# Generalised Parton Distributions: A Dyson-Schwinger approach for the pion

C. Mezrag

CEA Saclay - IRFU/SPhN

April 29<sup>th</sup>, 2015

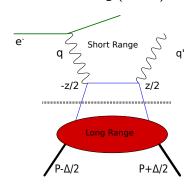
In collaboration with:

L. Chang, H. Moutarde, C. Roberts,

J. Rodriguez-Quintero, F. Sabatié, P. Tandy and S. Schmidt.

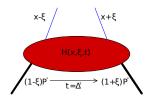
# The Golden Channel: Deep-Virtual Compton Scattering

## Deep-Virtual Compton Scattering (DVCS)



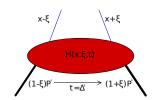
- Short range  $\rightarrow$  perturbation theory.
- Long range → non pertubative objects: GPDs.
- Encode the hadrons 3D partonic structure and the spin structure.
- Universality

#### Kinematic Variables

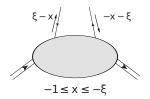


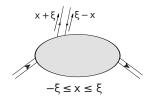
- H stands for GPD,
- depending on 3 variables: x,  $\xi$ , t.

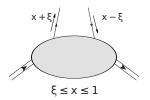
## Kinematic Variables



- H stands for GPD,
- depending on 3 variables: x,  $\xi$ , t.







## Formal Definition

Proton case:

$$\frac{1}{2} \int \frac{e^{ixP^+z^-}}{2\pi} \langle P + \frac{\Delta}{2} | \bar{q}(-\frac{z}{2}) \gamma^+ q(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle dz^- |_{z^+=0,z=0}$$

$$= \frac{1}{2P^+} \left[ H^q(x,\xi,t) \bar{u}(P + \frac{\Delta}{2}) \gamma^+ u(P - \frac{\Delta}{2}) + E^q(x,\xi,t) \bar{u}(P + \frac{\Delta}{2}) \frac{i\sigma^{+\alpha} \Delta_{\alpha}}{2M} u(P - \frac{\Delta}{2}) \right].$$

X. Ji.1997 D. Müller et al. 1994 A. Radyushkin, 1997

## Formal Definition

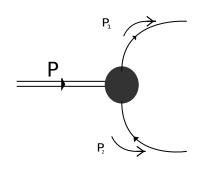
Proton case:

$$\begin{split} &\frac{1}{2}\int \frac{e^{ixP^{+}z^{-}}}{2\pi}\langle P+\frac{\Delta}{2}|\bar{q}(-\frac{z}{2})\gamma^{+}q(\frac{z}{2})|P-\frac{\Delta}{2}\rangle\mathrm{d}z^{-}|_{z^{+}=0,\mathbf{z}=0}\\ &=&\frac{1}{2P^{+}}[H^{q}(x,\xi,t)\bar{u}(P+\frac{\Delta}{2})\gamma^{+}u(P-\frac{\Delta}{2})\\ &+E^{q}(x,\xi,t)\bar{u}(P+\frac{\Delta}{2})\frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2M}u(P-\frac{\Delta}{2})]. \end{split}$$

Pion case:

$$H(x,\xi,t) = \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P + \frac{\Delta}{2} | \bar{q} \left( -\frac{z}{2} \right) \gamma^{+} q \left( \frac{z}{2} \right) | P - \frac{\Delta}{2} \rangle_{z^{+}=0,z_{\perp}=0}$$

# The pion? But why?



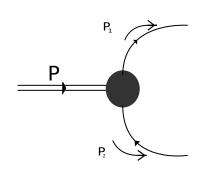
#### Advantages :

- Two-body system.
- Pseudo-scalar meson.
- Valence quarks u and d.
- Isospin symmetry.

#### Drawbacks

- Very few experimental data available.
- No data at  $\xi \neq 0$   $\rightarrow$  The model can be compared only at  $\xi = 0$ , *i.e.* to the Parton Distribution Function (PDF) and to the form factor.
- Amrath et al., Eur. Phys. J. C58 179

## The pion? But why?



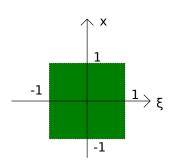
#### Advantages :

- Two-body system.
- Pseudo-scalar meson.
- Valence quarks u and d.
- Isospin symmetry.

