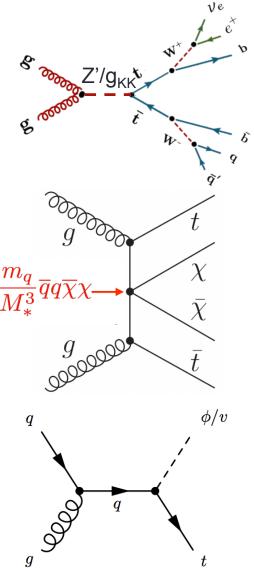
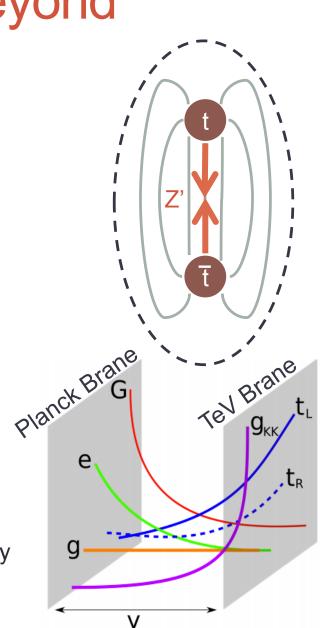
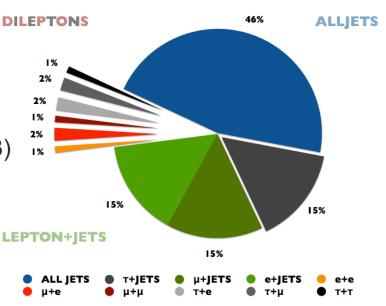

The prove day annue 20 Mar funct on you dell Mar produce to man Mar organist we can anon child for I subor the furth mus couple


Search for ttbar resonances and dark matter at CMS

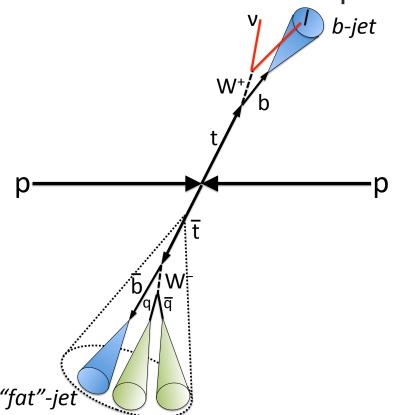
Paul Jonathan Turner on behalf of the CMS Collaboration DIS 2015 April 30, 2015

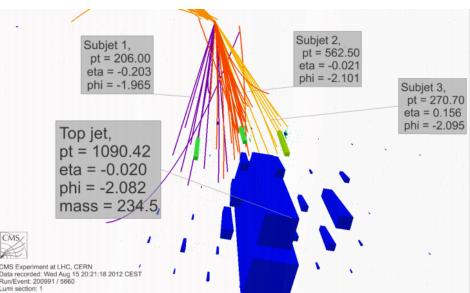

Outline

- Massive new resonances decaying to ttbar
 - Appear in many BSM models: Z' Bosons, Kaluza-Klein excitations of gluons...
 - Can be seen as extra resonant contributions on top of SM ttbar predictions → Searching ttbar invariant mass provides model-independent method for BSM searches
- Top quarks can also play a critical role in Dark Matter searches
 - Four-fermion contact scalar interaction proportional to quark mass → coupling to light quarks suppressed
 - Previous monojet+DM exclusions → light quarks flavor changed to top quarks in interaction with DM


The Standard Model & Beyond

- The SM is far from a "theory of everything"
 - Gravity?
 - Hierarchy problem
 - Dark Matter/Dark Energy
 - Matter/Antimatter asymmetry
 - >19 arbitrary numerical constants
 - Fine tuning problem
- Therefore, there are many motivations for searching for physics Beyond the Standard Model (BSM)
 - Topcolor attempts to explain the huge mass of the top quark through dynamical EWSB
 - In terms of QFT, the SM is a broken symmetry of: SU(3)₁ x SU(3)₂ x SU(2)_L x U(1)_{Y1} x U(1)_{Y2}
 - Kaluza-Klein excitations of gluons
 - Our universe is a 5-D anti-de Sitter space bounded by two 3+1-D "Branes"


