0.04% + 0.03%	-0.09% + 0.09%
Pion inelastic scattering	-0.05% + 0.04%	-0.29% + 0.25%
Nucleon elastic scattering	-0.25% + 0.21%	-0.29% + 0.21%
Nucleon single π production	-0.15% + 0.11%	-0.60% + 0.51%
Nucleon two π production	-0.57% + 0.42%	-0.01% + 0.01%
Target mass	±0.31%	$\pm 0.38\%$
MPPC dark noise	$\pm 0.03\%$	$\pm 0.08\%$
Hit efficiency	$\pm 0.84\%$	$\pm 0.41\%$
Light yield	±1.47%	±2.22%
Event pileup	±0.02%	$\pm 0.06\%$
Beam-induced external background	±0.00%	$\pm 0.00\%$
Cosmic-ray background	±0.00%	$\pm 0.01\%$
2D track reconstruction	±0.67%	$\pm 0.81\%$
Track matching	$\pm 0.45\%$	$\pm 1.13\%$
3D tracking	±0.21%	$\pm 0.15\%$
Vertexing	$\pm 0.30\%$	$\pm 0.43\%$
Timing cut	±0.00%	$\pm 0.00\%$
Veto cut	$\pm 0.82\%$	$\pm 0.64\%$
Fiducial volume cut	$\pm 1.55\%$	$\pm 0.84\%$
Secondary interaction	$\pm 2.45\%$	$\pm 2.37\%$

ANL-BNL Puzzle

"Reanalysis of bubble chamber measurements of muon-neutrino induced single pion production", arXiv/hep-ex:1503.07452.

- The long standing ANL-BNL pion production cross section disagree $\sim\!25\%$
- Reanalysis shows that this may be due to a flux normalization problem in BNL (See also K. M. Graczyk, et al., PRD 80 093001 (2009))

How to produce and constrain the neutrino flux¹

- Hadron Cascade model comparisons (15%)
 - Geant4 vs FLUKA
 - FTFP vs QGSP vs BERT ...
- External measurements (6-10%)
 - NA49 pC @ 158 GeV, MIPP pC @ 120 GeV
- In-situ measurements
 - Secondary muon fluxes (15-30%)
 - Absolute flux: Neutrino-electron NC/CC scattering
 - Relative flux: Low-ν
- Tests with modified beamline geometries
 - Moving target relative to horn (<7%)
 - Turning off the horn ...

¹Deborah Harris, CETUP 2014, South Dakota

How to produce and constrain the neutrino flux

- Hadron Cascade model comparisons (15%)
 - Geant4 vs FLUKA
 - FTFP vs QGSP vs BERT ...
- External measurements (6-10%)
 - NA49 pC @ 158 GeV, MIPP pC @ 120 GeV
- In-situ measurements
 - Secondary muon fluxes (15-30%)
 - Absolute flux: Neutrino-electron NC/CC scattering
 - Relative flux: Low-ν
- Tests with modified beamline geometries
 - Moving target relative to horn (<7%)
 - Turning off the horn ...

DUNE and LBNF

Recommendation 12: In collaboration with international partners, develop a coherent short- and long-baseline neutrino program hosted at Fermilab.

With a wideband neutrino beam produced by a proton beam with power of 1.2 MW, this exposure implies a far detector with fiducal mass of more than 40 kilotons (kt) of liquid argon (LAr) and a suitable near detector.

For a long-baseline oscillation experiment, based on the science Drivers and what is practically achievable in a major step forward, we set as the goal a mean sensitivity to CP violation2 of better than 3 σ (corresponding to 99.8% confidence level for a detected signal) over more than 75% of the range of possible values of the unknown CP-violating phase δ_{CP} . By current estimates, this goal corresponds to an exposure of 600 kt*MW*yr assuming systematic uncertainties of 1% and 5% for the signal and background, respectively. With a wideband neutrino beam produced by a proton beam with power of 1.2 MW, this exposure implies a far detector with fiducal mass of more than 40 kilotons (kt) of liquid argon (LAr) and a suitable near detector. The minimum requirements to proceed are the identified capability to reach an exposure of at least 120 kt*MW*vr by the 2035 timeframe, the far detector situated underground with cavern space for expansion to at least 40 kt LAr fiducial volume, and 1.2 MW beam power upgradable to multi-megawatt power. The experiment should have the demonstrated capability to search for supernova (SN) bursts and for proton decay, providing a significant improvement in discovery sensitivity over current searches for the proton lifetime.

