Precision Tests of Fundamental Interactions with the LBNE/LBNF Near Detector

R. Petti

University of South Carolina, Columbia SC, USA

for the LBNE/LBNF Collaboration

DIS 2015 April 29th, 2015, Dallas, TX, USA

HIGH RESOLUTION NEAR DETECTOR FOR LBNE/LBNF

- ← The Long-Baseline Neutrino Experiment/Facility (LBNE/LBNF) designed for high sensitivity measurements of Long-Baseline (LBL) $\nu_{\mu}(\bar{\nu}_{\mu}) \rightarrow \nu_{e}(\bar{\nu}_{e})$ oscillations with $\nu_{e}(\bar{\nu})$ appearance and $\nu_{\mu}(\bar{\nu}_{\mu})$ disappearance (LBNE Collaboration, arXiv:1307.7335 [hep-ex])
 - High intensity ν and $\bar{\nu}$ beams from Fermilab to Homestake mine in SD ($L \sim 1300 \text{ km}$)
 - Look for CP violation, neutrino mass hierarchy, searches beyond PNMS, etc.
- ♦ Need a high resolution near detector (ND) complex to address LBL systematics:
 - Beyond the naive "identical" paradigm;
 - Measurement of $\nu_{\mu}, \bar{\nu}, |\nu_{e}|, |\bar{\nu}_{e}|$ content vs. E_{ν} and θ_{ν} ;
 - Measurement of ν -induced $\pi^{\pm}/K^{\pm}/p/\pi^0$ in CC and NC interactions;
 - Quantitative determination of E_{ν} absolute energy scale;
 - Measurement of detailed event topologies in CC & NC.
 - ⇒ <u>Provide an 'Event-Generator' measurement for LBL</u>
- A fine grained near detector operating in the LBNF (anti)neutrino beam is a natural candidate to study neutrino scattering physics.

Can it achieve a substantial physics potential for non-oscillation physics?

REQUIREMENTS FOR $\nu(\bar{\nu})$ scattering physics

STATISTICS

- Limiting factor for old experiments;
- Need increase $\times 10 \div \times 100$ with respect to current/past experiments;
- Detector mass not critical at the LBNF due to the large fluxes;
- ⇒ Shift focus from measurements of cross-sections to precision tests of foundamental interactions & structure of matter
- Reduction of systematic uncertainties:
 - Flux, energy & momentum scales, backgrounds, theoretical modeling etc.;
 - Start to limit current *v*-scattering experiments;
 - Need fine-grained detectors & **REDUNDANCY** through multiple measurements

 \implies A major physics program requires

HIGH RESOLUTION

LBNE/LBNF NEAR DETECTOR

Based upon the NOMAD concept/experience

- Straw Tube Tracker 3.5m×3.5m×6.5m
 (ρ ~ 0.1 g/cm³) with target embedded
- + Target mass \sim 7t: $(C_3H_6)_n$, C, Ar, Ca, etc.
- + 4π ECAL in dipole B field (0.4 T)
- 4π μ-Detector (RPC) in return yoke and downstream
- + Pressurized Ar target $\sim \times 10$ FD Stat.
- Precise measurement of 4-momenta

Combined tracking and particle ID

- igstarrow Transition Radiation $\Longrightarrow e^-/e^+$ ID, γ
- $dE/dx \implies$ Proton ID, $\pi^{+/-}$, $K^{+/-}$
- Magnet/Muon detector $\Longrightarrow \mu^+/\mu^-$

LOW-DENSITY "ELECTRONIC BUBBLE CHAMBER"

