Polarization in Double Parton Scattering

Tomas Kasemets Nikhef / VU

DPS in hadron-hadron collisions

- Cross section calculations based on factorization $cross\ section = parton\ distribution \times partonic\ cross\ section$
 - single parton example: $pp \to Z + X \to l^+l^- + X$
- Spectator-spectator interactions
 - cancel in inclusive cross sections (unitarity)
 - affects final state X

- Ask questions about X, gives sensitivity to additional interaction
- Second interaction hard Double Parton Scattering example: $pp \to Z + H + X \to l\bar{l} + b\bar{b} + X$

Proton collisions at LHC

• Double parton scattering contribute both to signal and background

•
$$pp \to H + Z + X \to b\bar{b} + \mu^+\mu^- + X$$

Del Fabbro, Treleani, 1999

figure from Diehl, QCD Evolution 2014

When should one care about DPS?

- Rule of thumb:
 - Several particles in the final state (typically 4 or more)
 - High energy hadron collisions
 - where low momentum fractions are probed (low x)
 - And/or SPS is suppressed two single production cross sections are large compared to their "combination"
- These conditions are often fulfilled for processes studied at the LHC
- Some examples:
 - Two same sign W's (small cross section but very clean)
 - Double open charm production (D0D0) Double dominates single parton scattering

 Hameren, Maciula, and Szczurek, 2014
 - Double J/Psi production,
 - W+b (rough estimates about 20% DPS)

ATLAS Collaboration, 2013

• double meson productions, W+bbar, 4 jets, photon + 3 jets, etc. etc.

Increase in activity - still a lot to be done

• Inspire search for double parton scattering organized per year

- Spurred by the realization that it is an important background to several other processes of interest at the LHC and contains a rich and largely unexplored area of hadron collisions.
- Still much! to do regarding the spin structure (and other correlations) as the vast majority of studies neglects all polarizations

How does one do DPS phenomenology

- Write down the cross section in a factorized form $cross section = parton distributions \times partonic cross section$
 - The normal PDFs are replaced by Double Parton Distributions (DPDs)
- DPDs describe the probability to find two partons inside the proton, at a given transverse distance and
- Schematically (leading order)

with momentum fractions x1 and x2 Schematically (leading order)
$$x_1$$
 x_2 x_3 x_4 x_5

$$\frac{d\sigma_{DPS}}{dx_1 d\bar{x}_1 dx_2 d\bar{x}_2} = \frac{1}{C} \hat{\sigma}_1 \hat{\sigma}_2 \int d^2 \boldsymbol{y} F(x_1, x_2, \boldsymbol{y}) F(\bar{x}_1, \bar{x}_2, \boldsymbol{y})$$

How does one do DPS phenomenology

- - The normal PDFs are replaced by Double Parton Distributions (DPDs)
- DPDs describe the probability to find two partons inside the proton, at a given transverse distance and with momentum fractions x1 and x2
- Schematically (leading order)

transverse distance

$$\frac{d\sigma_{DPS}}{dx_1 d\bar{x}_1 dx_2 d\bar{x}_2} = \frac{1}{C} \hat{\sigma}_1 \hat{\sigma}_2 \int d^2 \boldsymbol{y} F(x_1, x_2, \boldsymbol{y}) F(\bar{x}_1, \bar{x}_2, \boldsymbol{y})$$

momentum fractions

and then...

- Double parton distributions unknown, so how to continue...
- Simplest possible approach to DPS
 - Assume the DPD factorize into normal PDFs and a transverse dependence

$$F_{ij}(x_1, x_2, \boldsymbol{y}) = f_i(x_1) f_j(x_2) G(\boldsymbol{y}) \qquad 1/\sigma_{\text{eff}} = \int d^2 \boldsymbol{y} G(\boldsymbol{y})^2$$

- Assume complete universality of G(y)
- Then the cross section become extremely simple:

$$\sigma_{DPS} \sim rac{\sigma_1 \sigma_2}{\sigma_{
m eff}}$$

- Extract σ_{eff} from measurements (typically set to 15 mb)
- In this approximation, the DPS cross section is known as soon as we know the single parton cross sections
- Study rates, distributions, variables for DPS extraction etc.