Goals of the ND in DUNE

- Constrain the systematic uncertainties in the oscillation measurements/searches
 - Neutrino source : content and spectra of all 4 species, ν_{μ} , $\bar{\nu}_{\mu}$, ν_{e} , $\bar{\nu}_{e}$
 - Precise prediction of FD/ND CC spectra for all 4 species and of NC
 - Energy scale of neutrino and antineutrino
 - Background : $\pi^{0,\pm}$ in NC and CC; $e/\mu/\text{proton}/\pi/K$ ID
 - ⇒ Measure the 4-momenta of particles in neutrino interactions providing an "Event-Generator Measurement" for the FD
- A generational advance in the precision neutrino physics
 - · Cross sections: QE, Resonance, Coherent and DIS
 - Neutrino-nucleus interactions and nucleon structure
 - Electroweak and isospin physics
- Search for New Physics at short-baseline
 - Short-baseline oscillations, include constraining of the background for FD signal
 - Light Dark Matter, Universality, and right-handed currents, etc.

Goals of the ND in DUNE

- Constrain the systematic uncertainties in the oscillation measurements/searches
 - Neutrino source : content and spectra of all 4 species, $\nu_{\mu},\, \bar{\nu}_{\mu},\, \nu_{e},\, \bar{\nu}_{e}$
 - Precise prediction of FD/ND CC spectra for all 4 species and of NC
 - Energy scale of neutrino and antineutrino
 - Background : $\pi^{0,\pm}$ in NC and CC; $e/\mu/{\rm proton}/\pi/K$ ID
 - ⇒ Measure the 4-momenta of particles in neutrino interactions providing an "Event-Generator Measurement" for the FD
- A generational advance in the precision neutrino physics
 - Cross sections: QE, Resonance, Coherent and DIS
 - · Neutrino-nucleus interactions and nucleon structure
 - · Electroweak and isospin physics
- Search for New Physics at short-baseline
 - Short-baseline oscillations, include constraining of the background for FD signal
 - Light Dark Matter, Universality, and right-handed currents, etc.

Quantify the Neutrino Source Using ND

- Precision measurement of all 4 neutrino species
 - $\stackrel{(-)}{\nu}_{\mu} \rightarrow \mu^{\pm}$ as a function of E_{ν} FD/ND (E_{ν})
 - $\stackrel{(-)}{\nu}_e
 ightarrow e^\pm$ as a function of $E_
 u$ FD/ND $(E_
 u)^2$
- These considerations imply the following requirements
 - Magnetized tracker to ID positive from negative particle $B \sim 0.4 \text{ T}$
 - Low density medium to track $e^{\pm} \rho \sim 0.1 \text{ g/cm}^3$
 - Momentum vectors of hadrons: $\pi^{\pm,0}$, $K^{\pm,0}$ and proton
 - Large statistics $\sim 10^8$ neutrino interactions

The proposed FGT builds upon the NOMAD experience

High Reso. Fine-Grain Tracker (Proposed by the Indian & US Groups)

- $\sim 3.5 \text{ m} \times 3.5 \text{ m} \times 6.4 \text{ m} \text{ STT}$ $(\rho \simeq 0.1 \text{ g/cm}^3)$
- 4π ECAL in a dipole magnetic field (B = 0.4 T)
- 4π MuID (RPC) in dipole and up/downstream
- Pressurized Ar target $\simeq \times 10$ FD statistics

- Trasition Radiation : e^{\pm}
- dE/dx: π^{\pm} , K^{\pm} and proton
- Magnet : + .vs. -
- MuID : *μ*
 - ⇒ Absolute flux measurement

