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Electron-Ion Collider
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Investigate with precision universal dynamics of gluons 

Ultimate QCD machine: 
• The world’s first polarized electron-polarized proton collider 
• The world’s first electron-heavy ion collider 
• Luminosities: a hundred to up to a thousand times HERA 
• Fine resolution inside proton down to 10-18 meters

EIC: 
• NP Long Range Plan Resolution Meeting (April ‘15): Green Light 
• Possible sites:  BNL (eRHIC), JLab (MEIC)
‣ Add ERL+FFAG Recirculating e Rings to RHIC facility 
‣ Figure-8 Ring-Ring Collider, use of CEBAF



What Drives Interest In e+A Collisions?
• Gluon Saturation 
‣ Can we find experimentally evidence of non-linear QCD dynamics? 
‣ What is the dynamics of gluon saturation? How does it evolve? 
‣ Is the Color Glass Condensate the correct theory in this realm? 
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Key Measurements - Diffraction
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Diffractive physics will be the major component of the e+A 
program at an EIC
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Close relative of DIS
t  : momentum transfer squared 
MX  : mass of diffractive final-state 
characterized by large rapidity gap  
mediated by color neutral exchange (e.g. 2 
or more gluons)

• Came into limelight with discovery at HERA:  
diffractive events (~15% of total DIS rate)  

• High sensitivity to gluon density:                   
σ ~ [g(x,Q2)]2 due to color-neutral exchange 

• Only known process where spatial gluon 
distributions can be extracted

γ∗ V = J/ψ,φ, ρ
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Dipole Model:



Issue: Missing Event Generators
• Requirements: 
‣ DIS Events 
‣ Diffractive Events
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• saturation and non-saturation picture 
• e+p (cross checks with existing data)  
• e+A incl. nuclear effects

⎫⎬⎭
• Plethora of e+p generators from HERA times 
‣ PYTHIA6, LEPTO, CASCADE, HERACLES, DJANGOH, …

• Many p+p/p+A/A+A generators (RHIC, LHC)
‣ HIJING, DPMJET, EPOS, …

• e+A
‣ …
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• saturation and non-saturation picture 
• e+p (cross checks with existing data)  
• e+A incl. nuclear effects

⎫⎬⎭
• Plethora of e+p generators from HERA times 
‣ PYTHIA6, LEPTO, CASCADE, HERACLES, DJANGOH, …

• Many p+p/p+A/A+A generators (RHIC, LHC)
‣ HIJING, DPMJET, EPOS, …

• e+A
‣ …

• EIC community ⇒ do-it-yourself
‣ Sartre 1 for exclusive diffractive VM production (T. Toll and TU) 
‣ Sartre 2 for inclusive diffractive events (T. Toll)
‣ DIS event generator pending 

๏ currently: patch of PYTHIA6+DPMJet+Fluka 



Sartre 1: Diffractive Vector Meson Production
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Incoherent: nucleus dissociation ( f ≠ i )

Incoherent CS is variance of amplitude 
⇒ measure of fluctuating source density
Coherent CS reflects the average source
density



Sartre 1: Diffractive Vector Meson Production
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Use Dipole Model: bSat and bNonSat

γ* V = J/ψ, φ, ρ, γ
1-z (1-z)r→r→
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Nucleus:  
• small x ⇒ large λ ⇒ coherently probes whole 

nucleus for x ≪ A-1/3 mN/RN ~ 10-2 

• Position of nucleon in nucleus is not an observable  
• To calculate CS need to average over all possible 

states of nucleon configurations Ω
Sartre:
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Amplitude in ep:
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Note that the dependence on nucleon configurations Ω in
the amplitude is entirely contained in this dipole cross-
section.

1. The incoherent, coherent, and total diffractive
cross-sections

In order to obtain the total diffractive cross-section
and its coherent part, the second and first moments of
the amplitude have to be calculated respectively. For the
first moment there is a closed expression for the average
of the dipole cross-section [14]:

〈

dσqq̄
d2b

〉

Ω

= 2

[

1−
(

1− TA(b)

2
σp
qq̄

)A
]

(9)

where σp
qq̄ is the ep dipole cross-section, eq. (3), inte-

grated over the impact parameter, and TA is the profile
of the Woods-Saxon potential in transverse space.
For the second moment of the amplitude, no analytical

expression exists. Similarly as in [29], we derive it by
defining an average of an observable O(Ω) over nucleon
configurations Ωi by:

⟨O⟩Ω =
1

Cmax

Cmax
∑

i=1

O(Ωi). (10)

For a large enough number of configurations Cmax the
sum on the R.H.S. will converge to the true average. For
the total diffractive cross-section one gets:

dσγ∗A

dt
(x,Q2, t) =

1

16π

1

Cmax

Cmax
∑

i=1

∣

∣A(x,Q2, t,Ωi)
∣

∣

2
.(11)

For large t the variance is several orders of magnitude
larger than the average. This means that the conver-
gence of the sum in eq. (10) becomes extremely slow, as
demonstrated in Fig. 2(a), where we show the coherent
cross-section resulting from averaging over 10, 100, 500,
and 800 configurations. As a comparison the ”analyti-
cal average”, i.e. eq. (9) is also shown. As can be seen,
not even 800 configurations are enough for convergence
at −t > 0.15.
The convergence of the second moment of the ampli-

tude is shown in Fig. 2(b). We conclude that around 500
configurations are needed to obtain a good description of
the cross-section for −t < 0.3.

2. A non-saturated bSat model.

Saturation is introduced in the bSat model through the
exponential term in the scattering amplitude (eq. (3)). In
order to study the effects of saturation on the production
cross-section we construct a non-saturated version of the
bSat model by linearizing the dipole cross-section. It
should be noted that there is no taming of the rise of

the cross-section for small xIP or large dipole radii in
this case, and studies are only valid where β = xIP /xBj

is large. For exclusive diffraction this is equivalent to
keeping Q2 large. Any other way to impose a limit on the
rise of the cross-section, e.g. through a cut-off, inevitably
also imposes some form of saturation into the formalism.
In the proton case, the bNonSat dipole cross-section

is obtained by keeping the first term in the expansion of
the exponent in the bSat dipole cross-section [14]:

dσ(p)
qq̄

d2b
=

π2

NC
r2αs(µ

2)xg(x, µ2)T (b). (12)

In the case of a nucleus the dipole cross-section be-
comes:

dσ(A)
qq̄

d2b
=

π2

NC
r2αs(µ

2)xg(x, µ2)
A
∑

i=1

T (|b− bi|) (13)

and the coherent part of the bNonSat cross-section can
be obtained through the average:

〈

dσ(A)
qq̄

d2b

〉

Ω

=
π2

NC
r2αs(µ

2)xg(x, µ2)ATA(b). (14)

The parameters we use for the bNonSat model were ob-
tained in [14], by fits to HERA data. They are: BG = 4
GeV−2, µ2

0 = 0.8 GeV2, λg = −0.13, and Ag = 3.5. The
bNonSat quark masses are: mu = md = ms = 0.15 GeV,
mc = 1.4 GeV.
Figures 3 (a) and (b) shows the wave-overlap (Ψ∗

V Ψ)
between the virtual photon and produced vector mesons
as a function of dipole size r, for transverse and lon-
gitudinal polarizations of the photon respectively. The
wave-overlap is taken at Q2 = 1 GeV2 and at z = 0.7.
In Fig. 3 (c) we show the dipole cross-section as a func-
tion of dipole size r. In bSat the rise of the cross-section
at large r is tamed in the model, while in bNonSat it is
allowed to rise uncontrollably. Notice that despite the
uncontrolled rise of the dipole cross-section, the result-
ing cross-section stays finite because of the steep fall of
the wave-overlap function at large r. As can be seen in
the figure, the lighter (larger) vector mesons ρ and φ are
more sensitive to saturation effects than heavier vector
meson such as J/ψ. For J/ψ the wave-overlap falls off
so quickly at large r that it is an unsuitable probe for
accessing the saturated regime, even for large nuclei.

3. Phenomenological corrections to the dipole cross-section

In the derivation of the dipole amplitude only the real
part of the S-matrix is taken into account. The imagi-
nary part of the scattering amplitude can be included by
multiplying the cross-section by a factor (1 + β2), where
β is the ratio of the imaginary and real parts of the scat-
tering amplitude. It is calculated using [30]:

β = tan
(

λ
π

2

)

, where λ ≡
∂ ln

(

Aγ∗p→V p
T,L

)

∂ ln(1/x)
. (15)
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FIG. 2. (Color online) (a) The resulting coherent and (b) total cross-section for γ∗A → γ∗J/ψA, averaged over 10, 100, 500
and 800 configurations. As reference, the coherent analytical average described by eq. (9) is also shown.