Event candidate from NOMAD data \implies STT has $\times 10$ granularity

Event candidate from NOMAD data \implies STT has $\times 10$ granularity

NUCLEAR TARGETS

MAIN target $(C_3H_6)_n$ radiators: fiducial mass ~5t

- Multiple nuclear targets in STT: $(C_3H_6)_n$ radiators, C, Ar gas, Ca, Fe, H_2O , D_2O , etc. \implies Separation from excellent vertex (~ 100µm) and angular (< 2 mrad) resolutions
- ← Subtraction of C TARGET (0.5 tons) from polypropylene $(C_3H_6)_n$ RADIATORS provides $5.0(1.5) \times 10^6 \pm 13(6.6) \times 10^3(sub.) \nu(\bar{\nu})$ CC interactions on free proton \implies Absolute $\bar{\nu}_{\mu}$ flux from QE \implies Model-independent measurement of nuclear effects and FSI from RATIOS A/H
- Pressurized Ar GAS target (~ 140 atm) inside AI/C tubes and solid Ca TARGET provide detailed understanding of the FD A = 40 target
 ⇒ Collect ×10 unoscillated FD statistics on Ar target
 ⇒ Study of flavor dependence & isospin physics

BEAM AND EVENT RATES

- ♦ New high intensity (PIP-II) 1.2 MW proton beam at E = 120 GeV delivering 11 × 10²⁰ pot/year for 5 (v)+5(v̄) years
 ⇒ Upgradable to 2.4 MW
- Different energy tuning possible
- At ND location (459m from proton target) expect to collect $90(40) \times 10^6 \nu_{\mu}(\bar{\nu}_{\mu})$ CC inclusive interactions

EVENT KINEMATICS & $\nu(\bar{\nu})$ ENERGY SCALES

SHORT BASELINE PHYSICS IN LBNE/LBNF

PRECISION MEASUREMENTS

(LBNE Collaboration, arXiv:1307.7335 [hep-ex])

- Measurement of $\sin^2 \theta_W$ and electroweak physics;
- Measurement of strange sea contribution to the nucleon spin Δs ;
- Precision tests of isospin symmetry;
- Precision tests of the structure of the weak current: <u>PCAC, CVC</u>;
- <u>Adler sum rule;</u>
- Studies of QCD and hadron structure of nucleons and nuclei;
- Strange sea and charm production;
- Measurement of Nuclear effects in neutrino interactions;
- Precision measurements of cross-sections and particle production; etc.

Deep synergy with the LBL oscillation program: same requirements and mutual feedback

SEARCHES FOR NEW PHYSICS

- Search for weakly interacting massive particles (e.g. ν MSM sterile neutrinos);
- Search for high Δm^2 neutrino oscillations (e.g. LSND, MiniBooNE)
- Search for light (sub-GeV) Dark Matter; etc.
- \implies The combination of high resolution and unprecedented statistics (×100) may led to discoveries of new physics in fundamental interactions / structure of matter!
- \implies More than 200 physics papers and > 100 Ph.D. thesis expected

PRECISION ELECTROWEAK MEASUREMENTS

- Sensitivity from ν scattering in LBNE/LBNF comparable to the Collider precision:
 - FIRST single experiment to directly check the running of $\sin^2 \theta_W$: elastic ν -e scattering and νN DIS have different scales
 - <u>Different scale</u> of momentum transfer with respect to LEP/SLD (off Z^0 pole)
 - Direct measurement of neutrino couplings to Z^0 \implies Only other measurement LEP $\Gamma_{\nu\nu}$
 - Independent cross-check of the NuTeV $\sin^2 \theta_W$ anomaly (~ 3σ in ν data) in a similar Q^2 range

- ◆ Different independent channels:
 R^ν = σ^ν_{NC}/σ^ν_{CC} in ν-N DIS (~0.35%)
 R_{νe} = σ^ν_{NC}/σ^ν_{NC} in ν-e⁻ NC elastic (~1%)
 NC/CC ratio (νp → νp)/(νn → μ⁻p) in (quasi)-elastic interactions
 NC/CC ratio ρ⁰/ρ⁺ in coherent processes
 ⇒ Combined EW fits like LEP
- ♦ Reduction of uncertainties to ~ 0.2% with 1-2 yr run in high energy mode