Publications

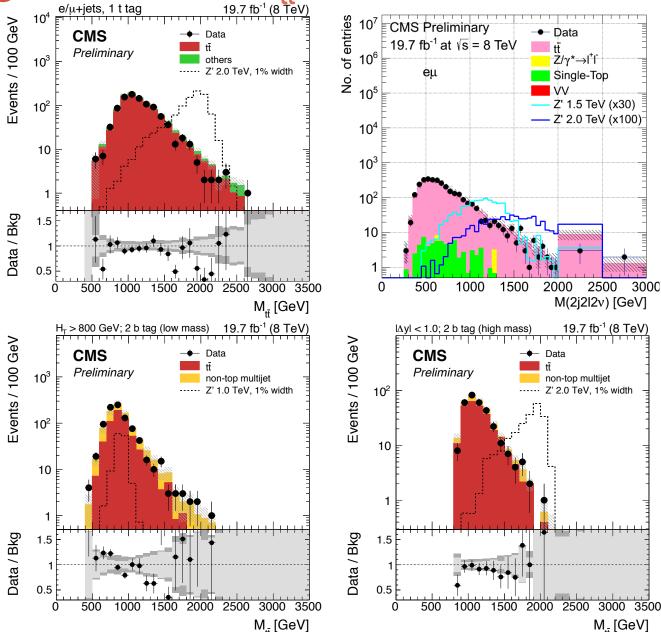

- Previous version of combined Z' search published in PRL
 - hep-ex/1309.2030, Phys.Rev.Lett. 111 (2013) 21, 211804
 - Narrow Z' 2.1 TeV, Wide Z' 2.6 TeV, g_{KK} 2.4 TeV lower limits @ 95% C.L
- Updated Z' search (CMS-PAS-B2G-13-008) on the same dataset:
 - New triggering strategy in lepton+jets channel
 - Inclusion of top-quark tagging in lepton+jets channel (previously only all hadronic)
 - All hadronic channel now includes low-mass signal region using new HEP top-tagger, subjet b-tagging
- Dark Matter + ttbar
 - CMS-PAS-B2G-13-004, dilepton
 - CMS-PAS-B2G-14-004, hep-ex/1504.03198, submitted to JHEP
- Dark Matter + top (monotop)
 - CMS-PAS-B2G-12-022, Phys. Rev. Lett. 114 (2015) 101801

Boosted Tops for Z' Search CMS-PAS-B2G-13-008

- Non-resolved topology
- Non-isolated leptons
- Jet-Lepton Cleaning
- New triggering/ reconstruction techniques

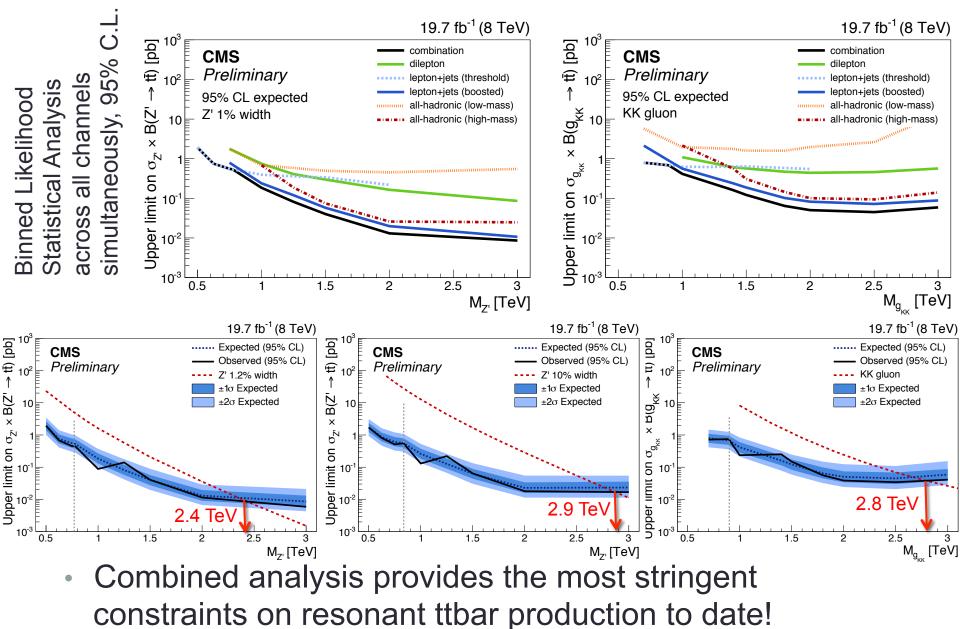
- Top-Quark Tagging
- "Fat" jet substructure analyzed to find hadronically decaying top quarks
- Very good bkg reduction

hep-ph/0806.0848, Phys.Rev.Lett. 101 (2008) 142001 ; CMS-PAS-JME-13-007


Event Categorization & M_{ft} Distributions

- Lepton+Jets

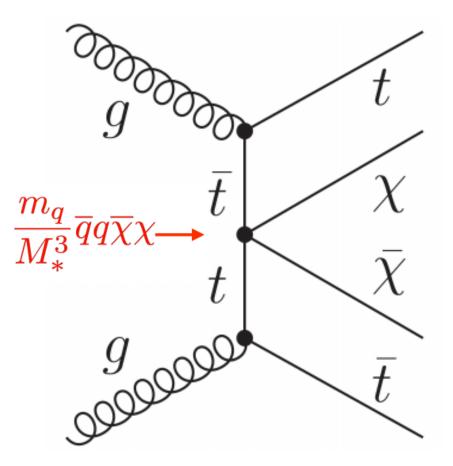
 6 Categories
 (3 for each {e,µ} channel)
 - 1 t-tag,
 0 t-tag 1 b-tag,
 0 t-tag 0 b-tag
- All Hadronic
 - High-Mass: 6 Categories