// // /	
Performance Metric	FGT
Straw Tube Detector Volume	3.5m x 3.5m x 6.4m
Straw Tube Detector Mass	8 tonnes
Vertex Resolution	0.1 mm
Angular Resolution	2 mrad
E_e Resolution	5%
E_{μ} Resolution	5%
$\nu_{\mu}/\bar{\nu}_{\mu}$ ID	Yes
$\nu_e/\bar{\nu}_e$ ID	Yes
$NC\pi^0/CCe$ Rejection	0.1%
NCγ/CCe Rejection	0.2%
$CC\mu/CCe$ Rejection	0.01%

$u e^- ightarrow u e^-$ (W. Marciano and Z. Parsa, arXiV: hep-ph/0403168)

- Cross section is extremely small, but well known
 - $\sigma(\nu_{\mu,\tau}e \to \nu_{\mu,\tau}e) = \frac{G_{\mu}^2 m_e E_{\nu}}{2\pi} [1 4\sin^2\theta_W + \frac{16}{3}\sin^4\theta_W]$
 - $\sigma(\bar{\nu}_{\mu,\tau}e \to \bar{\nu}_{\mu,\tau}e) = \frac{G_{\mu}^2 m_e E_{\nu}}{2\pi} [\frac{1}{3} \frac{4}{3}\sin^2\theta_W + \frac{16}{3}\sin^4\theta_W]$
 - $\sigma(\nu_e e \rightarrow \nu_e e) = \frac{G_\mu^2 m_e E_\nu}{2\pi} [1 + 4 \sin^2 \theta_W + \frac{16}{3} \sin^4 \theta_W]$
 - $\sigma(\bar{\nu}_{e}e \to \bar{\nu}_{e}e) = \frac{G_{\mu}^{2}m_{e}E_{\nu}}{2\pi} [\frac{1}{3} + \frac{4}{3}\sin^{2}\theta_{W} + \frac{16}{3}\sin^{4}\theta_{W}]$
- $\sigma(\nu_{\mu,\tau}e):\sigma(\bar{\nu}_{\mu,\tau}e):\sigma(\nu_ee):\sigma(\bar{\nu}_ee)=1:0.854:6.077:2.547$
- Assuming 1.2 MW beam power, 5 tons ND fiducial mass, 5 years neutrino running
 - 10.5 k $\nu e^- \to \nu e^-$ events, 7.8 k $\nu_\mu e$, 1.7 k $\bar{\nu}_\mu$, 1 k $\stackrel{(-)}{\nu}_e e$
- A clean determination of the neutrino flux at low energy

13 / 22

Absolute Flux: $\nu e^- \rightarrow \nu e^-$

- Signal
 - Single, forward e⁻
 - Efficiency ∼ 73%
- Background
 - ν_e CCQE & NC (charge-symmetric)
 - Benign, constrained by "e⁺" analysis
- Total neutrino energy
 - High resolution tracker allows the reconstruction of E_{ν} from $(E_{\rm e}, \theta_{\rm e})$
- Absolute flux : $\sim 2\%$ precision in $0.5 \le E_{\nu} \le 10$ GeV range.

Inverse Muon Decay ³

$$\frac{d\sigma(\nu_{l}e \to l\nu_{e})}{dy} = \frac{G_{\mu}^{2}}{\pi} (2m_{e}E_{\nu} - (m_{l}^{2} - m_{e}^{2})) \tag{1}$$

$$\frac{d\sigma(\bar{\nu}_e e \to l\bar{\nu}_l)}{dy} = \frac{G_{\mu}^2}{\pi} (2m_e E_{\nu} (1-y)^2 - (m_l^2 - m_e^2)(1-y)) \qquad (2)$$

