Flavor Asymmetry in Light Quark Sea and Quark Energy Loss at Fermilab E906/SeaQuest Experiment

Kun Liu (on behalf of E906/SeaQuest collaboration)
Los Alamos National Laboratory

XXIII International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2015)
Dallas, TX, April 27 - May 1, 2015
E906/SeaQuest experiment at Fermilab

Aimed at measuring dimuon production in Drell-Yan process and charmonium decay

Target system
- Liquid H and D
- Solid C, Fe, W

Beam
- 120 GeV proton from Main Injector
 - 19ns RF, 5s spill, 1×10^{13} protons per spill

Focusing magnet and solid iron dump
- $\Delta p_t = 2.9$ GeV

Spectrometer magnet
- $\Delta p_t = 0.4$ GeV

Tracking detectors
- Drift chambers and hodoscope scintillators

Absorber wall and proportional tube based Muon ID

25 m.
E906/SeaQuest Collaboration

2009 @ Los Alamos

2013 @ Tokyo Tech

Strong flavor asymmetry in the sea.

Abilene Christian University
Ryan Castillo, Michael Daugherty, Donald Isenhower, Noah Kitts, Lacey Medlock, Noah Shuttly, Rusty Towell, Shon Watson, Ziao Jai Xi

Academia Sinica
Wen-Chen Chang, Ting-Hua Chang, Shiu Shiu-Hao

Argonne National Laboratory
John Arrington, Don Geesaman*, Kawtar Hafidi, Roy Holt, Harold Jackson, David Potterveld, Paul E. Reimer*, Brian Tice

University of Colorado
Ed Kinney, Joseph Catich, Po-Ju Lin

Fermi National Accelerator Laboratory
Chuck Brown, Dave Christian, Su-Yin Wang, Jin-Yuan Wu

University of Illinois
Bryan Dannowitz, Markus Dieffenthaler, Bryan Kerns, Hao Li, Naomi C.R Makins, Dyhaanesh Mullagur R. Evan McClellan, Jen-Chieh Peng, Shivangi Prasad, Mae Hwee Teo, Mariusz Witk, Yangqiu Yin

KEK
Shin’ya Sawada

Los Alamos National Laboratory
Gerry Garvey, Xiaodong Jiang, Andreas Klein, David Kleinjan, Mike Leitch, Kun Li, Ming Liu, Pat McGaughey, Joel Moss

Mississippi State University
Lamiaa El Fassi

University of Maryland
Betsy Beise, Yen-Chu Chen, Kazutaka Nakahara

University of Michigan
Christine Aidala, McKenzie Barber, Catherine Culkin, Vera Loggins, Wolfgang Lorenzon, Bryan Ramson, Richard Raymond, Josh Rubin, Matt Wood

National Kaohsiung Normal University
Rungsheng Guo, Su-Yin Wang

RIKEN
Yoshinori Fukao, Yuji Goto, Atsushi Taketani, Manabu Togawa

Rutgers, The State University of New Jersey
Ron Gilman, Ron Ransome, Arun Tadepalli

Tokyo Tech
Shou Miyaska, Kei Nagai, Kenichi Nakano, Shigeki Obata, Florian Sanft, Toshi-Aki Shibata

Yamagata University
Yuya Kudo, Yoshiyuki Miyachi, Shumpei Nara

Projected 3.4 $\times 10^{18}$ POT

E866

NAS1

MRS12

CTEQ4m

CTEQ6

2009 @ Los Alamos
E906 kinematic coverage

The Drell-Yan process:

\[
\frac{d^2 \sigma}{dx_b \, dx_t} = \frac{4\pi\alpha^2}{9x_b \, x_t} \sum_q e_q^2 \left[\bar{q}_t(x_t) q_b(x_b) + q_t(x_t) \bar{q}_b(x_b) \right]
\]

\(\bar{q}_t(x_t)\): target sea quark at low/intermediate x

\(q_b(x_b)\): beam valence quark at high x
DY vs. DIS on sea quark sensitivity
Flavor asymmetry in light quark sea

- Assuming charge symmetry, ignoring nuclear effects of deuterium and heavy quark contributions:

\[
\frac{\sigma^{pd}}{2\sigma^{pp}} \bigg|_{x_1 \gg x_2} \approx \frac{1}{2} \left[1 + \frac{\bar{d}(x_2)}{\bar{u}(x_2)} \right].
\]

- Naively we would expect flavor symmetry between \(\bar{u}\) and \(\bar{d}\)

- E866/NuSea experiment reveals a striking asymmetry in the sea distributions at moderate \(x\)

- Caused by virtual pions?

