Nuclear PDF constraints from p+Pb collisions at the LHC DIS2015

Ilkka Helenius

Lund University Department of Astronomy and Theoretical Physics

28.4.2015

Outline

- ► Introduction
 - Nuclear parton distribution functions
- ▶ New data from p+Pb at LHC
 - ► Hadron production
 - Dijet η distributions
 - ▶ W[±] production
- ► Direct photon production
 - Production mechanisms
 - ► Sensitivity to small-*x*
 - ▶ Isolation cut
 - $ightharpoonup R_{\rm pPb}^{\gamma}$ at forward rapidities
- ► Summary & Conclusions

Mostly based on

JHEP 1409 (2014) 138 [arXiv:1406.1689 [hep-ph]] with Kari J. Eskola and Hannu Paukkunen from U. of Jyväskylä

Parton distribution functions

Collinear factorization

$$d\sigma^{p+p\to k+X} = \sum_{i,j,X'} f_i(x_1, Q^2) \otimes f_j(x_2, Q^2) \otimes d\hat{\sigma}^{ij\to k+X'}$$

- $f_i(x,Q^2)$ are the parton distribution functions (PDFs) of proton
- $ightharpoonup d\hat{\sigma}^{ij o k+X'}$ is the partonic cross section calculated from pQCD

Collinear factorization

$$d\sigma^{p+p\to k+X} = \sum_{i,j,X'} f_i(x_1,Q^2) \otimes f_j(x_2,Q^2) \otimes d\hat{\sigma}^{ij\to k+X'}$$

- $f_i(x,Q^2)$ are the parton distribution functions (PDFs) of proton
- $ightharpoonup d\hat{\sigma}^{ij o k + X'}$ is the partonic cross section calculated from pQCD

Global DGLAP analysis

1. Parametrize $f_i(x,Q^2)$ at chosen initial scale Q_0

$$f_i(x, Q_0^2) = N_i x^{a_i} (1 - x)^{b_i} F(x, c_i, ...)$$

2. Use DGLAP evolution equations to calculate $f_i(x,Q^2)$ at $Q>Q_0$

$$\frac{\partial f_i(x, Q^2)}{\partial \log Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \sum_j P_{ij} \otimes f_j(x, Q^2)$$

3. Fit to wide range of data to obtain the values for parameters

The PDFs are modified in nuclear collisions:

$$f_i^A(x, Q^2) = R_i^A(x, Q^2) f_i(x, Q^2)$$

- $ightharpoonup R_i^A(x,Q^2)$ from global DGLAP-based analysis
- ▶ Goal: Test factorization and provide accurate pQCD baseline for A+A

Recent NLO analyses

- ► HKN07
- ► DSSZ
- ▶ nCTEQ
- ► EPS09

[JHEP 04 (2009) 065]

Data used in the fits

- Deep inelastic scattering (DIS)
- Drell-Yan dilepton production (DY)
- Pion production in d+Au collisions at RHIC
- \Rightarrow Kinematic reach limited to x > 0.001
- ⇒ Gluons not very well constrained

nPDF uncertainties (from EPS09NLO)

- lacktriangle Quarks well constrained, especially at x>0.01
- ► Large uncertainty for small-*x* gluons!

More constraints from p+Pb collisions at the LHC?

- ► Inclusive hadrons (ALICE, CMS, ATLAS)
- ▶ Dijet production (CMS)
- ▶ W^{\pm} production (CMS)
- Direct photons

Convolution of parton spectra and fragmentation function (FF)

$$d\sigma^{\mathrm{p+Pb}\to h+X} = \sum_{i,j,k,X'} f_i(x_1,Q^2) \otimes f_j^{\mathrm{Pb}}(x_2,Q^2) \otimes d\hat{\sigma}^{ij\to k+X'} \otimes D_k^h(z,Q_F^2)$$

 \Rightarrow No direct connection between hadron p_T, η and parton x_2

► Contribution from broad range of z = (p/q)

Sizable contribution from $x_2 > 10^{-2}$ even at $\eta = 4$

Inclusive hadron production

Charged hadron spectra in p+Pb:

NLO calculations overshoot the data at $p_T > 10 \, {\rm GeV/c}$ p+p: [Nucl.Phys. B883 (2014) 615-628]