In the derivation of the dipole amplitude, the gluons
in the two-gluon exchange in the interaction are assumed
to carry the same momentum fraction of the proton or
nucleus. To take into account that they carry different
momentum fractions, a so-called skewedness correction is
applied to the cross-section by multiplying it by a factor
Rg(λ) defined by [30]:

Rg(λ) =
22λ+3

√
π

Γ(λ + 5/2)

Γ(λ+ 4)
(16)

where λ is defined as above. Note that this definition
of skewedness-correction for the bSat model is slightly
different from the one used in [30], but follows the de-
scription in [32].
These corrections are important for describing HERA

data, where the models are valid the corrections are typ-
ically around 60% of the cross-section, out of which the
skewedness correction amounts to around 45%. The cor-
rections grow dramatically in the large x range outside
the validity of the models, where x > 10−2.

C. Computing the eA cross-sections

The differential ep and eA cross-sections for exclusive
diffractive processes cannot be calculated analytically. In
order to obtain numerical solutions we have written a
computer program to sample and average over nuclear
configurations. This program is also the core of a novel
event generator, Sartre, which is briefly described in Ap-
pendix B.

The total differential cross-section is:

d3σtotal
dQ2dW 2dt

=
∑

T,L

R2
g(1 + β2)

16π

dnγ
T,L

dQ2dW 2

〈

|AT,L|2
〉

Ω
(17)

where dnγ
T,L/dQ

2dW 2 is the flux of transversely and lon-
gitudinally polarized virtual photons, and the average
over configurations Ω is defined in eq. (10).
The coherent part of the cross-section is:

d3σcoherent
dQ2dW 2dt

=
∑

T,L

R2
g(1 + β2)

16π

dnγ
T,L

dQ2dW 2

∣

∣⟨AT,L⟩Ω
∣

∣

2
(18)

while the incoherent part is the difference between the
total and coherent cross-sections.
For the the second moment of the amplitude, for each

nucleon configuration Ωi, one need to calculate the inte-
gral:

AT,L(Q
2,∆, xIP ,Ωi) =

∫

rdr
dz

2
d2b (Ψ∗

V Ψ)T,L (Q2, r, z)

×J0([1− z]r∆)e−ib·∆dσqq̄
d2b

(xIP , r,b,Ωi) (19)

where the dipole cross-section is defined in eq. (9) for
bSat and in eq. (13) for bNonSat. For eA, there is no an-
gular symmetry in b which makes this integral complex.
We average over 500 nucleon configurations, giving 1000
such integrals for each point in phase-space.
For the first moment of the amplitude, the integral to

• Analytic average not 
exact 

• Need Cmax ~ 800, more 
at large t
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Wave overlap function Ψ*Ψ falls 
steeply for large dipole radii
• J/ψ not sensitive to saturation.
• Need to look at φ, or ρ that 

“see” more of the dipole 
amplitude
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Sartre 1: Diffractive Vector Meson Production

9

γ* V = J/ψ, φ, ρ, γ
1-z (1-z)r→r→

z

pʹ, Aʹ

xʹ

p, A

x

t

b→

-2 -1.5 -1 -0.5 0 0.5 1

dσ
q�q

/d
2 b

log10(r/fm) 

log10(r/fm) log10(r/fm) 

(a) (b)

(c)
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

p bSat
p bNonSat
Au bSat
Au bNonSat

-2 -1.5 -1 -0.5 0 0.5 1

10-3

10-4

10-5
-2 -1.5 -1 -0.5 0 0.5 1

φ

r(Ψ
*Ψ
)

r(Ψ
*Ψ
)

Q2 = 1 GeV2
z = 0.7

transverse 
polarization

longitudinal
polarization

Q2 = 1 GeV2
z = 0.7J/ψ

J/ψ
ρ

ρ

φ

10-3

10-4

10-5

-2 -1.5 -1 -0.5 0 0.5 1

dσ
q�q

/d2 b

log10(r/fm) 

log10(r/fm) log10(r/fm) 

(a) (b)

(c)
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

p bSat
p bNonSat
Au bSat
Au bNonSat

-2 -1.5 -1 -0.5 0 0.5 1

10-3

10-4

10-5
-2 -1.5 -1 -0.5 0 0.5 1

φ

r(Ψ
*Ψ
)

r(Ψ
*Ψ
)