$$y = \frac{E_I - \frac{m_I^2 + m_e^2}{2m_e}}{E_{\nu}} \tag{3}$$

$$0 \le y \le y_{\text{max}} = 1 - \frac{m_l^2}{2m_e F_{tot} + m^2} \tag{4}$$

- Cross section is extremely small, but well known
 - $\bullet \quad \sigma(\nu_{\mu} e^{-} \to \mu^{-} \nu_{e}) \simeq 3 \sigma(\bar{\nu}_{\mu} e^{-} \to \mu^{-} \bar{\nu}_{\mu}) \simeq \frac{2 G_{\mu}^{2} m_{e} E_{\nu}}{\pi} \simeq 1.5 \times 10^{-41} \; (E_{\nu}/\text{GeV}) \; \text{cm}^{2}$
- Threshold $E_{\nu} \geq \frac{m_l^2 m_e^2}{2m_e} \simeq 10.9 \text{ GeV}$
- 5.4k $\sigma(\nu_{\mu}e^-\to\mu^-\nu_e)$ events assuming 1.2 MW beam power, 5 tons ND fiducial mass, 5 years neutrino running
- A clean determination of the neutrino flux at higher energy

³W. Marciano and Z. Parsa, arXiV: hep-ph/0403168

Absolute Flux: ν -e CC Scattering (IMD)

- Signal
 - Single, forward μ^-
 - Efficiency $\sim 91\%$
- Background
 - \sim 20%, dominated by CCQE 1-track
 - Constrained by 2-track ν_{μ} -CC analysis after removing the "proton"
- Total neutrino energy
 - High resolution tracker allows the reconstruction of E_{ν} from (E_{μ}, θ_{μ})
- Absolute flux : \sim 2.5% precision in 15 $\leq E_{\nu} \leq$ 50 GeV range.

Absolute Flux: $\bar{\nu}_{\mu}$ Proton QE Scattering

- Signal
 - Single μ^+ obtained after subtraction: $(C_3H_6)_n$ [Radiator] C [Graphite]
 - Collect $(1.0 \pm 0.0045) \times 10^6$ (subtracted) $\bar{\nu}$ -H events ($\sim 25\%$ QE)
 - Collect $(3.3 \pm 0.0090) \times 10^6$ (subtracted) $\nu\text{-H}$ events ($\sim 0\%$ QE)
- Background
 - Dominated by $\bar{\nu}_{\mu}$ -CC
- Systematic Handle (ancillary, in situ measurement of the background)
 - Conduct the analysis on multi-track $\stackrel{(-)}{
 u_{\mu}}$ -CC to check the target location
- Estimate a $\sim 3\%$ precision in $0.5 \le E_{\nu} \le 20$ GeV

Relative Flux: Low- ν method (s. R. Mishra, World Sci., 84 (1990), Ed. D. Geesman.)

- Low- ν ($E_{\rm had} = E_{\nu} E_{\mu}$): low energy transfer to the hadronic system
- Relative ν_{μ} , $\bar{\nu}_{\mu}$ flux .vs. energy from low- ν method

$$N(E_{\nu}, E_{\text{Had}} < \nu_0) = k\Phi(E_{\nu}) f_c(\frac{\nu_0}{E_{\nu}}) \tag{5}$$

• The correction factor $f_c(rac{
u_0}{E_{
u}}) o 1$ for $u_0 o 0$

$$f(\frac{\nu_0}{E_{\nu}}) = 1 + (\frac{\nu_0}{E_{\nu}})\frac{\mathcal{B}}{\mathcal{A}} + (\frac{\nu_0}{E_{\nu}})^2 \frac{\mathcal{C}}{2\mathcal{A}} + \dots$$
 (6)

where $\mathcal{A} = G_F^2 M / \pi \int_0^1 \mathcal{F}_2(x) dx$, $\mathcal{B} = -G_F^2 M / \pi \int_0^1 (\mathcal{F}_2(x) \mp \mathcal{F}_3(x)) dx$, $\mathcal{C} = \mathcal{B} - G_F^2 M / \pi \int_0^1 \mathcal{F}_2(x) [(1 + 2Mx/\nu)/(1 + \mathcal{R}(x, Q^2)) - Mx/\nu - 1] dx$.

