

Perspectives on QCD and EW physics from the Tevatron

The Evolution of a Logo

Bob Hirosky for the CDF and D0 Collaborations

Outline of Tevatron Results

The Tevatron experiments, CDF and D0, continue a rich physics program analyzing ~10fb⁻¹ of recorded data from ~2001-2011

- World's highest energy p-p data set (2 TeV C.O.M.)
- Unique physics studies
- Complementary/competitive in LHC era

>1100 Tevatron papers and counting

Outline of Tevatron Results

The Tevatron experiments, CDF and D0, continue a rich physics program analyzing ~10fb⁻¹ of recorded data from ~2001-2011

Focus today on recent results

Outline of topics

- Heavy flavor states and production/final state asymmetries (incl. CPV)
- Top
- EW production and decay kinematics
- (V)V+jets/HF
- QCD, low-x
- Exotics and non-SM Higgs

B^0 s lifetime in the flavor-specific decay channel B^0 s \rightarrow Ds μ X with the D0 detector

Flavor-specific final state

$$B_s^0 \to D_s^- \mu^+ \nu + \text{C.C.}$$

Determines B_0, \overline{B}_0 state at decay

$$c\tau(B_s^0) = L_{xy} \frac{m(B_s^0)}{p_T(D_s^- \mu^+)} \otimes K$$

Lifetime from (pseudo) proper decay length. K-factor for kinematic effects of ν , soft particles from excited states

• Flavor oscillations yield lifetime as linear combo of light+heavy mass eigenstates

Superposition of states => lifetime

distribution:

$$\tau_{\rm fs}(B_s^0) = \frac{1}{\Gamma_s} \cdot \frac{1 + (\Delta \Gamma_s / 2\Gamma_s)^2}{1 - (\Delta \Gamma_s / 2\Gamma_s)^2}$$

Phys. Rev. Lett. 114, 062001 (2015), arXiv:1410.1568

B^0 s lifetime in the flavor-specific decay channel B^0 s \rightarrow Ds μ X with the D0 detector

- $\tau_{fs}(B_s^0)/\tau(B^0) = 0.964 \pm 0.013(\text{stat}) \pm 0.007(\text{syst})$
- Reduce $\Delta\Gamma$ s and Γ s => Constraint on CPV
- Precise ratio to $\tau(B^0) =>$ Constrain NP operators

- All contributions in signal region enter in the fit
- τ(B⁰) from B⁰ → D⁻μ⁺vX decays is also obtained and the ratio τ(B_s⁰)/τ(B⁰) calculated

Phys. Rev. Lett. 114, 062001 (2015), arXiv:1410.1568

Heavy flavor states

Measurement of indirect CP-violating asymmetries in $D^0 \to K+K-$ and $D^0 \to \pi+\pi-$ decays

Measure CPV asymmetries A_r in charm mesons

- Identify D_0 flavor at production from strong decay $D_0^* \to D_0 \pi^+$ (+ CC)
- Measure decay time-rate asymmetries, for slow mixing:

$$\mathcal{A}_{CP}(t) \approx \mathcal{A}_{CP}^{\mathrm{dir}}(h^+h^-) - \frac{t}{\tau} A_{\Gamma}(h^+h^-)$$

(asymmetry in lifetimes of D, \overline{D})

Sensitive to exchange of virtual non-SM particles, non-SM loops. SM(<1%)

$$A_{\Gamma}=\left(-0.12\pm0.12\right)\%$$
 (combined)

Consistent with best determinations, improve global constraints on indirect CPV in charm-meson dynamics.