Q2 = 1 GeV2
z = 0.7

transverse 
polarization

longitudinal
polarization

Q2 = 1 GeV2
z = 0.7J/ψ

J/ψ
ρ

ρ

φ

10-3

10-4

10-5

A�⇤p!V p
T,L (x,Q,�) = i

Z
dr

Z
dz

4⇡

Z
d2b( ⇤

V ) (r, z)

⇥2⇡rJ0([1� z]r�)e�ib·� d�(p)
qq̄

d2b
(x, r,b)

Wave overlap function Ψ*Ψ falls 
steeply for large dipole radii
• J/ψ not sensitive to saturation.
• Need to look at φ, or ρ that 

“see” more of the dipole 
amplitude

J/ψ

φ



T. Toll and TU,  
PRC 87 (2013) 
024913

0.2

0.4

0.6

0.8

1

1.2

Coherent events only
∫Ldt = 10 fb-1/A
x < 0.01
Experimental Cuts:
|η(edecay)| < 4
p(edecay) > 1 GeV/c

Coherent events only
∫Ldt = 10 fb-1/A
x < 0.01

1 2 3 4 5 6 7 8 9 10

(1
/A

4/
3 ) σ

(e
Au

)/σ
(e

p)

Q2 (GeV2)

no saturation
saturation (bSat)

no saturation
saturation (bSat)

e e
e + p(Au) →  e’ + p’(Au’) + J/ψ

1 2 3 4 5 6 7 8 9 10
(1

/A
4/

3 ) σ
(e

Au
)/σ

(e
p)

Q2 (GeV2)

2.2

2.0

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

e + p(Au) →  e’ + p’(Au’) + φ
K K

Experimental Cuts:
|η(Kdecay)| < 4
p(Kdecay) > 1 GeV/c

EIC: Exclusive Vector Meson Production

10

• Sartre event generator (bSat & bNonSat = linearized bSat) 
• As expected: big difference for φ less so for J/ψ

• Note: A4/3 scaling strictly only valid at large Q2
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• Sartre event generator (bSat & bNonSat = linearized bSat) 
• As expected: big difference for φ less so for J/ψ

• Note: A4/3 scaling strictly only valid at large Q2

Early measurements that will give clear 
evidence for saturation. 
Difference between different vector meson 
is key 
x dependence needs to be studied



Exclusive Diffractive VM Production: dσ/dt

11

• In general in e+A: cannot detect the outgoing nucleus 
and measure its momentum  

• Exception: exclusive VM production 
‣Need only to measure e’ and the VM

γ* V = J/ψ, φ, ρ, γ
1-z (1-z)r→r→

z

pʹ, Aʹ

xʹ

p, A

x

t

b→

t = (pA � pA0)2 = (pVM + pe0 � pe)
2

⇡ (pe
0

T + pVM
T )2
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Vector Meson Production: dσ/dt

• Find: Typical diffractive pattern for coherent (non-breakup) part 
• As expected: J/ψ less sensitive to saturation than φ 

• Need this sliced in x bins ⇒ luminosity hungry 
• Crucial: t resolution and reach

12



Spatial Gluon Distribution from dσ/dt

13

Diffractive vector meson production: e + Au → eʹ′ + Auʹ′ + J/ψ

~

t =  Δ2/(1-x) ≈ Δ2
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• Momentum transfer t = |pAu-pAuʹ′|2 conjugate to bT 

• Converges to input F(b) rapidly: |t| < 0.1 almost enough 
• Fourier transformation requires ∫Ldt >  1 fb-1/A



Spatial Gluon Distribution from dσ/dt

• J/ψ perfect for obtaining F(b) in both cases sat and non-sat 
• less so since coherence distorts F(b) 
• Note: difference in F(b) of φ and J/ψ reveals saturation
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dσ/dt probably the most challenging but 
also most interesting measurement in e+A 
It reveals: 
• saturation 
• spatial gluon distribution 
x dependence needs to be studied 
Luminosity hungry requiring ∫Ldt ~ 10 fb-1/A



e+A: Diffractive over Total Cross-Section
• Predicted to be enhanced in e+A compared to e+p at large β, 

i.e. small MX2 (β = xQ2(Q2-MX2))
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FIG. 7: The ratio FD
2A/(AFD

2p) as a function of β for Ca, Sn
and Au nuclei for Q2 = 5 GeV2 and xP = 10−3. Results are
for the “non breakup” case in the IPsat model (thick lines)
and the bCGC model (thin lines).