Several such studies along these lines...

- A few recent ones are..
 - Double quarkonium, J.-P. Lansberg, H.-S. Shao, 2015;
 - $W + D^*$, S.P. Baranov et. al., 2015;
 - 2-gamma + 2-jets, J. Tao et. al. 2015;
 - Charm- + bottom-mesons, A.K. Likhoded et. al., 2015;
 - J/Psi pair production, J.-P. Lansberg, H.-S. Shao, 2015;
 - 4-jets, R. Maciuła, A. Szczurek, 2014;
 - Double c-cbar, A. Hameren, R. Maciula, A. Szczurek, 2014;
 - Quarkonia + vector bosons, D. d'Enterria, A. M. Snigirev, 2014;
 - Heavy quarks, E.R. Cazaroto, V.P. Goncalves and F.S. Navarra1. 2013;
 - W+2-jets G. Calucci, S. Salvini and D. Treleani, 2013;
 - etc...

Experimental measurements

• Extractions of $\sigma_{\rm eff}$, $\sigma_{DPS} \sim \frac{\sigma_1 \sigma_2}{\sigma_{\rm eff}}$

- Neglecting parton correlations, gives $\sigma_{\rm eff} \sim 40 \; {\rm mb}$
 - Much larger than experimental measurements of 5-20 mb
 - complete independence between partons disfavored

see Calucci, Treleani 1999; Frankfurt, Strikman, Weiss 2003; Blok et al 2013

Polarized DPDs

• Spin of the two partons can be correlated \rightarrow polarized DPDs

Describe correlations between the spin of and distance between the two partons

• Example: DPD for two longitudinally polarized quarks

- Quarks: unpolarized q, longitudinally polarized Δq and transversely polarized δq
- Gluons: unpolarized g, longitudinally polarized Δg and linearly polarized δg
- Linear/transverse polarization from helicity interference

Similar description, different physics than TMDs!

• The different polarized quark DPDs:

Diehl, Schäfer, Ostermeier, 2011

$$F_{qq}(x_1, x_2, \mathbf{y}) = f_{qq}(x_1, x_2, \mathbf{y}),$$

$$F_{\Delta q \Delta q}(x_1, x_2, \mathbf{y}) = f_{\Delta q \Delta q}(x_1, x_2, \mathbf{y}),$$

$$F_{q \delta q}^{j}(x_1, x_2, \mathbf{y}) = \epsilon^{jj'} \mathbf{y}^{j'} M f_{q \delta q}(x_1, x_2, \mathbf{y}),$$

$$F_{\delta q q}^{j}(x_1, x_2, \mathbf{y}) = \epsilon^{jj'} \mathbf{y}^{j'} M f_{\delta q q}(x_1, x_2, \mathbf{y}),$$

$$F_{\delta q \delta q}^{jj'}(x_1, x_2, \mathbf{y}) = \delta^{jj'} f_{\delta q \delta q}(x_1, x_2, \mathbf{y})$$

$$+ (2\mathbf{y}^j \mathbf{y}^{j'} - \mathbf{y}^2 \delta^{jj'}) M^2 f_{\delta q \delta q}^t(x_1, x_2, \mathbf{y})$$

- Appreciate the similarity to, for example, the decomposition of TMDs
- Note: All for distributions for an unpolarized proton

• The different polarized quark DPDs:

- Appreciate the similarity to, for example, the decomposition of TMDs
- Note: All for distributions for an unpolarized proton

• The different polarized quark DPDs:

- Appreciate the similarity to, for example, the decomposition of TMDs
- Note: All for distributions for an unpolarized proton

• The different polarized quark DPDs:

 $F_{qq}(x_1,x_2,\boldsymbol{y}) = f_{qq}(x_1,x_2,\boldsymbol{y})\,, \quad \text{longitudinally polarized}$ $F_{\Delta q \Delta q}(x_1,x_2,\boldsymbol{y}) = f_{\Delta q \Delta q}(x_1,x_2,\boldsymbol{y})\,, \quad \text{mixed unpolarized}$ $F_{q \delta q}(x_1,x_2,\boldsymbol{y}) = \epsilon^{jj'} \boldsymbol{y}^{j'} M f_{q \delta q}(x_1,x_2,\boldsymbol{y})\,, \quad \text{mixed unpolarized}/$ $F_{\delta q q}^{j}(x_1,x_2,\boldsymbol{y}) = \epsilon^{jj'} \boldsymbol{y}^{j'} M f_{\delta q q}(x_1,x_2,\boldsymbol{y})\,, \quad \text{transversely polarized}$ $F_{\delta q \delta q}^{jj'}(x_1,x_2,\boldsymbol{y}) = \delta^{jj'} f_{\delta q \delta q}(x_1,x_2,\boldsymbol{y})\,, \quad \text{transversely polarized}$ $+ (2\boldsymbol{y}^j \boldsymbol{y}^{j'} - \boldsymbol{y}^2 \delta^{jj'}) M^2 f_{\delta q \delta q}^t(x_1,x_2,\boldsymbol{y})$

- Appreciate the similarity to, for example, the decomposition of TMDs
- Note: All for distributions for an unpolarized proton

• The different polarized quark DPDs:

unpolarized Diehl, Schäfer, Ostermeier, 2011 $F_{qq}(x_1, x_2, \boldsymbol{y}) = f_{qq}(x_1, x_2, \boldsymbol{y}),$ longitudinally polarized $F_{\Delta q \Delta q}(x_1, x_2, \boldsymbol{y}) = f_{\Delta q \Delta q}(x_1, x_2, \boldsymbol{y}),$ $F_{q\delta q}^{j}(x_1, x_2, \boldsymbol{y}) = \epsilon^{jj'} \boldsymbol{y}^{j'} M f_{q\delta q}(x_1, x_2, \boldsymbol{y})$ mixed unpolarized/ $F^{j}_{\delta q q}(x_1, x_2, \boldsymbol{y}) = \epsilon^{jj'} \boldsymbol{y}^{j'} M f_{\delta q q}(x_1, x_2, \boldsymbol{y}),$ transversely polarized $F_{\delta q \delta q}^{jj'}(x_1, x_2, \boldsymbol{y}) = \delta^{jj'} f_{\delta q \delta q}(x_1, x_2, \boldsymbol{y})$ $+ (2\boldsymbol{y}^{j}\boldsymbol{y}^{j'} - \boldsymbol{y}^{2}\delta^{jj'})M^{2}f_{\delta q\delta q}^{t}(x_{1}, x_{2}, \boldsymbol{y})$ transversely polarized

- Appreciate the similarity to, for example, the decomposition of TMDs
- Note: All for distributions for an unpolarized proton

What has been done for polarized DPS?

Polarization in DPS

• Setting up the framework for polarized DPS

```
Mekhfi, 1985; Diehl, Schäfer, 2011; Diehl, Schäfer, Ostermeier, 2011; Manohar, Waalewijn, 2012;
```

- Polarization limited by positivity bounds combined with scale
 evolution
 Diehl, TK, 2013; Diehl, TK, Keane 2014
- DPDs studied in a number of different quark models
 - Correlations typically found to be sizable

 Chang, Manohar, Waalewijn, 2012;

 Rinaldi, Scopetta, Traini, Vento, 2014
- Have been included in cross section calculations of double vector boson production ($\gamma,\,Z,\,W$) and double $c\bar{c}$ Manohar, Waalewijn, 2012; Diehl, TK, 2012; Echevarria, TK, Mulders, Pisano, 2015
- So far, limited literature on polarization effects in DPS
 room for improvement