PRD 90 (2014) 111103(R) arXiv:1410.5435

Heavy flavor states

Measurement of the direct CP-violating parameter $A_{CP}(D+\rightarrow K-\pi+\pi+)$

High precision measurement of CPV parameters in Cabibbo favored decays crucial to establish experimental basis for charge symmetric process

$$A_{\rm CP}(D^+ \to K^- \pi^+ \pi^+) = \frac{\Gamma(D^+ \to K^- \pi^+ \pi^+) - \Gamma(D^- \to K^+ \pi^- \pi^-)}{\Gamma(D^+ \to K^- \pi^+ \pi^+) + \Gamma(D^- \to K^+ \pi^- \pi^-)}$$

- Simultaneous fit
- Consistent with zero (SM)
- 2.5x improvement on measure

$$A_{\rm CP}(D^+ \to K^- \pi^+ \pi^+) = [-0.16 \pm 0.15 \,(\text{stat.}) \pm 0.09 \,(\text{syst.})]\%$$

Phys. Rev. D 90, 111102(R) (2014)

arXiv:1408.6848

Forward-backward asymmetries

b production

Production mechanism dominated by gluon-gluon fusion \rightarrow no A FB A_{FR} receives contribution in qq and qg interactions from interference:

- initial and final-state radiative gluon diagrams
- box diagram + Born

- different amplitudes in flavor excitation
- electro-weak process (qq \rightarrow Z/ y \rightarrow bb)

In pp collisions $b(\overline{b})$ quark follows $p(\overline{p})$ direction

 A_{FB} depends on m(b \overline{b})

$$A_{FB} \simeq \frac{N_F - N_B}{N_F + N_B}$$

D0:

 $\rm A_{FB}$ using fully reconstructed B meson and $\rm \Lambda_{\, b}$

CDF: $(also \Lambda)$

 A_{FB} with $b\overline{b}$ jets in low and high mass

Production asymmetries of B±

(see talk by B. Abbott)

$$A_{FB}(B^{\pm}) = \frac{N(-q_B\eta_B > 0) - N(-q_B\eta_B < 0)}{N(-q_B\eta_B > 0) + N(-q_B\eta_B < 0)}$$

Sum F+B

H-B

Difference

Fully reconstructed B meson

$$A_{FB}(B^{\pm}) =$$
 (-0.24 ± 0.41 ± 0.19)%

Systematically lower than calculated in MC@NLO

More rigorous determination of the SM predtn. needed to interpret results

Less room for new physics causing anomalous F-B asymmetries (top and bottom)

Phys. Rev. Lett. 114, 051803 (2015) arXiv:1411.3021

Forward-backward asymmetries

(see talk by J. Wilson)

A_{EB} in bb pairs at low mass

Two b-quark jets using displaced secondary vertices, muon tag

b-quark flavour: charged muon in the jet (muon Jet) at particle level unfold M and Δy distributions

AFB at particle level \rightarrow unfold Mbb and Δy_{h} distributions

$$\Delta \gamma_b = Q(\mu)(\gamma_{AT} - \gamma_{HT})$$

Unfolding effects minimal:

Integrated asymmetry: $(1.2 \pm 0.7)\%$

AFB:

 agreement with SM, including feature around Z pole mass

Bob Hirosky, UNIVERSITY of VIRGINIA

(see talk by J. Wilson)

A_{FB} in bb pairs at high mass

Sample with at least two b-quark jets, m(bb)>150 GeV/c²

- b-quark identified requiring displaced secondary vertex
- vertex mass used to determine sample composition (b,c,LF)
- b-quark charge via jet charge

Poisson Likelihood defined for: background, systematics, purity, smearing and signal asymmetry

Use Bayesian technique to extract the hadron-jet level A_{FB} posterior probability distribution in each bin

Results consistent with zero & SM

Exclude wide axigluon model m~200 GeV Reduction of parameter space for tt asymmetry

Λ_b^0 and $\overline{\Lambda}_b^0$ baryon production

(see talk by B. Abbott)

Production through qq, gg has small asymmetry (~1%) from NLO corrections

=> Study hadronization effects, eg "string drag" model (Rosner) favor production of $(\overline{\Lambda}_h)\Lambda_h$ in (anti)proton beam direction