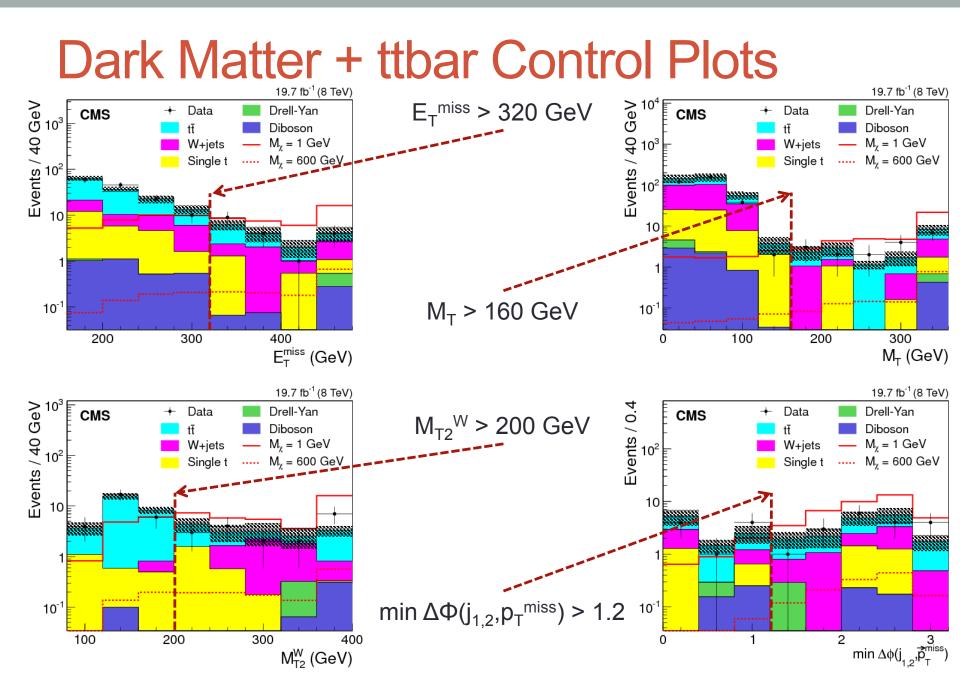

$$|\Delta y| < 1.0, |\Delta y| > 1.0$$

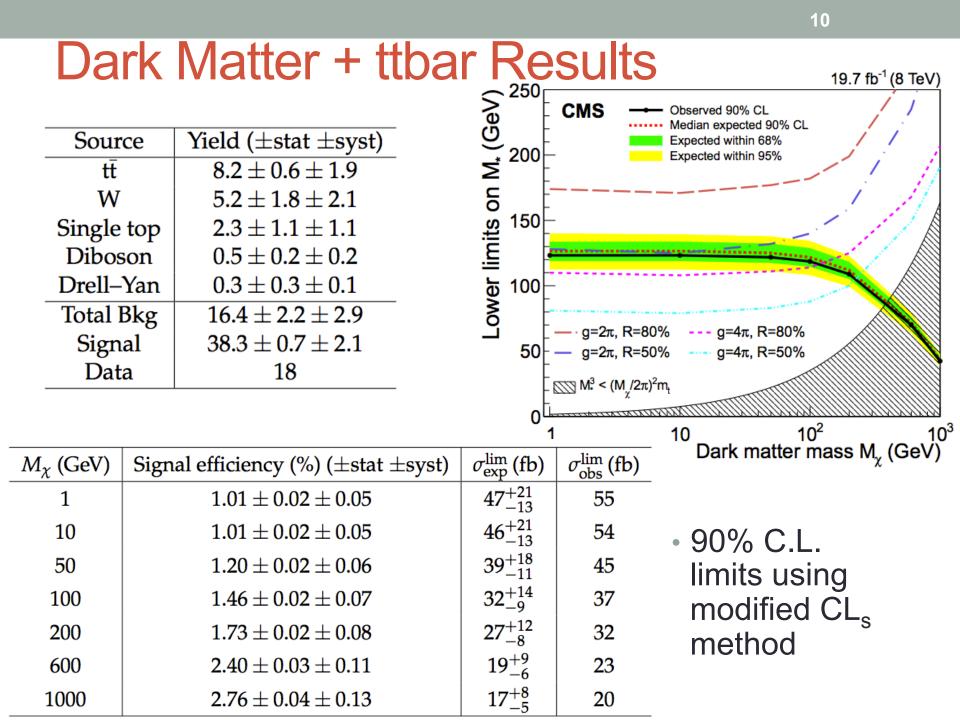
0,1,2 subjet b-tags

- H_T > 800 GeV, H_T < 800 GeV
- 0,1,2 b-tagged CA15 jets
- Dilepton
 - ee,eµ,µµ

6

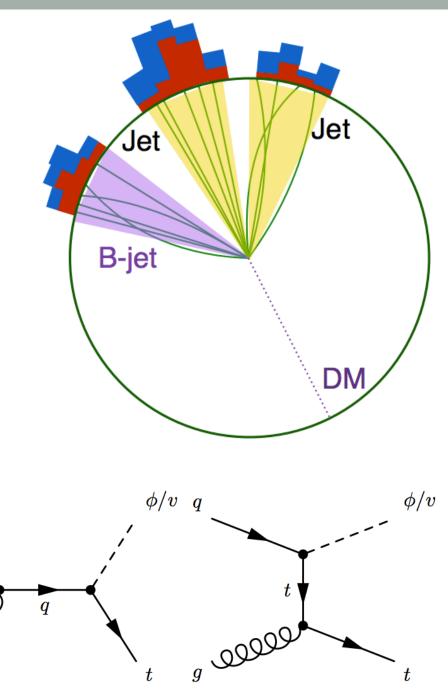

Combined ttbar Resonance Limits




Dark Matter + ttbar Search

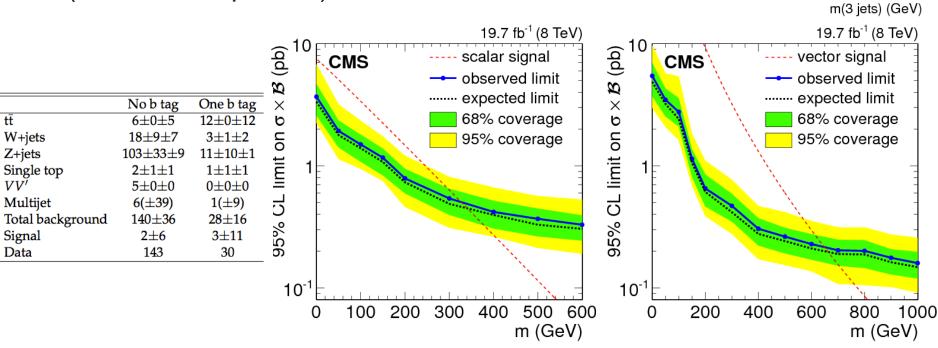
hep-ex/1504.03198, submitted to JHEP

- EFT prefers higher mass quarks
- Focus on semileptonic decay mode of ttbar
 - Look for large E_T^{miss} from undetected dark matter
 - Look for at least 3 jets from ttbar decay
 - Look for exactly one isolated electron (muon)
 - Reduce backgrounds via:
 - M_T kinematically constrained to M_W
 - M_{T2}^W reduce dilepton decay in which 1 lepton unreconstructed



Monotop Search

CMS-PAS-B2G-12-022, Phys. Rev. Lett. 114 (2015) 101801 (hep-ex/1410.1149)


- Search for hadronic top quark decay recoiling against DM
- Large E_T^{miss}
- Veto against isolated leptons
- Veto against more than 3 jets
- b-tagging categorization
 - Improve background modeling

11