#### Drawbacks

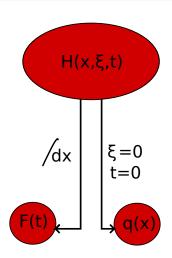
- Very few experimental data available.
- No data at  $\xi \neq 0$   $\rightarrow$  The model can be compared only at  $\xi = 0$ , *i.e.* to the Parton Distribution Function (PDF) and to the form factor.
- Amrath et al., Eur. Phys. J. C58 179

Good starting point before dealing with more complicated objects.



## Support properties:

$$|x| \le 1$$
 and  $|\xi| \le 1$   
Valence case:  $-\xi \le x \le 1$ 



#### Support properties:

$$|x| \le 1$$
 and  $|\xi| \le 1$   
Valence case:  $-\xi \le x \le 1$ 

- Special limits:
  - if t = 0 and  $\xi = 0 \rightarrow \mathsf{PDF}$ ,
  - if  $\int dx \to \text{form factor}$ .

$$\mathcal{M}_m(\xi, t) = \int dx \ x^m H(x, \xi, t)$$
$$= \sum_{i=0}^{m+1} c_i(t) \xi^i$$

#### Support properties:

$$|x| \le 1$$
 and  $|\xi| \le 1$   
Valence case:  $-\xi \le x \le 1$ 

- Special limits:
  - if t = 0 and  $\xi = 0 \rightarrow \mathsf{PDF}$ ,
  - if  $\int dx \to$  form factor.
- Polynomiality:
  - The Mellin Moments are polynomials in  $\xi$
  - This comes from Lorentz symmetry.

$$\mathcal{M}_{m}(\xi, t) = \sum_{i=0}^{\frac{m}{2}} c_{2i}(t) \xi^{2i} + mod(m, 2) c_{m+1} \xi^{m+1}$$

#### Support properties:

$$|x| \le 1$$
 and  $|\xi| \le 1$   
Valence case:  $-\xi \le x \le 1$ 

## Special limits:

- if t = 0 and  $\xi = 0 \rightarrow PDF$ ,
- ▶ if  $\int dx$  → form factor.

## Polynomiality:

- ▶ The Mellin Moments are polynomials in  $\xi$
- This comes from Lorentz symmetry.

#### Time reversal invariance:

• 
$$H(x, \xi, t) = H(x, -\xi, t)$$



#### Support properties:

$$|x| \le 1$$
 and  $|\xi| \le 1$   
Valence case:  $-\xi \le x \le 1$ 

- Special limits:
  - if t = 0 and  $\xi = 0 \rightarrow \mathsf{PDF}$ ,
  - if  $\int dx \to$  form factor.
- Polynomiality:
  - The Mellin Moments are polynomials in ξ
  - This comes from Lorentz symmetry.
- Time reversal invariance:
  - $H(x,\xi,t) = H(x,-\xi,t)$

Those properties make GPD modeling a challenge.

• Double Distribution models:

- Double Distribution models:
  - ► Vanderhaeghen-Guichon-Guidal model (VGG) (1999),
  - ► Goloskokov-Kroll model (GK) (2005).

- Double Distribution models:
  - Vanderhaeghen-Guichon-Guidal model (VGG) (1999),
  - Goloskokov-Kroll model (GK) (2005).
- Dual model:
  - M.V. Polyakov (1999), M.V. Polyakov and A.G. Shuvaev (2002), M.V. Polyakov and K.M. Semenov-Tian-Shansky (2009).

- Double Distribution models:
  - Vanderhaeghen-Guichon-Guidal model (VGG) (1999),
  - Goloskokov-Kroll model (GK) (2005).
- Dual model:
  - M.V. Polyakov (1999), M.V. Polyakov and A.G. Shuvaev (2002), M.V. Polyakov and K.M. Semenov-Tian-Shansky (2009).
- Mellin-Barnes approach:
  - D. Müller and A. Schäfer (2006), K. Kumericki and D. Müller (2010).