Clean signals Forward/backward events shown

(More details and "rapidity loss" analysis in parallel talk)

arXiv:1503.03917

Forward-backward asymmetries

Λ^0 and Λ^0 baryon production

 $\Lambda(\Lambda)X$ A_{ER} measured in 3 separate samples:

 $\mu^{\pm}\Lambda(\bar{\Lambda})X$

A_{FR} consistent with strong connection to quark flavor of incoming hadron

 $J/\Psi\Lambda(\bar{\Lambda})X$

 Λ/Λ production ratio is approximately a universal function of the proton "rapidity loss" $y_{p} - y$

Little dependence on √s, target, or kinematic factors

D0conf 6464

Single top (s+t)-channel Tevatron XS combo and Vtb extraction

Top

Tevatron: strong advantage of pp initial state for s-channel production

Tevatron: $\sigma tot = 3 pb$

LHC: $\sigma_{tot} = 114 \text{ pb } @ 8 \text{ TeV}$

Complex background environment, small signal component

- Extensive studies: event selection, discriminating variables
- Exploit MVA and analytic methods: NN, BNN, BDT, ME

P(signal)

Combination: CDF:

arXiv:1503.05027 arXiv:1410.4909

arXiv:1410.4909

D0: Phys. Rev. Lett. 112, 231803,

arXiv:1402.5126

Top Single top (s+t)-channel Tevatron XS combo and Vtb extraction

Data

s-channel

t-channel

W+iets

Diboson

top pairs

Multijets

↑ CDF: lepton+jets s+t discriminant

D0: s-channel, t-chan

combined discriminant

X-axis units: t-channel s/b

s-channel s/b

Top Single top (s+t)-channel Tevatron XS combo and Vtb extraction

Precision measurement of the top-quark mass in lepton+jets final states

Matrix element method

- Innovations in ME calculation via arXiv:/1410.6319
- Single-most precise measurement!
- Detailed PRD, e.g. crosscheck of b-quark jet energy scale: $R_{bl} = 1.008 \pm 0.0195$ (stat.) ± 0.037 (syst.)

I+jets channel

$$\delta m_{t}/m_{t} = 0.43\%$$
 (D0)

$$\delta m_{t}/m_{t} = 0.45\%$$
 (CMS)

$$\delta m_{t}/m_{t} = 0.65\%$$
 (CDF)

Phys. Rev. Lett. 113, 032002 (2014)

&Submitted to PRD arXiv:1501.07912

Top

9.7 fb⁻¹

Precision Measurement of the Top Quark Mass in Dilepton Events

Measure of top quark mass in dilepton channel with full D0 data set

(see talk by Huanzhao Liu for 1st public result)

Neutrino weighting method:

- Kinematic reconstruction with weights for multiple solutions based on calculated and observed MET (ω)
- Integrate solutions, $\eta(v)$ range + jet-lepton assignments, over m(top) hypotheses
- Characterize events by moments of the distribution: $\mu(\omega)$ and $\sigma(\omega)$

Correction factor derived from I+jets analysis (kJES) reduces JES uncertainty ~4x

Multiply likelihoods from all events to get a combined $L(m_{ton}^{MC})$

D0conf 6463

Electron charge asymmetry in $pp \rightarrow W + X \rightarrow ev + X$ events

W charge asymmetry is sensitive to Parton Distribution Functions (PDFs)

- Tevatron measurements => stringent constraints on valence *u,d* distributions
- Straightforward observable. Convolution of the W production asymmetry and V-A decay (important to measure both)

CP-folded electron asymmetry compared to MC@NLO(NNPDF2.3), RESBOS(CTEQ6.6)

Phys. Rev. D. 91, 032007 (2015)

arXiv:1412.2862

Electron charge asymmetry in $pp \rightarrow W + X \rightarrow ev + X$ events

Most precise measurements of electron charge (+previous W production) asymmetry in electron channel.
 Extended η coverage to 3.2