t+DM Results

- Limits set by CL_s technique @ 95% C.L.
- Scaler DM excluded below 327 GeV (343 GeV expected)
- Vector DM excluded below 655 GeV (668 GeV expected)

GeV

events/50

data/MC

60F

50

40

30

20

10

0

CMS

200

400

600

19.7 fb⁻¹ (8 TeV)

vector signal.

(700 GeV)

800

1000

data

W+jets

Z+jets tī

VV' single t

Summary

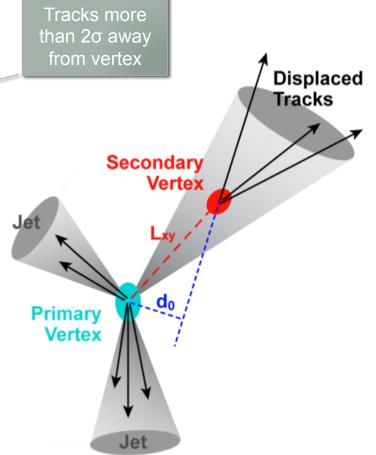
- Analyses performed performed in 19.7 fb⁻¹ of data recorded at \sqrt{s} = 8 TeV at the CMS experiment
- Model-independent search for resonant ttbar production:
 - 30-40% improvement w.r.t. previously published results on same dataset (top-tagging, trigger)
 - Narrow Z' resonances excluded at 95% C.L. below 2.4 TeV, Wide Z' below 2.9 TeV, KK Gluons below 2.8 TeV
 - Combined result is most stringent limit on resonant ttbar production to date
- Dark matter production in association with top quarks:
 - Cross sections larger than 20 to 55 fb are excluded at 90% CL for dark matter particles with the masses ranging from 1 to 1000 GeV
 - Monotop+DM excluded below 327 (655) GeV for scalar (vector) DM