All parameters of the model come from either fits of the
model to ep-data or from the Woods-Saxon distribution;
no additional parameters are introduced for eA collisions.

The Glauber form (24) has a straightforward in-
terpretation as the dipole scattering independently off
the different nucleons. To see this explicitly denote
dσdip

d2bT
(rT ,bT ) = 2(1 − S(rT ,bT )), where the S-matrix

element S(rT ,bT ) is the amplitude for the dipole to
not interact (elastically; the relation to the inclusive
cross section is via the optical theorem) with the tar-
get. The S-matrix element for scattering off a nucleus
is then given by SA(rT ,bT ) =

∏A
i=1 Sp(rT ,bT − bT i)

which, for the IPsat model, turns out to be equivalent
to Tp(bT ) →

∑A
i=1 Tp(bT − bT i). Note that in the form

(24) there is no leading twist shadowing, i.e. in the large
Q2 or small r limit σA

dip → Aσp
dip, because in this limit

σp
dip ∼ r2 is small and one can expand the exponential.

The situation for the bCGC model is much more com-
plicated, since the replacement Tp(bT ) →

∑A
i=1 Tp(bT −

bT i) into the definition of the bCGC saturation scale
(6) does not lead to the Glauber form (24). One could
see this as a consequence of the “noncommutativity” of
nuclear effects and high energy evolution: even if one as-
sumes that for a particular x and rT a dipole interacts
independently with the nucleons in a nucleus, this will
not necessarily be the case for other rapidities and dipole
sizes because the evolution sums up nonlinear interac-
tions between the nucleons. Since it is not completely
obvious how to introduce a nuclear dependence directly
into the bCGC parametrization for the dipole cross sec-
tion we will in this work use (24) for the bCGC model as
well. A comparison of high energy evolution for protons
and nuclei would be out of the scope of this work, see
however Refs. [61, 62].

In Ref. [19], we showed that the nuclear dipole cross-
sections obtained in this manner gave a good (parameter
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FIG. 8: The ratios FD
2A

x
/(AFD

2p
x
) at xP = 10−3 for different

components of the diffractive structure function plotted as a
function of Q2. The components are evaluated where they
are dominant: at β = 0.1 for qq̄g, β = 0.5 for T and β = 0.9
for L. Results are in the IPsat model for both “breakup” and
“no breakup” cases. (a) Ca nuclei, (b) Au nuclei.

free) agreement with the x and Q2 dependence of the
NMC inclusive structure function data [63, 64] at small
x. However, at the level of the accuracy of the data, it
was not possible to distinguish between the IPsat and
b-CGC models for the inclusive cross-section. We will
now consider nuclear diffractive (qq̄ and qq̄g) structure
functions in the two dipole models. This is obtained by
substituting the nuclear dipole cross-section (Eq. (24)) in
Eqs. (7), (11) and (13).

It is very easy to break up a nucleus with a rela-
tively small momentum transfer |t| ! |tAmin|. However,
for |tAmin| " |t| " |tpmin|, where tpmin is the minimum mo-
mentum transfer required to break up the proton, one
can still have a nuclear diffractive event with a rapid-
ity gap. For |t| ! |tAmin|, the “lumpiness” of the nu-
cleus shows up as a proton-like tail ∼ exp{CtR2

p)} of
the t-distribution. In our formalism, if one requires that
the nucleus stays completely intact, the average ⟨·⟩N in
Eq. (22) must be performed at the amplitude level; the

Kowalski et al. Phys.Rev. C78 (2008) 045201

Q2=5 GeV2, xIP = 10-3
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FIG. 2: β-dependence of the different contributions to the
proton diffractive structure function at Q2 = 5 GeV2 and
xP = 10−3.

and N (r, xP,bT ) = dσdip

d2bT
(r, xP,bT )/2. The coupling con-

stant αs in Eqs. (10) and (12) is treated here as a con-
stant free parameter (independent of the DGLAP evolu-
tion momentum scale in the IPsat model). A more thor-
ough study of the running coupling effects in this problem
is an interesting question that is out of the scope of the
present work.

Depending on the mass of the diffractive system MX

or, equivalently, β, the diffractive structure function is
dominated by either the qq̄ or qq̄g Fock states. (See
Ref. [48] for a general argument of the β dependence.)
Specifically, in the limit β → 1, the dominant component,
FD

L,qq̄ is a longitudinally polarized qq̄ system. At interme-
diate β ∼ 0.5 the dominant component is a transversally
polarized qq̄ denoted here by FD

T,qq̄ . In the limit β → 0
the invariant mass of the diffractive system is large, and
this large phase space is filled by radiation of additional
gluons, each of them being suppressed by αs. This struc-
ture is illustrated in Fig. 2.