Improvement of PDF models in the x – Q² region of interest for W production at the Tevatron (Estimated to reduce the PDF uncertainty in the DØ M₁, measurement by approximately 30% (2-3 MeV))

Various comparisons vs kinematic range:

e/μ channel, experiments, generators

Phys. Rev. D. 91, 032007 (2015)

arXiv:1412.2862

Measurement of the $\phi*\eta$ distribution of muon pairs with masses between 30 and 500 GeV

$$\varphi^* = \tan(\varphi_{acon}/2) \sin \theta^*$$

$$\phi_{acop} = \pi - \Delta \phi^{\pi}$$
 $cos\theta^* = tanh[(\eta_- \eta_+)/2]$
Collins-Soper angle

Less sensitive to detector resolution and efficiency (Uses angles only)

First measured in Z peak region by D0 (7.3 fb-1) PRL 106, 122001 (2011)

Data used to improve ResBos and make predictions for LHC

ATLAS: PLB 720, 32(2013) LHCb: JHEP 1302, 106(2013)

Z peak region

Phys. Rev. D 91, 072002 arXiv:1410.8052

DIS 27Apr, 2015

Measurement of the $\phi*\eta$ distribution of muon pairs with masses between 30 and 500 GeV

• Ratio $1/\sigma$ d σ /d ϕ * in the central to forward rapidity regions can reduce the uncertainty band from QCD scales => suggests the possibility of a new variable that is less sensitive to theoretical uncertainty

scale uncertainty

- First low mass measurement
 - More sensitive to small-x effects
- Also first ever high mass measurement
 - For constraining QCD ISR in high mass final states

EW production and decay

Measurement of the effective weak mixing angle in pp \rightarrow Z/ γ^* \rightarrow e+e- events

Drell-Yan pairs produced via qq anhilation at Tevatron

Weak mixing angle measured from forward-backward asymmetry of lepton polar angle distribution: $A_{FB} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$

Sensitive to $\sin^2\theta_w$ through interference of vector and axial vector couplings of Z boson

- Measure A_{ER} vs dilepton pair invariant mass
- Compare to MC $A_{FR}(M_{ee}, \sin^2\theta_w)$ templates
- Analysis for CC-CC, CC-EC, EC-EC cases and running periods

EW production and decay

Measurement of the effective weak mixing angle in pp \rightarrow Z/ γ^* \rightarrow e+e- events

CC-CC	CC-EC	EC-EC	Combined
0.23142	0.23143	0.22977	0.23139
0.00116	0.00047	0.00276	0.00043
0.00009	0.00009	0.00019	0.00008
0.00003	0.00001	0.00004	0.00001
0.00001	0.00002	0.00013	0.00002
0.00002	0.00001	0.00002	0.00001
0.00002	0.00004	0.00012	0.00003
0.00008	0.00008	0.00005	0.00007
0.00002	0.00001	0.00001	0.00001
0.00116	0.00048	0.00277	0.00044
	0.23142 0.00116 0.00009 0.00003 0.00001 0.00002 0.00002 0.00008 0.00002	0.231420.231430.001160.000470.000090.000090.000030.000010.000010.000020.000020.000010.000020.000040.000080.000080.000020.00001	CC-CC CC-EC EC-EC 0.23142 0.23143 0.22977 0.00116 0.00047 0.00276 0.00009 0.00009 0.00019 0.00003 0.00001 0.00004 0.00001 0.00002 0.00013 0.00002 0.00001 0.00002 0.00002 0.00004 0.00012 0.00008 0.00008 0.00005 0.00002 0.00001 0.00001 0.00116 0.00048 0.00277