BACKUP SLIDES

Object Identification

- Muons are required to be a Global Muon (reconstructed from muon system) and a PF Muon
 - >96% reconstruction efficiency, minimal misid (only muons make it to muon system)
- Electrons are identified using a BDT MVA of several discriminating variables
 - >95% (98% in barrel) reconstruction efficiency for prompt electrons
- Jets are clustered from particles not labeled as isolated leptons or "pileup"
 - b-tagging identifies jets with displaced vertices consistent with heavy flavor decays (CKM suppression)
 - top-tagging uses jet substructure to identify jets coming from boosted hadronically decaying top quarks
 - moderate efficiency for massive resonance signals (~20%) with good background discrimination
- MET is the negative vector sum of all particle \vec{p}_T originating from primary vertex

Jet Clustering

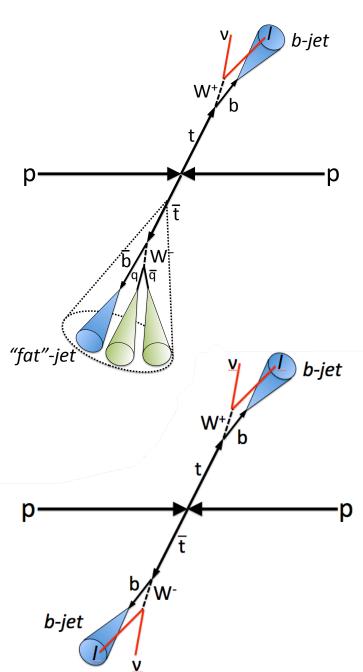

 Particles not identified as isolated leptons or pileup are clustered into jets using two algorithms

$$d_{ij} = \min(k_{Ti}^{2p}, k_{Tj}^{2p}) \frac{\Delta R_{ij}^2}{R^2} \qquad \qquad d_{iB} = k_{Ti}^{2p}$$

- anti- κ_T (p=-1) with a distance parameter of 0.5
 - Used to reconstruct the jets in the ttbar decay system
- Cambridge-Aacheen (p=0) with a distance parameter of 0.8
 - Used for the CMS Top Tagging algorithm
- Jets are required to pass a minimal jet quality criteria:
 - number of constituent particles > 1
 - fraction of jet energy coming from either electrons, neutral hadrons, or photons < 0.99
 - if $|\eta| < 2.4$, charged hadron energy fraction > 0
 - if $|\eta| < 2.4$, charged multiplicity > 0

Combined Secondary Vertex

- Likelihood ratio technique combines several low correlation discriminating variables:
 - vertex category (real, "psuedo","no vertex")
 - flight distance significance in transverse plane
 - vertex mass
 - number of tracks at the vertex
 - ratio of energy carried by tracks at vertex w.r.t. whole jet
 - η of tracks at vertex w.r.t. jet axis
 - 2D IP significance of first track that raises invariant mass above charm threshold @ 1.5 GeV
 - number of tracks in jet
 - 3D IP significance for each track in the jet



Triggers

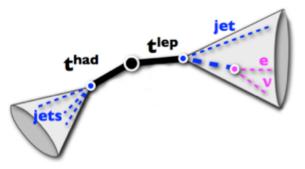
- Muon+Jets Channel
 - Single muon $w/p_T > 40$ GeV, no isolation requirement on muon
 - Trigger efficiencies and scale factors measured in $Z {\rightarrow} \mathcal{U}$ using a tag-and-probe method
- Electron+Jets Channel
 - Single electron w/p_T > 30 GeV, one jet w/p_T > 100 GeV, second jet w/p_T > 25 GeV; no isolation requirement on electron
 - Slightly inefficient (~90%) for signals with M > 1.5 TeV
 - Single jet w/p_T > 320 GeV
 - Shows high efficiency for
 - signals above 1.5 TeV
 - Adds ~10% more efficiency!
 - Use logical 'OR'
- All Hadronic: two signal regions (high/low mass)
 - High mass: Scalar sum of jet $p_T > 750$ GeV
 - Low mass: Four jets w/p_T > 50 GeV
- Dilepton:
 - Muon: same as Muon+Jets trigger
 - Electron: Single electron w/p_T > 80 GeV