Nuclear modification ratio

$$R_{\text{pPb}}^{h}(p_T, \eta) = \frac{1}{208} \frac{\mathrm{d}^2 \sigma_{\text{pPb}}^{h}}{\mathrm{d}p_T \mathrm{d}\eta} / \frac{\mathrm{d}^2 \sigma_{\text{pp}}^{h}}{\mathrm{d}p_T \mathrm{d}\eta}$$

- ► FF differences cancel in ratio $\Rightarrow R_{\rm pPb}$ not sensitive to FFs
- ▶ Enhacement in the data at $p_T \sim 3\,{\rm GeV/c}$

ALICE $R_{\rm pPb}$ for charged pions:

[Quark Matter 2014]

- ► No enhancement for mesons
- ⇒ Some non-perturbative effects in baryon production

Inclusive hadron production

ALICE $R_{\rm pPb}$ for charged pions:

[Quark Matter 2014]

- ▶ No enhancement for mesons
- \Rightarrow Some non-perturbative effects in baryon production

CMS result for charged hadron $R_{\rm pPb}$

- ▶ Enhacement at $p_T > 20 \, \mathrm{GeV/c}$
- ▶ Different p+p baseline between ALICE and CMS?

Dijet pseudorapidity

$$\eta_{\text{dijet}} = \frac{\eta_1 + \eta_2}{2}$$

- at $\eta_{\rm dijet} < 0$ data sensitive to antishadowing region
- at $\eta_{\rm dijet} > 0$ data sensitive to EMC effect
- Good description with EPS09

Impact of dijet data

- ► The impact of new data to nPDF fit can be studied by Hessian reweighting method
- Dijet data would improve gluon nPDFs at x > 0.05(if given enough weight)
- Supports gluon antishadowing and EMC suppression

Forward-backward asymmetry

$$N(+\eta_{\rm lab})/N(-\eta_{\rm lab})$$

- ▶ Sum over W⁺ and W⁻
- $\eta_{\rm lab} = \eta + 0.465$ where η pseudorapidity in nucleon-nucleon CMS frame
- ▶ Dominating processes: $u\bar{d} \to W^+$ and $d\bar{u} \to W^-$
- Sensitive to
 - $\eta_{\text{lab}} > 0: 0.002 < x < 0.02$
 - $\eta_{\text{lab}} < 0: 0.02 < x < 0.2$
- ► Good agreement with EPS09

Forward-backward asymmetry

$$N(+\eta_{\rm lab})/N(-\eta_{\rm lab})$$

- ► Sum over W⁺ and W⁻
- ρ $\eta_{\rm lab} = \eta + 0.465$ where η pseudorapidity in nucleon-nucleon CMS frame
- Dominating processes: $u\bar{d} \to W^+$ and $d\bar{u} \to W^-$
- Sensitive to
 - $\eta_{\text{lab}} > 0$: 0.002 < x < 0.02
 - $n_{\text{lab}} < 0: 0.02 < x < 0.2$
- Good agreement with EPS09

The gluon nPDFs at small-x remain badly constrained!

Two components in direct photon cross section

$$d\sigma_{\text{pPb}}^{\gamma+X} = d\sigma_{\text{pPb}}^{\text{prompt } \gamma+X} + d\sigma_{\text{pPb}}^{\text{fragmentation } \gamma+X}$$

Prompt photon production

e.g. Compton scattering

- Calculated from pQCD
- Sensitive to gluon PDFs

Fragmentation photon production

parton fragments into photon, e.g.

- Calculated by convoluting with parton-to-photon FFs
- ► At NLO the decomposition ambiguous (scale dependent)
- ▶ More sensitivity to small-*x* physics than hadrons?

▶ The contribution from different x_2 values to NLO cross section Calculated with JETPHOX [JHEP 0205 (2002) 028] ($Q=p_T$)

lacktriangle Prompt component very sensitive to small values of x_2

▶ The contribution from different x_2 values to NLO cross section Calculated with JETPHOX [JHEP 0205 (2002) 028] ($Q=p_T$)

- lacktriangle Prompt component very sensitive to small values of x_2
- ightharpoonup Fragmentation component have contribution also from larger x_2 's

▶ The contribution from different x_2 values to NLO cross section Calculated with JETPHOX [JHEP 0205 (2002) 028] ($Q=p_T$)

