

Deutsches Elektronen-Synchrotron (DESY), Hamburg

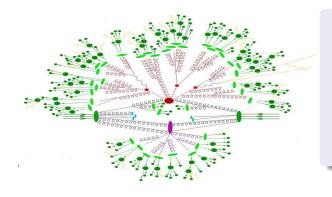
Measurement of the underlying event using track-jets with the CMS experiment

<u>Paolo Gunnellini</u> on behalf of the CMS Collaboration

Deep Inelastic Scattering 2015
Dallas (TX)
USA

Outline

- Introduction
- Analysis strategy and event selection
- Unfolding procedure
- Evaluation of systematics
- Results and MC comparisons
- Summary and Conclusion


CMS-FSQ-12-025 To be submitted soon

CMS-FSQ-12-020

JHEP 09 (2011) 109

JHEP 04 (2013) 072

Introduction

Hard scattering

Initial, Final State Radiation (PS)

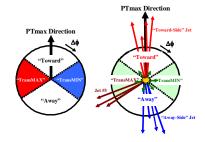
Multiple Parton Interaction (MPI)

Beam-beam remnants

Underlying Event

Everything which occurs during the collision, but the hard scattering!

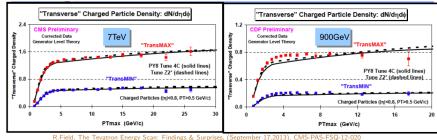
How can we quantify the UE contribution?


Analysis technique

 \rightarrow Charged particle multiplicity and p_T sum as a function of the leading charged particle

$$|\Delta\phi| = |\Delta\phi^{\textit{part}} - \Delta\phi^{\textit{lead}}| \rightarrow \begin{array}{c} \text{if } |\Delta\phi| < \pi/3 \rightarrow \text{TOWARD region} \\ \text{if } \pi/3 < |\Delta\phi| < 2\pi/3 \rightarrow \text{TRANSVERSE region} \\ \text{if } |\Delta\phi| > 2\pi/3 \rightarrow \text{AWAY region} \\ \end{array}$$

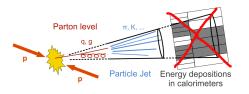
MIN and MAX regions are defined by the activity in each of the two transverse regions


- TRANS MIN: sensitive to MPI
- TRANS MAX: sensitive to MPI and PS
- TRANS DIF: sensitive to PS
- TRANS AVE: sensitive to MPI and PS

Charged particles in the central region are counted above a certain p_T threshold

Status of the art

- → Understanding of the Underlying Event data is crucial for every analysis using MC predictions
- UE as a function of the leading charged particle p_T


How are the MPI implemented in Monte Carlo event generators? MPI energy extrapolation: regularization of the partonic cross section

$$p_T^0 = p_T^{ref} \cdot \left(rac{E}{E^{ref}}
ight)^{exp}$$

Tunes extracted from these data in CMS (CMS-GEN-14-001)

Why to measure track jets?

- UE as a function of the leading charged jet p_T Step forward:
 - Measurement reaches higher p_T scales
 - Less sensitive to hadronization and shower effects than measurement with leading charged particle

TRACK JETS:

Clustering charged particles measured only in the tracker

Less information but access to low p_T jets

How to cluster them?

- \rightarrow SISCone algorithm:
 - No seed for jet clustering
 - Find all stable cones from the measured particles
 - Stop the procedure where only stable cones are present and all particles are associated to a jet

Measurement of the Underlying Event at 2.76 TeV in pp collisions with the CMS experiment

Analysis and event selection

Data used

- Special runs at 2.76 TeV in March 2011
- Three different triggers: Minimum Bias + two jet triggers (at different p_T thresholds)

Vertex requirement

 Only one reconstructed primary vertex within 10 cm along the longitudinal direction from the nominal interaction point

Track requirement

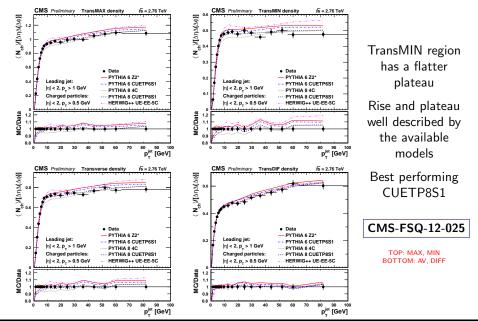
- High quality tracks with $p_T > 0.5$ GeV in $|\eta| < 2.0$
- Cut on the impact parameter in order to remove secondary decays