Signal Regions

- Lepton+Jets
 - Exactly 1 high p_T muon or electron [p_T > 45 GeV (muon), 35 GeV (electron)], can be non-isolated
 - At least 2 high p_T jets [p_{T,1} > 150 GeV, p_{T,2} > 50 GeV]
 - $E_T^{miss} > 50 \text{ GeV}$
 - $H_T^{lep} = E_T^{miss} + p_T^{lep} > 150 \text{ GeV}$
 - 2D Cut: ΔR_{I,j} > 0.5 or p_{T,rel(I,j)} > 25 GeV
 - Triangular Cut (e+jets): $-\frac{1.5}{75GeV}E_T^{miss} + 1.5 < \Delta\phi\{(e \text{ or } j), E_T^{miss}\} < \frac{1.5}{75GeV}E_T^{miss} + 1.5$
- All Hadronic (high mass)
 - Exactly 2 CMS top-tagged jets w/p_T > 400 GeV, $|\Delta \Phi| > 2.1$
- All Hadronic (low mass)
 - Exactly 2 HEP top-tagged jets w/p_T > 200 GeV
- Dilepton
 - Exactly 2 opposite sign leptons
 - 12 GeV < M_{\parallel} < 76 GeV || M_{\parallel} > 106 GeV if same flavor
 - At least 2 jets [p_{T,1} > 100 GeV, p_{T,2} > 50 GeV]
 - 2D Cut: $\Delta R_{l,j} > 0.5$ or $p_{T,rel(l,j)} > 15$ GeV
 - $E_T^{miss} > 50$ GeV if same flavor

Cross-Sections

Backgrounds

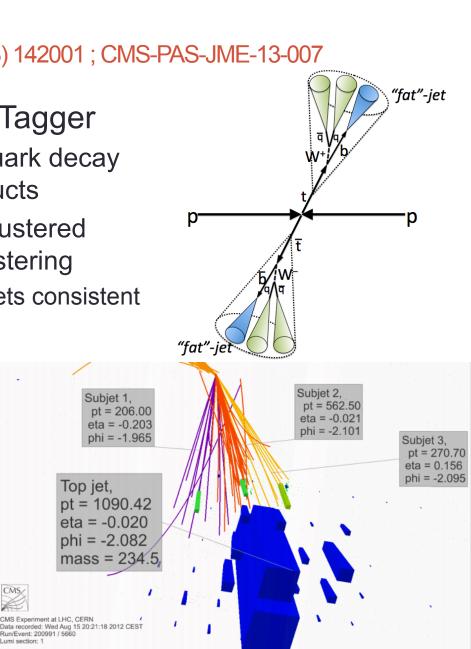

Zucheroundo			
Process	σ (pb)		
$t\bar{t}$	245.8	(NNLO)	
$t\bar{t}, 700 < M_{t\bar{t}} < 1000$	18.19	(NNLO)	
$t\bar{t}$, 1000 < $M_{t\bar{t}}$	3.44	(NNLO)	
W+1jet	6663	(NNLO)	
W+2jets	2159	(NNLO)	
W+3jets	640	(NNLO)	
W+4jets	264	(NNLO)	
single top, s-channel	3.79	(approx. NNLO)	
single top, t-channel	56.4	(approx. NNLO)	
single top, tW-channel	11.1	(approx. NNLO)	
single antitop, s-channel	1.76	(approx. NNLO)	
single antitop, t-channel	30.7	(approx. NNLO)	
single antitop, tW-channel	11.1	(approx. NNLO)	
Z+1jet	666	(NNLO)	
Z+2jets	215	(NNLO)	
Z+3jets	60.7	(NNLO)	
Z+4jets	27.4	(NNLO)	
WW	54.8	(NLO)	
WZ	33.2	(NLO)	
ZZ	8.1	(NLO)	

Monte Carlo Corrections

- Several corrections are applied to MC samples
 - Pileup reweighting \rightarrow Ensures pileup conditions match those in data
 - Lepton identification and triggering efficiency
 - Measured in $Z \rightarrow \ell \ell$ events using tag-and-probe method
 - Except electron channel trigger, measured in dilepton ttbar events
 - 2D cut efficiency is measured in a $Z \rightarrow \ell \ell$ +jets control sample
 - Jet Energy Corrections (JECs) are applied to both jet collections
 - L1 Pile Up: Removes dependence on pileup interaction → Subsequent corrections are lumi independent
 - L2 Relative Jet Correction: Removes η dependence on jet response
 - L3 Absolute Jet Correction: Ensures uniform jet response in p_T
 - L2L3 Residual: Applied to DATA only, corrects for small differences (<10%) left between DATA and MC
 - Jet Energy Resolution smearing is applied to MC events to account for known discrepancy between data and MC
 - Jet-lepton cleaning is performed (due to unisolated leptons possibly merging with jets)
 - b-tagging efficiency & mistag rate data/MC scale factors derived from bb events are applied to MC
 - top-tagging mistag rate SF is measured in W+jets control sample, efficiency SF is measured *in situ* during limit setting

Jet-Lepton Cleaning (lepton+jets)

• Boosted topology \rightarrow Merging of objects in event



- Want to use non-isolated leptons that may have merged with a jet → Subtract lepton energy from jet it is inside (ΔR_{lep,jet} < 0.5)
- Jet Energy Corrections are recalculated for new raw jet energy
- Only "fat" jets (for top-tagging) sufficiently away from the event lepton are considered ($\Delta R_{lep,jet} > 0.8$)