- lacktriangle Prompt component very sensitive to small values of x_2
- ightharpoonup Fragmentation component have contribution also from larger x_2 's
- lacktriangle Total cross section not sensitive only to small values of x_2

▶ The contribution from different x_2 values to NLO cross section Calculated with JETPHOX [JHEP 0205 (2002) 028] ($Q=p_T$)

- lacktriangle Prompt component very sensitive to small values of x_2
- ightharpoonup Fragmentation component have contribution also from larger x_2 's
- lacktriangle Total cross section not sensitive only to small values of x_2
- ► The relative sensitity still larger than for hadrons

Isolated photons

Isolation cut

• Reject photons that have $\Sigma E_T > E_T^{max}$, where

$$\Sigma E_T = \sum_i E_T^i \theta(R - R_i), \text{ and } R_i = \sqrt{(\eta_\gamma - \eta_i)^2 + (\phi_\gamma - \phi_i)^2}$$

Sum runs over all hadrons i.

Isolated photons

Isolation cut

• Reject photons that have $\Sigma E_T > E_T^{max}$, where

$$\Sigma E_T = \sum_i E_T^i \theta(R - R_i), \text{ and } R_i = \sqrt{(\eta_\gamma - \eta_i)^2 + (\phi_\gamma - \phi_i)^2}$$

Sum runs over all hadrons i.

- ▶ Isolation cut suppresses the fragmentation component
- ▶ Increase the sensitivity to smaller values of x_2

Isolation and x_2 sensitivity

ightharpoonup The contribution from different x_2 values to NLO cross section

▶ Only the sum of two components physical observable

Isolation and x_2 sensitivity

ightharpoonup The contribution from different x_2 values to NLO cross section

- ▶ Only the sum of two components physical observable
- ▶ Isolation cut with $\Sigma E_T < 4\,\mathrm{GeV}$ suppresses fragmentation component
 - \Rightarrow Decrease contribution from larger values of x_2

Isolation and x_2 sensitivity

ightharpoonup The contribution from different x_2 values to NLO cross section

- Only the sum of two components physical observable
- ▶ Isolation cut with $\Sigma E_T < 4\,\mathrm{GeV}$ suppresses fragmentation component
 - \Rightarrow Decrease contribution from larger values of x_2
- ▶ Tighter isolation cut ($\Sigma E_T < 2 \, \mathrm{GeV}$) further suppresses the fragmentation component but small effect to total distribution

Nuclear modification factor

- $lacktriangleright R_{
 m pPb}^{\gamma}$ for inclusive and isolated direct photons using
 - ► CTEQ6.6M proton PDFs with EPS09 nuclear modifications
 - ▶ BFGII parton-to-photon FFs
 - Scale choice $\mu = Q = Q_F = p_T$

- Suppression in $R_{\mathrm{pPb}}^{\gamma}$ due to shadowing in the nPDFs
- lacktriangle Sligthly stronger suppression with isolation at small p_T
- ▶ Uncertainty due to nPDFs of the order 10%

Accuracy of $R_{\rm pPb}$ measurement

- ▶ If no p+p run at the given energy interpolation required
- ► If no luminosity measurent in p+Pb glauber modeling required ⇒ Can cause uncertainties ≥ 10%

Yield asymmetry between forward and backward rapidities

$$Y_{\text{pPb}}^{asym}(p_T, \eta) \equiv \left. \frac{\mathrm{d}^2 \sigma_{\text{pPb}}}{\mathrm{d} p_T \mathrm{d} \eta} \right|_{\eta \in [\eta_1, \eta_2]} / \left. \frac{\mathrm{d}^2 \sigma_{\text{pPb}}}{\mathrm{d} p_T \mathrm{d} \eta} \right|_{\eta \in [-\eta_2, -\eta_1]}$$

- ▶ No need for the p+p baseline
- Many experimental uncertainties cancel in the ratio
- Nuclear modifications at backward rapidities well constrained by DIS and DY data

Prediction for $Y_{\mathrm{pPb}}^{asym}(p_T,\eta)$

▶ NLO prediction with CTEQ6.6M+EPS09 PDFs and BFGII FFs

Yield asymmetry

- ► Smaller charge density in nuclei ⇒ Isospin effect
- ▶ nPDFs uncertainties mainly from small-x
 - ⇒ Provides further constraints to nPDFs
- Serves also as a test of factorization