- Important constraints on light sea polarization

- No models until recently (Peng et al, PLB 736 2014, 411) could incorporate the sign change at \(x > 0.25\)
Measurement of \bar{d}/\bar{u} at E906/SeaQuest

- E906 is based on 120 GeV proton beam from Main Injector compared with 800 GeV beam of E866 → much lower \sqrt{s}

- Drell-Yan cross section scales as $1/s$
- J/ψ cross section scales as s

50x improvement of precision

- Common x coverage with E866 and E772, and extend to higher region
Partonic energy loss in Drell-Yan process

- Fundamental probe to study matter properties
- Accessing energy loss from hard scattering in hot and dense medium in heavy ion physics:
 - nuclear modification $R_{AA} \ll 1$ at high p_T
 - very model-dependent
- Drell-Yan process provides a clean baseline calibration since there is only minimal final state interactions

$\hat{q} = \frac{\mu^2}{\lambda}$

$\omega = xE$

$\omega = (1-x)E$

$\to \langle \hat{q} \rangle = 2 \sim 20 \text{ GeV}^2 / \text{fm}$
Early data from E866 @ Fermilab

- **Energy loss vs. shadowing**
 - Correction must be made for shadowing effects
 - NO partonic energy loss if all effects from shadowing
 - Vasiliev et al., PRL 83 (1999)
 - Significant parton energy loss, \(\sim 1.2 \text{ GeV/fm} \) if all from energy loss
 - Johnson et al., PRC 65 025203 (2002)

Both yield 20~30% effects in \(R_{PA} \)
E906 Drell-Yan dimuon acceptance

- Parton initial energy: 30 - 120 GeV (relevant to RHIC and LHC parton energy)
- Direct test on various models:
 - Gavin and Milana: $\Delta x_1 = -\kappa_1 x_1 A^{\frac{1}{3}}$
 - Brodsky and Hoyer: $\Delta x_1 = -\frac{\kappa_2}{A^{\frac{1}{3}}}$
 - Baier et al.
- Sea quark $x = 0.1 \sim 0.3$
- Minimal shadowing
- $1/s$ enhanced dE/dx effect

First unambiguous determination of dE/dx in CNM
Dark photon search

Dark photon (A'):
• gauge boson of the U(1) extension to SM
• dark photon - SM fermion coupling strength $\alpha' = \varepsilon^2 \alpha$

- Sensitive to $10^{-7} < \varepsilon < 10^{-5}$, 220 MeV < $m_{A'}$ < 550 MeV
- Primary limiting factor:
 - displaced vertex
 - detector acceptance at large angle
- New proposals under discussion to extend our sensitivity region
Timeline and milestones of SeaQuest

- **First proposal**
- **Detector assembled**
- **First proton**!
- **Run-I**
- **Main injector upgrade**
- **Run-II**
- **Run-III**
- **Future upgrades of polarized program**

- **1999**
- **2011**
- **2012**
- **2013**
- **2014**
- **2015**
- **2016**

- **Very preliminary**

- Due to various delays, only a very short 2-month commissioning Run-I was taken in early 2012
- In the longer Run-II, we solved almost all the problems discovered in Run-I
- After a short 2-month accelerator maintenance, we started a 2-yr Run-III
- New station-1 drift chamber will be installed soon to extend the x_2 coverage
- Polarized projects (target and/or beam) will take over in summer 2016

Dr. Markus Diefenthaler, Polarized Drell-Yan measurement at Fermilab: The future of the SeaQuest experiment, WG7, Apr. 30
Data from FY 2014 (Run-II)

- Monte Carlo describe data well
- Resolution better than expected
 - $\sigma_M(J/\psi) \sim 180$ MeV, $\sigma_M(DY) \sim 220$ MeV
 - $J/\psi\,\psi'$ separation
 - Cleaner DY sample
- Good target/beam dump separation

- Beam quality worse than expected (instantaneous rate much higher than average)
 - live time of spectrometer greatly reduced by the ‘super’ RF buckets
 - Reconstruction efficiency lower than expected because of the high detector occupancy

- Entire beam interacts upstream of SeaQuest spectrometer
- Pointing resolution very poor along beam axis
- Dominated by random coincidences
E906 preview measurements on \bar{d}/\bar{u}

- Only consists of 5% of the total expected statistics
- Well consistent with E866 results at low x_2
- Interesting behavior at high x_2, with large statistical uncertainties. New larger drift chamber and more statistics will help us pin down this point.
- Current systematic error mainly comes from LD$_2$ impurity and unresolved rate-dependence. We expect final systematic uncertainty to be \sim1%
Quark energy loss at E906

- Too early to make any conclusion on p+Fe as limited by the statistics
- A consistently negative slope beyond the shadowing strength is observed in p+W data.
- With 20x more statistics, we will be able to clearly distinguish between:
 ➢ \(-dE \propto A^{1/3}\) (or \(\propto L\))
 ➢ \(-dE \propto A^{2/3}\) (or \(\propto L^2\))
Run-II: 5% of total statistics:
• confirmed the large light sea quark asymmetry at $x_2 \sim 0.15$, while the sign change at $x_2 > 0.3$ still waits for more statistics
• observed a negative slope beyond the extent of shadowing

Ongoing Run-III: ~20x of Run-II statistics

Other ongoing physics analysis:
• EMC effect in Drell-Yan
• Transverse momentum broadening
• Difference between J/Ψ and Ψ’ suppression in pA
• Search for double J/Ψ production
• Search for dark photons
• ...