Top-Quark Tagging

hep-ph/0806.0848, Phys.Rev.Lett. 101 (2008) 142001 ; CMS-PAS-JME-13-007

- CMS Top Tagger & HEP Top Tagger
 - Reconstructs full hadronic top quark decay instead of top quark decay products
 - Run on "fat"-jets (R < 0.8, 1.5) clustered using Cambridge/Aachen jet clustering
 - Uses jet-substructure to identify jets consistent with hadronic top quark decay
- All-hadronic analysis:
 - 2 CMS Top Tagged jets
 - 2 HEP Top Tagged jets
- Lepton+Jets analysis:
 - 1 CMS Top Tagged jet

top-tagged Jet Decomposition

- Jets clustered with CA8 algorithm are iteratively "decomposed" as follows:
 - The pairwise clustering sequence which formed the jet is examined in reverse to find two subclusters
 - Continue if the subclusters satisfy: $\sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 0.4 A \times p_T^C$,
 - A = 0.0004
 - If this is not satisfied, the decomposition fails
 - If each subcluster satisfies: $p_{\rm T}^{\rm cluster} > \delta_{\rm p} \times p_{\rm T}^{\rm hardjet}$,
 - δ_p =0.05, Then the subcluster decomposition succeeds
 - Repeat on each passing subcluster until both subclusters pass, both subclusters fail, or the subcluster consists of single constituent
 - Primary decomposition declusters the hard jet to find two subclusters, A and B, which are well separated and contain a significant fraction of the hard jet momentum
 - If primary decomposition fails, only 1 subjet. Decomposition is attempted on A,B if it primary decomposition succeeded, yielding either 2,3, or 4 subjets

top-tagged Jets

- CA8 jets are iteratively decomposed into 1,2,3 or 4 subjets by reversing the clustering algorithm
- After the decomposition, a jet is deemed "top-tagged" if:
 - $N_{subjets} \ge 3$
 - 140 GeV < m_{jet} < 250 GeV
 - m_{min} > 50 GeV, where m_{min} is the minimum pair-wise mass of the subjets
 - τ₃₂ =τ₃/τ₂ < 0.7, where τ_N is a jet-shape variable known as "N-subjettiness" which is designed to determine the consistency of the jet substructure with the decay of N quarks
- This CMS Top Tagging algorithm is shown to have decent efficiency at tagging boosted hadronic top quark decays, such as those contained in our signal, with a very small mistag rate → Greatly enhances the sensitivity of the analysis

Event Reconstruction

- Lepton+Jets:
 - Create a list of reconstruction hypotheses:
 - Determine neutrino momentum from W-mass constraint
 - 0,1,2 real solutions use real part of imaginary solution
 - Select hypothesis with minimal

$$\chi^{2} = \left[\frac{M_{lep} - \bar{M}_{lep}}{\sigma_{M_{lep}}}\right]^{2} + \left[\frac{M_{had} - \bar{M}_{had}}{\sigma_{M_{had}}}\right]^{2}$$

- Electron+Jets Channel Only: Leptonic top candidate transverse momentum, p_T^{t,lep} > 140 GeV
- Require $\chi^2 < 50$
- All Hadronic:
 - Use sum of top-tagged jets
- Dilepton:
 - Use sum of leptons, 2 highest p_T jets, and E_T^{miss} (interpreted as sum of 2 neutrinos)

tlep

thad

ets

Neutrino Momentum Calculation

$$\mathbf{P}_W \cdot \mathbf{P}^W = (\mathbf{P}_l + \mathbf{P}_\nu) \cdot (\mathbf{P}^l + \mathbf{P}^\nu) = \mathbf{P}_l \cdot \mathbf{P}^l + \mathbf{P}_\nu \cdot \mathbf{P}^\nu + 2\mathbf{P}_l \cdot \mathbf{P}^\nu$$

Which simplifies to:

$$M_W^2 = M_l^2 + M_{
u}^2 + 2(E_l E_{
u} - \vec{p_l} \cdot \vec{p_{
u}})$$

$$egin{aligned} rac{M_W^2}{2} &= E_l \sqrt{p_{T,
u}^2 + p_{z,
u}^2} - (p_{x,l} p_{x,
u} + p_{y,l} p_{y,
u} + p_{z,l} p_{z,
u}) \ &= E_l \sqrt{p_{T,
u}^2 + p_{z,
u}^2} - (p_{T,l} p_{T,
u} \cos(\Delta \phi_{l,
u}) + p_{z,l} p_{z,
u}) \end{aligned}$$

Let $\alpha = \frac{M_W^2}{2} + p_{T,l} p_{T,\nu} \cos(\Delta \phi_{l,\nu})$ and rearrange the terms:

$$lpha + p_{z,l} p_{z,
u} = E_l \sqrt{p_{T,
u}^2 + p_{z,
u}^2}$$

Square both sides:

$$lpha^2 + p_{z,l}^2 p_{z,
u}^2 + 2lpha p_{z,l} p_{z,
u} = E_l^2 (p_{T,
u}^2 + p_{z,
u}^2)$$