Summary & Conclusions

Summary

- ▶ New data from p+Pb collisions at the LHC
 - ► Inclusive hadron production (not an ideal observable)
 - ▶ Dijet data constraints gluon nPDFs at $x \gtrsim 0.01$
 - $lackbox{W}^{\pm}$ data provides constraints for quarks at x>0.002
- \Rightarrow Gluons remain weakly constrained at x < 0.01

Conclusions

- ▶ Direct photons more sensitive to small-*x* than inclusive hadrons
- Isolation cut increases the sensitivity to smaller values of x
- ▶ If no accurate p+p baseline available, the yield asymmetry can be used

Extra Slides

Backup

Data comparison

Isolated photons at the LHC

[Data: Phys.Rev. D84:052011 (2011)]

- Very well described by NLO pQCD
- Same holds also for inclusive jets

Charged hadrons at LHC

NLO pQCD with recent FFs overshoots the data by factor of 2!

I. Helenius (Lund U.) DIS2015 28.4.2015

p_T systematics

Isolated photons at midrapidity

- ▶ More sensitivity to small-x than hadrons
- ► Contribution also from quark initiated processes

Prompt vs. Fragmentation

- ▶ The relative contributions to direct photon cross section with
 - three scale choices $(\mu = Q = Q_F)$
 - ► CTEQ6.6M PDFs [Phys. Rev. D78 (2008) 013004] with EPS09
 - ▶ BFGII FFs [Eur. Phys. J. C2 (1998) 529]

- ▶ In NLO the division depends on the scale choice
 - ⇒ Meaninful observable only when both processes are included!

 \blacktriangleright At small p_T the fragmentation component dominant

Sensitivity to gluon PDFs

Relative contributions from quarks and gluons in the Pb-nucleus at midand forward rapidities

- At $\eta = 0$ similar contribution from gluons and quarks
- At $\eta = 4.5$ about 80% from gluons

Rapidity systematics of isolated photons

- ▶ Larger rapidities \sim smaller x_2
- \blacktriangleright Weak x dependence in the EPS09 at x<0.01
 - $\Rightarrow R_{\rm pPb}$ independent of rapidity at $\eta>2$ for isolated photons
- Uncertainties similar in each rapidity bin
- Accurate measurements required!
 - ► FoCal in ALICE?
 - ► LHCb capabilities?

Isolated photons at backward rapidities

▶ At $\eta < -2$ cross section mainly sensitive to quarks at $x_2 > 0.01$ \Rightarrow nPDFs well constrained by DIS and DY data:

Isospin effect

- Nuclei consist of protons and neutrons
 - ⇒ Smaller charge density than in protons
- ▶ Photons couple to electric charge
 - \Rightarrow Suppression in the large x region where valence quarks dominate

Uncertainties in proton PDFs

► Proton PDFs from CT10 analysis [Phys.Rev. D82 (2010) 074024]

- ▶ Large uncertainties also for gluon PDFs in proton at $x < 10^{-4}$
 - ⇒ Further constraints would be welcome to here also

Charged hadron yield asymmetry

- No unexpected effects at $p_T > 10 \, {\rm GeV/c}$
- ► Enhacement in R_{pPb} independent of rapidity
- ► Baseline/normalization effect?

Charged hadrons in p+Pb

New data for charged hadrons in p+Pb from ALICE

- \blacktriangleright At $p_T \gtrsim 10\,{\rm GeV/c}$ the data/NLO ratios are flat for both p+p and p+Pb
 - \Rightarrow The ALICE baseline seems to be in control up to $p_T = 40 \, \mathrm{GeV/c}$

Charged hadrons in p+Pb

New data for charged hadrons in p+Pb from CMS

- ▶ Disclaimer: CMS spectra read "by eye" (from H. Paukkkunen)!
- ▶ Rise in CMS data/NLO ratio at $p_T > 50 \, {\rm GeV/c}$ in both p+p and p+Pb

Charged hadron production in p+p at different \sqrt{s}

Charged pion cross section

Charged pions in p+p collisions

- ▶ Data consistent within the uncertainties when using Kretzer FFs
- ▶ With DSS and KKP calculation a factor two of above the ALICE data

Dijets in p+Pb

[JHEP 1310 (2013) 213]

W^{\pm} production