Polarization in DPS

- Longitudinal polarization:
 - Changes rate as well as rapidity and $|p_T|$ distributions
- Transverse quark/linear gluon polarization
- Leads to azimuthal asymmetries
- Double Drell-Yan

$$d\sigma_{DPS}(pp \to ZZ \to l_1\bar{l}_1l_2\bar{l}_2) \subset A\cos\left(2\Delta\phi\right)f_{\delta q\delta q}f_{\delta\bar{q}\delta\bar{q}}$$

TK, M. Diehl, 2012

for transversely polarize quarks

• Double $q\bar{q}$ production

$$d\sigma_{DPS}(pp \to c_1 \bar{c}_1 c_2 \bar{c}_2) \subset B \cos(2\Delta\phi) f_{\delta gg} f_{g\delta g} + C \cos(4\Delta\phi) f_{\delta g\delta g} f_{\delta g\delta g}$$

for linearly polarized gluons

Echevarria, TK, Mulders, Pisano, 2015

• Linearly polarized gluons also affect the overall rate

Getting quantitative...

• Standard approach

$$F_{ij}(x_1, x_2, \mathbf{y}) = f_i(x_1) f_j(x_2) G(\mathbf{y})$$

- Build on this, but lets add polarization
- Simple model for upper estimates of polarization effects
 - Use the above formula for unpolarized partons
 - Saturate positivity bounds for polarized DPDs at a low initial scale

$$f_{ab} + h_{\delta a\delta b} - h_{\delta a\delta b}^t \pm \sqrt{(h_{\delta ab} + h_{a\delta b})^2 + (f_{\Delta a\Delta b} - h_{\delta a\delta b} - h_{\delta a\delta b}^t)^2} \ge 0$$

$$f_{ab} - h_{\delta a\delta b} + h_{\delta a\delta b}^t \pm \sqrt{(h_{\delta ab} - h_{a\delta b})^2 + (f_{\Delta a\Delta b} + h_{\delta a\delta b} + h_{\delta a\delta b}^t)^2} \ge 0$$

M. Diehl, TK, 2012

- Max scenario each polarized DPD as large as possibly allowed
 - ⇒ Polarized DPDs equal to unpolarized at starting scale
- Evolve with double DGLAP evolution to higher scales

Longitudinal quark polarization

Max scenario:

Diehl, TK, Keane 2014

- Large longitudinal polarization up to high scales in wide range of x_i
- Degree of polarization flat in rapidity generic feature in max scenario

Transverse quark polarization

10-15% polarization

Max scenario:

- Diehl, TK, Keane 2014
- Sizable transverse polarization up to high scales in wide range of x_i
- Degree of polarization flat in rapidity generic feature in $max\ scenario$

Double open charm at LHCb

- D^0D^0 data from LHCb
- Polarization does not affect shape of distribution
- With $Q_0 = 1 \text{ GeV}$ small contribution of polarized gluons
- With $Q_0 = 2 \text{ GeV}$ large contribution of $_{\approx}$ polarized gluons
- Strong dependence on scale choice

Echevarria, TK, Mulders, Pisano, 2015

Double open charm at LHCb

- D^0D^0 data from LHCb
- Polarization does not affect shape of distribution
- With $Q_0 = 1 \text{ GeV}$ small contribution of polarized gluons
- With $Q_0 = 2 \text{ GeV}$ large contribution of polarized gluons
- Strong dependence on scale choice

Echevarria, TK, Mulders, Pisano, 2015

Double open charm at LHCb

• Double differential cross section - shows strong shape dependence

Echevarria, TK, Mulders, Pisano, 2015

Summary

- Double parton scattering is an increasingly relevant topic, with the energy of the collider and the large luminosity/search for rare events.
- DPDs are interesting (non-pertubative) descriptions of the proton
- Ignoring correlations gives simple, order of magnitude, estimates for DPS cross sections
- Bulk of DPS phenomenology so far based on this simplified approach
- But, spins can be correlated
 - ⇒ Gives polarized double parton distributions
- A few studies has included polarization, but there is much work still to be done.
- Much of the knowledge, and even calculations, from TMD community can be directly used in calculations of spin asymmetries etc. in double parton scattering