This is a quadratic equation which can be solved for the longitudinal component of the neutrino momentum:

$$p_{z,
u} = rac{lpha p_{z,l}}{p_{T,l}^2} \pm \sqrt{rac{lpha^2 p_{z,l}^2}{p_{T,l}^4} - rac{E_l^2 p_{T,
u}^2 - lpha^2}{p_{T,l}^2}}$$

Resonance Theoretical Model Information

RSG/KK Gluon:

- K. Agashe et al., "LHC Signals from Warped Extra Dimensions", *Phys. Rev. D* 77 (2008) 015003, doi:10.1103/PhysRevD. 77.015003, arXiv:hep-ph/0612015.
- Z' Narrow and Wide:
 - R. M. Harris and S. Jain, "Cross Sections for Leptophobic Topcolor Z' decaying to top-antitop ", *Eur. Phys. J. C* 72 (2012) 2072, doi: 10.1140/epjc/s10052-012-2072-4, arXiv:hep-ph/1112.4928.

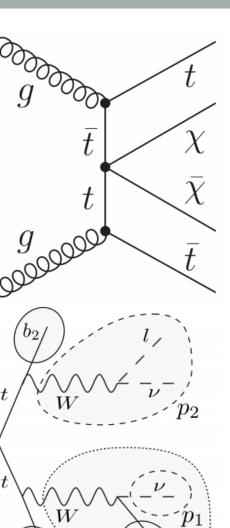
Statistical Analysis for Combined Search

- Binned likelihood statistical analysis is used
 - All channels (dilepton, lepton+jets, all hadronic) and all categories combined into single likelihood

$$L(\beta_k | data) = \prod_{i=1}^{N_{bins}} \frac{\mu_i^{n_i} \times e^{-\mu_i}}{n_i!}$$

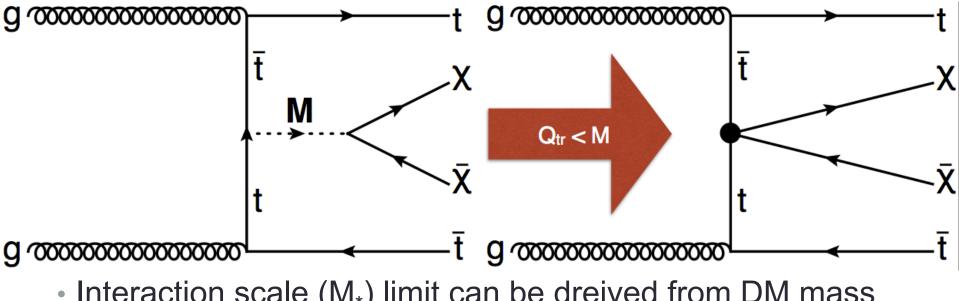
Fully CorrelatedNot Correlated

$$\int_0^{\beta_{Z'}} d\beta_{Z'} \int d(\beta_K, \delta_u) L_p(\beta_{Z'}, \beta_k, \delta_u) \pi(\beta_{Z'}, \beta_k, \delta_u) = 0.95$$


source	uncertainty	dilepton	lepton+jets	had. high mass	had. low mass
lumi	2.6%	+	+	+	+
tt x-sec	15%	+	+	+	+
jet energy scale	±1σ(p _T ,η)	+	+	+	+
pileup uncertainty	±1σ	+	+	+	+
CMS Top Tag Eff.	unconstrained		+	+	
PDF Uncertainty	±1σ	+	+	+	+
tt Q ² scale	4Q ² and 0.25Q ²	+	+	+	+
MC stat. unc.		۲	۲	۲	۲

Dark Matter + ttbar Search

hep-ex/1504.03198, submitted to JHEP


- Focus on semileptonic decay mode of ttbar
 - Single electron (muon) triggers with p_T thresholds of 27 (24) GeV
 - Exactly one isolated electron (muon)
 - At least 3 jets w/p_T > 30 GeV, |η| < 4.0
 - At least one tagged as b-jet by CSVM
 - $M_T > 160 \text{ GeV}, M_T = \sqrt{2^* E_T^{\text{miss}*} p_T^{\text{l}}(1 \cos(\Delta \Phi))}$ is kinematically constrained to $M_T < M_W$ for on-shell W-boson decay in tt and W+jets
 - M_{T2}^W > 200 GeV, M_{T2}^W is kinematic quantity to reduce dominant background with large M_T from events with an unreconstructed lepton

DM EFT Validity

• EFT is valid as long as momentum transfer is less than the mass of the mediating particle (M)

• Interaction scale (M_{*}) limit can be dreived from DM mass using kinematic constraints: $\int M^3 = M$

$$\sqrt{\frac{M_*^3}{m_q}} > \frac{M_{\chi}}{2\pi}$$