• In practice use MC to calculate the correction factor normalized at high neutrino energy E_{ν}

$$f_c(E_{\nu}) = \frac{\sigma(E_{\nu}, E_{\text{Had}} < \nu_0)}{\sigma(E_{\nu} \to \infty, E_{\text{Had}} < \nu_0)}$$
(7)

where denominator is evaluated at the highest energy accessible in spectrum

- Need precise muon energy scale and good resolution at low- ν values because a larger fraction of the E_{ν} per event is carried by the muon
- Reliable flux predictions for $E \ge 2\nu_0$
 - DUNE spectra require $\nu_0 = 0.25 0.5$ GeV

The correction factor $f_c(E_{\nu})$

MINOS, PRD 81, 072002 (2010)

A. Bodek et al., EPJC 72, 1973 (2012)

Relative Flux: Low- ν method@DUNE with FGT

- Study relative u_{μ} , $ar{
 u}_{\mu}$ fluxes in DUNE with $E_{\mathrm{Had}} <
 u_{0} = 0.5$ GeV
 - Use standalone simulation with DUNE spectra and parameterized detector smearing
 - Perform empirical fits to modified ν_{μ} & $\bar{\nu}_{\mu}$ spectra in ND (fake data)
 - Extract modified fluxes and extrapolate to FD
- Considered several systematic uncertainties
 - Cross sections QE, Res, DIS
 - Variations in ν_0 correction
 - Muon and hadronic energy scales
- Overall uncertainty on FD/ND flux ratio \sim 1-2%

Absolute and Relative Flux in DUNE using ND

- Absolute flux
 - Leptonic channel
 - • Neutrino electron NC scattering : expect a $\sim 2\%$ precision in $0.5{\le E_{\nu}} \le 10~{\rm GeV}$
 - Neutrino electron CC scattering : expect a \sim 2.5% precision in $E_{\nu} \geq$ 11 GeV
 - 2nd channel
 - $\bar{
 u}_{\mu} + p
 ightarrow \mu^{+} + n$: estimate a $\sim 3\%$ precision in $0.5 \leq E_{
 u} \leq 20$ GeV
 - Coherent channel $(\nu_{\mu} + \mathcal{A} \rightarrow \nu_{\mu} + \mathcal{A} + \rho^{0})$
- Relative flux
 - Low ν_0 method
 - $\stackrel{(-)}{\nu_{\mu}}+N \to \mu^{\pm}+X$: expect a FD/NC ratio at \sim 1-2% precision in 0.5 $\leq E_{\nu} \leq$ 50 GeV
 - Coherent π/ρ channel
 - $\stackrel{(-)}{\nu}_{\mu}\mathcal{A} \to \mu^{\pm}\pi^{\mp}(\rho^{\mp})\mathcal{A}$: estimate a high precision in the $\bar{\nu}_{\mu}/\nu_{\mu}$ ratio in 0.5< E_{ν} <50 GeV

Conclusion

The ND complex, with a high resolution FGT, will:

- Determination of the relative abundance and of the energy spectrum of the four neutrino species in DUNE beam: ν_{μ} , $\bar{\nu}_{\mu}$, ν_{e} , $\bar{\nu}_{e}$
 - Extrapolation to FD and predictions of FD/ND($E_{
 u}$) fluxes to $\sim 1\%$
- Determination of the absolute ν_{μ} and $\bar{\nu}_{\mu}$ fluxes to \sim 2% for oscillation measurements

MINER ν A: $\nu e^- \rightarrow \nu e^-$ (Jaewon Park, FNAL W&C)

- $oldsymbol{
 u}$ e scattering events after background subtraction and efficiency correction
 - $123.8\pm17.0 \text{ (stat.)}\pm9.1 \text{ (syst)}$
 - Total uncertainty: 15%
- Projected precision in Medium Energy Era, a.k.a, NO ν A era
 - Statistical uncertainty ∼2%
 - Total systematic uncertainty on this measurement \sim 7%
 - Total uncertainty ∼7.3%