 $\sin^2\theta_{eff}^i = 0.23147 \pm 0.00047$

World's best from hadron collider

Relates to observed tension involving most precise quark and lepton couplings

arXiv:1408.5016

WW and WZ production in the lepton+Heavy Flavor jets channel

Diboson WW and WZ production in final state consistent with semileptonic W decay plus heavy flavor quarks

$$W \rightarrow cs$$
, $Z \rightarrow b\overline{b}$, $c\overline{c}$

$$\mu_{WW+WZ}^{Obs} = 0.92$$

Analysis of the di-jet invariant mass spectrum 3.69 s.d. evidence of WW+WZ w/ HF final states

Cross section measurement $\sigma_{ww+wz} = 13.7 + 1/- 3.9 \text{ pb}$

WW and WZ production in the lepton+Heavy Flavor jets channel

Diboson WW and WZ production in final state consistent with semileptonic W decay plus heavy flavor quarks

$$W \rightarrow cs$$
, $Z \rightarrow b\overline{b}$, $c\overline{c}$

- Use different HF decay pattern of the W and Z and the analysis of the secondary-decay vertex properties
- Independently measure the WW and WZ production cross section in a hadronic final state, for the first time at hadron colliders

Measured cross sections:

$$\sigma_{ww}$$
= 9.4 +/- 4.2 pb

$$\sigma_{w_7}$$
=3.7+2.5-2.2 pb

Consistent with the SM predictions, correspond to signal significance of 2.87 s.d. and 2.12 s.d. for WW and WZ respectively

W+W- Production Cross Section and Differential Cross Sections

CDF Run II Preliminary $\int L = 9.7 \text{ fb}^{-1}$ $250 - WW(IIvv) \text{ Cross Section} W+\gamma$ $14.0 \pm 0.6 \text{ (stat)}^{+1.6}_{-1.3} \text{ (syst)} \pm 0.8 \text{ (lumi) pb}$ VZ ZZ DY WW 100 - WW

Production via quark radiation, multi-gauge-boson coupling

- Background for H->WW
- XS measure similar to H → WW search
 - Extend to 1, 2-or-more jets regions
 - 1-jet measure differential in jet pT

<== combined NN for inclusive measurement

Good modeling of input variables for Signal and Background regions

W+W- Production Cross Section and Differential Cross Sections

Production via quark radiation, multi-gauge-boson coupling

- Results unfolded for bin migration and acceptance differences
- Uniformly higher than, but consistent with predictions

First differential σ in a massive diboson state

Very challenging at LHC due to tt background

Search for production of an Upsilon(1S) meson in association with a W or Z boson

Probe of QCD, NRQCD, and long distance matrix elements (LDME)

Search for excursions from SM production

- Charged Higgs may decay into YW with high BR
- SM Higgs can decay into YZ, as can other light scalars

Observe

- 1 Y($\rightarrow \mu + \mu$ -)+W($\rightarrow l\nu$) candidate
 - Expected bkg: 1.2±0.5 events
- 1 Y(→ µ+µ-)+Z(→ I+I-) events
 - Expected bkg: 0.1±0.1 events

Event selection:

Y(1S) candidate + W or Z selections

$$\sigma(YW) < 5.6 \text{ pb}$$

 $\sigma(YZ) < 21 \text{ pb}$

Phys. Rev. D 91, 052011 arXiv:1412.4827

V+jets

8.7 fb⁻¹

Measurement of the W+b-jet and W+c-jet differential production

(See talk by A. Kumar)

W+c is a probe of s-quark PDF Tevatron W+c 85% s-quark initial state, Q²<10⁴ GeV²

W+c and W+b are backgrounds to WH(\rightarrow bb), ttH or beyond the SM

New selections => Enhance contribution from $qq \rightarrow W+g(g \rightarrow cc)$

(almost half gluon splitting at high p_{τ})

First measures differential in pT and Sensitive to gluon splitting process

Missing higher order corrections, enhanced cc splitting, strange sea?