Jet requirement

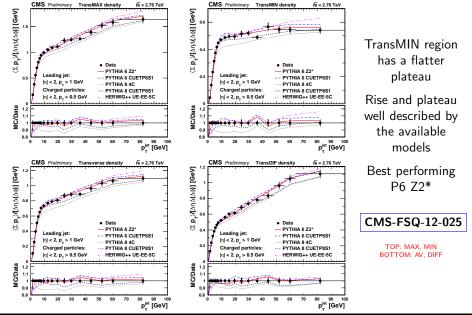
- Leading track-jet with $p_T>1$ GeV in $|\eta|<2.0$ clustered with SIsCone R =0.5
- ullet Built with the same previous track selection in $|\eta| < 2.5$

Unfolding and systematics

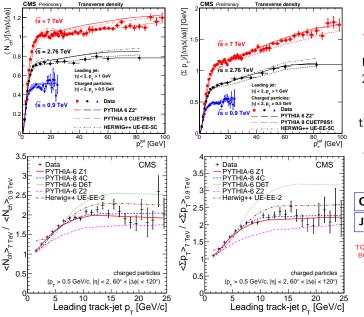
Data unfolded to the stable particle level


- 4D response matrices
- Profile of the distributions extracted after event-by-event unfolding

\rightarrow Several systematic effects are evaluated in the measurement


Source	Systematic uncertainty (%)	Source	Systematic uncertainty (%)
Impact Parameter Sig.	2-4	Dead Channel	0.1
Track sel.	0.2	Beamspot	0.2
Fake Mis-modelling	0.4-0.5	Material Budget	1.0
Model dep.	1-4	Tracker Alignment	0.2-0.3

Dominant effects are the model dependence and the impact parameter significance


Results: charged particle multiplicity

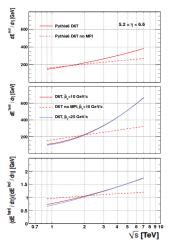
Results: charged transverse momentum sum

Underlying event measurements at different energies

TransAV region

UE data at 0.9, 2.76 and 7 TeV

Only the new tunes are able to reproduce very well the energy dependence!


CMS-FSQ-12-025

JHEP 09 (2011) 109

TOP: Nch, p_T sum in AV. region BOTTOM: Ratio 7/0.9 TeV for Nch and p_T sum

Underlying Event measurements at forward rapidities (I)

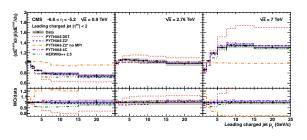
Energy density at forward rapidities (CASTOR region -6.6 $< \eta <$ -5.2) in Min. Bias events compared to hard ones

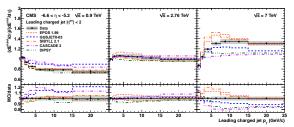
Minimum bias (inclusive events)

- → energy density not much affected by MPI
- → non-diffractive dominated event sample

Hard scale \hat{p}_{T}

- → energy flow strongly affected by MPI
- → use the central leading charged jet with p_T > 1 GeV/c and |η| < 2</p>




Compute ratio of energy densities

- → able to factorize MPI contributions
- → minimizes systematic uncertainties

Look at behavior of ratio as function of p_T scale and at relative energy flow as function of \sqrt{s}

Underlying Event measurements at forward rapidities (II)

Hard/inclusive energy density ratio vs leading charged jet p_T at different energies

- Hard: presence of a jet in $|\eta| < 2$ with $p_T > 1$ GeV
- Inclusive: no request in the central region

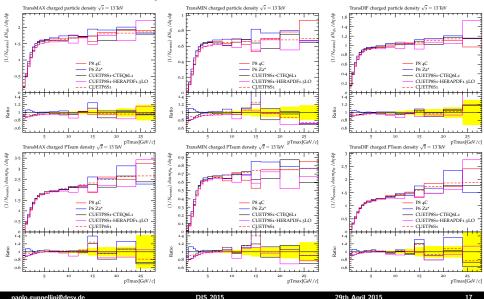
Different behaviour at \sqrt{s} =0.9 and 7 TeV

Data corrected to hadron level

Systematic uncertainty \approx 4.7-3.6 %

Pythia Z2* and 4C & H++ 2.5 describe the data, P6 D6T predicts too much MPI. None of the cosmic ray models describe the data correctly. JHEP 04 (2013) 072

- CMS offers a large collection of data, sensitive to UE at different collision energies
- Current models are able to reproduce well the measured distributions
- Models specialized in describing UE data at different energies


We are ready to predict the UE at 13 TeV

THANK YOU FOR THE ATTENTION

16

Projections at 13 TeV

Charged particle multiplicity and p_T sum at 13 TeV → Projections of UE observables for the different tunes