FLUX MEASUREMENTS

ABSOLUTE FLUXES

NC elastic scattering $\nu_{\mu} + e^- \rightarrow \nu_{\mu} + e^-$

 \implies Expect a $\sim 2\%$ precision in the absolute flux for $0.5 \leq E_{\nu} \leq 10$ GeV

CC Inverse Muon Decay $u_{\mu} + e^{-} \rightarrow \nu_{e} + \mu$

 \implies Expect a $\sim 2.5\%$ precision in the absolute flux for $E_{\nu} \geq 11$ GeV

Using quasi-elastic CC scattering off free proton (hydrogen) target $\bar{\nu}_{\mu} + p \rightarrow \mu + n$

 \implies Estimate a $\sim 3\%$ precision in the absolute flux for $0.5 \leq E_{\nu} \leq 20$ GeV

RELATIVE FLUXES

Use low- ν_0 method to extract parent meson distributions and predict FD/ND \implies Expect FD/ND to ~ 1-2% in fluxes vs. E_{ν} (bin-to-bin) for $0.5 \le E_{\nu} \le 20$ GeV Use coherent π^{\pm} production to determine $\bar{\nu}/\nu$ flux ratio \implies Expect ~ 1% precision on the flux ratio

PRECISION TESTS OF THE ADLER SUM RULE

- High statistics event samples on H target from the subtraction between $(C_3H_6)_n$ radiators and the C target allow high precision tests of the Adler sum rule
- ◆ The Adler integral provides the ISOSPIN of the target: $S_A = \int_0^1 \frac{dx}{2x} \left(F_2^{\bar{\nu}p} F_2^{\nu p} \right) = I_z$
 - Exact sum rule from current algebra;
 - At large Q^2 (quarks) sensitive to $(s \bar{s})$ asymmetry, isospin violations;
 - At low Q^2 cancellation QE, Res, DIS;
 - Only measurement from BEBC with 5,000 (9,000) $\nu(\bar{\nu})$ events on H (Z.Phys.C28 (1985) 321).
 - Expect $5.0(1.5) \times 10^6 \pm 13(6.6) \times 10^3 (sub.) \nu(\bar{\nu})$ CC interactions on free proton

 \implies A measurement on H at the percent level at LBNF could bring to discoveries!

◆ Interesting to measure the Adler sum rule in nuclei $S_A = (Z - N)/A$ like C, Ca and Ar to test possible isospin violations or flavor dependencies of nuclear effects

TESTS OF ISOSPIN (CHARGE) SYMMETRY

◆ Experimental check of isospin symmetry in nucleon, $u_{p(n)} \neq d_{n(p)}$. Fine grained ND in LBNE/LBNF with ν AND $\bar{\nu}$ on isoscalar C TARGET : $\frac{F_2^{\nu C}}{F_2^{\bar{\nu}C}}(x,Q^2) - 1$

- Structure function ratio reduces systematic uncertainties;
- Need to take into account charm quark effects $\propto \sin^2 \theta_C$. Sensitivity to m_c ;
- A non-vanishing strange sea asymmetry $s(x) \bar{s}(x)$ would affect the result. Need combined analysis with charm production in ν and $\bar{\nu}$ interactions;
- Potential effect of nuclear environment e.g. with Coulomb field.
- Collect ν and $\bar{\nu}$ interactions on both Ca AND Ar TARGETS to disentangle nuclear effects from isospin effects in nucleon structure functions.
 - Measure ratios $F_2^{\nu A}/F_2^{\bar{\nu}A}(x,Q^2)$;
 - Use heavier isoscalar target, ${}^{40}_{20}Ca$, to verify nuclear effects in ${}^{12}_{6}C$;
 - Use second target with isovector component but same A as Ca: $^{40}_{18}$ Ar.