In Ref. [39], it was shown that the β = 0 limit
of Eq. (10), at Q2 → ∞, approaches the result from
Eq. (12). This therefore suggests the following interpo-
lation formula between the two limits [39]:

xPFT,qq̄g(xP, β, Q2) =

xPFD (GBW)
T,qq̄g (xP, β, Q2) × xPFD (MS)

T,qq̄g (xP, Q2)

xPFD (GBW)
T,qq̄g (xP, β = 0, Q2)

. (14)

We also note the work in Refs. [30, 32, 49], which uses
yet another prescription whose relation to ours is not very
transparent.

III. IMPACT PARAMETER DEPENDENCE

We shall now discuss the b-dependence of the dipole
cross-sections (see also e.g. Refs. [50, 51, 52]). Several
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FIG. 3: b-dependence of the the inclusive structure func-
tion and different contributions to the diffractive structure
function at Q2 = 1 GeV2 (a) and Q2 = 100 GeV2 (b) for
x = 10−3 (inclusive) and xP = 10−3 (diffractive). In plot
(b) (Q2 = 100 GeV2) the b-dependence of the inclusive cross
section and qq̄g-components are indistinguishable.

works on the subject (for example, Refs. [8, 9, 21, 35])
assume, explicitly or implicitly, a factorizable bT depen-
dence

dσdip

d2bT
(bT , rT , x) = 2N (bT , rT , x) = 2 Tp(bT )N(rT , x) .

(15)
When considering diffractive scattering on protons, this
is consistent with the exponential t dependence observed
in experiments, and in fact implies that Tp(bT ) is Gaus-
sian.

In the IPsat model, in contrast to the factorization
of the b-dependence in Eq. (15), the dependence of the
dipole cross-section on impact parameter is as in Eq. (2),
which equivalent to an impact parameter dependence of
the saturation scale Qs

2 ∝ Tp(bT ). In the IPsat model
the impact parameter profile of the proton saturation
scale is chosen to have the form

Tp(bT ) =
1

2πBG
e−

b2

2BG , (16)

which is normalized to unity. In the large Q2-limit the
cross section is dominated by small dipoles and one can
expand the exponential of Eq. (2), and the dipole cross
section becomes proportional to Tp(bT ). This corre-
sponds to ⟨b2⟩ = 2BG, which can be interpreted as the
average square gluonic radius in the proton.

contributions to the proton  
diffractive structure function

‣ β = momentum fraction of the struck 
parton with respect to the Pomeron

γ∗ V = J/ψ,φ, ρ

p p′

z

1 − z

r⃗

b⃗

(1 − z)r⃗

x x′

qq̄, qq̄g, . . .



Inclusive Diffractive Events: Sartre 2
Sartre 2 
• Allows for simulation of inclusive diffractive events 
• Dipole model:  
• States handed over to Pythia 8 for parton showering

16
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Sartre 2: Diffractive over Total Cross-Section
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Saturation model calculations (Sartre event generator & analytic 
calculations by T. Lappi) now include�qqg that affect the ratio at 
low β. Sat-simulations describe HERA results in ep.

no LTS prediction 
at Q2=1 GeV2

LTS Simulations by V. Guzey
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Saturation model calculations (Sartre event generator & analytic 
calculations by T. Lappi) now include�qqg that affect the ratio at 
low β. Sat-simulations describe HERA results in ep.

no LTS prediction 
at Q2=1 GeV2

Day-1 measurements that will give clear 
evidence for saturation. 
Mx2 (β) and Q2 dependence needs to be 
studied

LTS Simulations by V. Guzey



Take Away Message
The diffractive physics e+A program at an EIC is 
unprecedented, allowing the study of  matter in a new 
emergent regime. 

• We developed a generator for diffractive events  
‣ in e+A and e+p 
‣ for saturation and non-saturation 
‣ exclusive vector mesons in Sartre 1 
‣ inclusive diffractive events in Sartre 2 (in progress) 

• It helped us to simulate key measurements at an EIC 
‣ Indispensable for optimization of detector and IR 

design 
• More work to do on DIS generators for e+A
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