Phys. Lett. B 743, 6 (2015)

Ratio of inclusive cross sections $\sigma(pp^- \rightarrow Z+2b \text{ jets }/\sigma(pp^- \rightarrow Z+2 \text{ jets})$

(See talk by A. Kumar)

Z+2b is significant background to $ZH(H \rightarrow bb)$ and searches for sbottom

Important test of pQCD and non-pQCD (gluon splitting)

At Tevatron

- qq → Zbb 76%
- gg → Zbb 24%

Discriminate between Z+2b, Z+2c after SM bkg subtraction

Fit 2D templates of b-jet discriminant using both jets

Measure in ee and mumu channels

$$R = 0.0236 \pm 0.0032 \pm 0.0035$$

In agreement w/ NLO pred w/in exp & theory uncertainties

Phys. Lett. B 743, 6 (2015) arXiv:1412.5315 Measured at √s=0.9, 1.96 TeV

(see talk by M. Albrow)

QCD low-x

Exclusive pi-pi production

(double pomeron exchange)

- 2 charged particles $(\pi + \pi \pi)$ in $|\eta| < 1.3$
- No particles in $1.3 < |\eta| < 5.9$

Expect dominance of DPE production

 $\sigma(p+(\pi+\pi-)+p)\sim 1/\ln(s)$ consistent with Regge theory

 $f_0(1500)$, $f_0(1710)$ glueball candidates, no significance

Possible information for:

- isoscalar meson spectroscopy
- pomeron in transition to pQCD

arXiv:1502.01391

DIS 27Apr, 2015

Exotics

Search for W' decaying to a t+b quark pair

- Tevatron is sensitive to observed single top production through a time-like virtual W boson
- Same topology can be used to search for heavier W-boson
- Use MET-based trigger, optimize for channels w/ and w/o charged lepton
- Examine a benchmark left-right symmetric NLO model. Assume SM couplings of W', allowed or forbidden leptonic decay modes

W' excluded up to 860(880) GeV/c^{2,} assuming allowed(forbidden) leptonic decay modes

Best exclusion limit below 700 GeV/c²

CDF Note 11110

27Apr, 2015

33

Unique signature => low background + high efficiency

Dedicated trigger

- Heavy ionization (LIGHT!) in TOF scint
- Track: heavy ioniziation, no φ curvature (parabolic arc along B)

Correcting for acceptance, trigger effs, & pileup inefficiency

- 30-40% overall acceptance
- Expected fake rate ~ 3.4x10⁻⁹!

Exclude monopole up to mass of 476 GeV/c² at 95% CL

Best limit up to 300 GeV/c²

CDF Webpage

Exotics

Constraints on Models of the H Boson with Exotic J^P Using Decays to Bottom-Antibottom Quark Pairs

Exploit sensitivities of Vbb mass distributions to spin-parity of exotic H boson in decay: VX, X → bb

0- excluded at 4.9σ and 2+ at 5σ , in the absence of 0+, assuming SM production and decay rates

95% CL limits of production rates at 36% of SM rate set for both 0– and 2+, in the absence of 0+

Unique study in bb final states, compliments outstanding LHC work in VV

Phys. Rev. Lett. 114, 151802, arXiv:1502.00967

27Apr, 2015

Summary

Tevatron experiments continue a rich physics legacy

Exploiting advantages: better S/B, qq initial states, triggering capabilities, ... for competitive and complimentary physics program

- Precision EW results including fundamental parameters of standard model (Wmass, $\sin^2\theta_w$) and W,Z production and PDF inputs
- World leading top mass, unique and complimentary measures (A_{FB} , cross sections, properties, single top, ...)
- Rich b-physics program (CPV studies, hadron properties, new work in production and hadronization asymmetries)
- Closing the gaps between earlier results and LHC for moderately high mass new physics. Limit exotic higgs to fermions
- Unique and complimentary work in QCD (V(V)+jets/HF, low-x, extensive DPI studies, ...)

Visit the parallels for more details and watch for significant updates to come!