MEASUREMENT OF Δs

NC ELASTIC SCATTERING *neutrino-nucleus is sensitive to the strange quark* contribution to nucleon spin, Δs , through axial-vector form factor G_1 :

$$G_1 = \left[-\frac{G_A}{2}\tau_z + \frac{G_A^s}{2} \right]$$

At $Q^2 \to 0$ we have $d\sigma/dQ^2 \propto G_1^2$ and the strange axial form factor $G_A^s \to \Delta s$.

• Measure NC/CC RATIOS as a function of Q^2 to reduce systematics ($\sin^2 \theta_W$ as well):

$$R_{\nu} = \frac{\sigma(\nu p \to \nu p)}{\sigma(\nu n \to \mu^{-} p)}; \qquad R_{\bar{\nu}} = \frac{\sigma(\bar{\nu} p \to \bar{\nu} p)}{\sigma(\bar{\nu} p \to \mu^{+} n)}$$

- Statistical precison in LBNE/LBNF ND will be at the 10^{-3} level: $\sim 2.0 (1.2) \times 10^6 \nu (\bar{\nu})$ NC events (best measurement BNL E734 with 951 (776) $\nu(\bar{\nu})$ NC events, PRD 35 (1987) 785);
- A precision measurement over an extended Q^2 range reduces systematic uncertainties from the Q^2 dependence of vector $(F_{1,2}^s)$ and axial (G_A^s) strange form factors;
- Need to check background subtraction (e.g. neutrons etc.);

SEARCH FOR NEUTRAL LEPTONS

SUMMARY

- ◆ High resolution low density (ρ ~ 0.1 g/cm³) & magnetized (B=0.4T) near detector important to constrain systematics in LBNE/LBNF and fully achieve physics potential of long-baseline oscillation analyses
- Multiple nuclear targets in LBNE/LBNF ND will provide a rich Short Baseline physics program, characterized by a deep synergy with long-baseline oscillation analyses, offering a generational advance in precision measurements and searches

 \implies Discovery potential within short-baseline physics

- The availability of unprecedented neutrino fluxes at LBNF, coupled with a high resolution near detector, can elevate neutrino physics to the same level of precision of e+e physics (LEP/SLD)
 - ⇒ Sensitivities comparable with other complementary dedicated programs
 - \implies Exploit the uniqueness of the (anti)neutrino probe

Backup slides

VERTEX RESOLUTION AND ENERGY SCALES

- ♦ NOMAD: charged track momentum scale known to < 0.2% hardonic energy scale known to < 0.5%</p>
- DUNE ND: $\sim 100 \times$ more statistics and $12 \times$ higher segmentation

Source of uncertainty	$\delta R^{ u}/R^{ u}$		Comments
	NuTeV	LBNE	
Data statistics	0.00176	0.00074	
Monte Carlo statistics	0.00015		
Total Statistics	0.00176	0.00074	
$ u_e, \overline{ u}_e ext{ flux } (\sim 1.7\%)$	0.00064	0.00010	e^{-}/e^{+} identification
Energy measurement	0.00038	0.00040	
Shower length model	0.00054	n.a.	
Counter efficiency, noise	0.00036	n.a.	
Interaction vertex	0.00056	n.a.	
$\overline{ u}_{\mu}$ flux	n.a.	0.00070	Large $\bar{\nu}$ contamination
Kinematic selection	n.a.	0.00060	Kinematic identification of NC
Experimental systematics	0.00112	0.00102	
d,s→c, s-sea	0.00227	0.00140	Based on existing knowledge
Charm sea	0.00013	n.a.	
$r=\sigma^{\overline{ u}}/\sigma^{ u}$	0.00018	n.a.	
Radiative corrections	0.00013	0.00013	
Non-isoscalar target	0.00010	N.A.	
Higher twists	0.00031	0.00070	Lower Q^2 values
$R_L\left(F_2,F_T,xF_3 ight)$	0.00115	0.00140	Lower Q^2 values
Nuclear correction		0.00020	
Model systematics	0.00258	0.00212	
Total	0.00332	0.00247	