- Double Distribution models:
  - ► Vanderhaeghen-Guichon-Guidal model (VGG) (1999),
  - ► Goloskokov-Kroll model (GK) (2005).
- Dual model:
  - M.V. Polyakov (1999), M.V. Polyakov and A.G. Shuvaev (2002), M.V. Polyakov and K.M. Semenov-Tian-Shansky (2009).
- Mellin-Barnes approach:
  - D. Müller and A. Schäfer (2006), K. Kumericki and D. Müller (2010).
- Mellin-Barnes approach and Dual models are in fact equivalent (D. Müller, M.V. Polyakov, K.M. Semenov-Tian-Shansky 2014)

- Double Distribution models:
  - ► Vanderhaeghen-Guichon-Guidal model (VGG) (1999),
  - ► Goloskokov-Kroll model (GK) (2005).
- Dual model:
  - M.V. Polyakov (1999), M.V. Polyakov and A.G. Shuvaev (2002), M.V. Polyakov and K.M. Semenov-Tian-Shansky (2009).
- Mellin-Barnes approach:
  - D. Müller and A. Schäfer (2006), K. Kumericki and D. Müller (2010).
- Mellin-Barnes approach and Dual models are in fact equivalent (D. Müller, M.V. Polyakov, K.M. Semenov-Tian-Shansky 2014)
- Quark-diquark models:
  - ► G. Goldstein, J. Hernandez, S. Liuti (2010)

#### Alternative ideas

- Lattice QCD:
  - Computations of Mellin Moments.
  - Until now, only the very first Mellin moments have been computed.
  - ▶ Still, new proposals done by X. Ji (X. Ji, 2013).

#### Alternative ideas

- Lattice QCD:
  - Computations of Mellin Moments.
  - Until now, only the very first Mellin moments have been computed.
  - ▶ Still, new proposals done by X. Ji (X. Ji, 2013).
- Dyson-Schwinger Equations:
  - Very powerful non pertubative method,
  - Approximations scheme have been developed for QCD.

#### Alternative ideas

- Lattice QCD:
  - Computations of Mellin Moments.
  - Until now, only the very first Mellin moments have been computed.
  - ▶ Still, new proposals done by X. Ji (X. Ji, 2013).
- Dyson-Schwinger Equations:
  - Very powerful non pertubative method,
  - Approximations scheme have been developed for QCD.

Dyson-Schwinger equations seem to be a very promising approach to model GPDs!

# Dyson-Schwinger Equations

- Equations between non pertubative Green functions.
- ullet Infinite number of coupled equations o no one has solved it until now!
- This requires approximations. In QCD, there are mainly two:
  - Rainbow Ladder (RL), resumming over a certain class of diagrams,
  - Dynamical Chiral Symmetry Breaking (DCSB).

See for instance *L.Chang et al.*,PRC87,2013 for details about truncation schemes.

## Example: the quark propagator

#### Pertubative case:

## Example: the quark propagator

#### Pertubative case:

## **Dyson-Schwinger case:**

#### Solutions of the BSE-DSE

DSE-BSE equations have been solved numerically and solutions have been fitted on specific parametrisations (L. Chang et al., 2013).

#### Solutions of the BSE-DSE

DSE-BSE equations have been solved numerically and solutions have been fitted on specific parametrisations (L. Chang et al., 2013).

• Propagator  $\rightarrow$  linear combination of free propagators using complex conjugate poles:

$$S(k) = \sum_{j=1}^{m} \left( \frac{z_j}{i \not k + m_j} + \frac{z_j^*}{i \not k + m_j^*} \right)$$

## Solutions of the BSE-DSE

DSE-BSE equations have been solved numerically and solutions have been fitted on specific parametrisations (L. Chang et al., 2013).

• Propagator  $\rightarrow$  linear combination of free propagators using complex conjugate poles:

$$S(k) = \sum_{j=1}^{m} \left( \frac{z_j}{i \not k + m_j} + \frac{z_j^*}{i \not k + m_j^*} \right)$$

• Pion Bethe-Salpeter amplitude  $\rightarrow$  use the Nakanishi representation:

$$\Gamma_{\pi}(k, P) = c_j \int_{-1}^{1} dz \frac{\rho_{\nu}(z) \Lambda_j^{2\nu}}{\left[\left(k - \frac{1-z}{2}P\right)^2 + \Lambda_j^2\right]^{\nu}} + \dots$$

# Algebraic model for pion GPD

Propagator:

$$S(p^2) = \frac{-ip \cdot \gamma + M}{p^2 + M^2}$$

- p is the quark momentum,
- M is the effective mass of the constituent quark.

Vertex:

$$\Gamma_{\pi} \propto i \gamma_5 \int rac{\mathrm{d}z \ M^2 
ho_{
u}(z)}{\left(q(k,\Delta,P)^2 + M^2
ight)^{
u}}$$

- $\rho_{\nu}(z) \propto (1-z^2)^{\nu}$  is the z distribution.
- $q(k, \Delta, P) = k \frac{1-z}{2} \left(P \pm \frac{\Delta}{2}\right)$ deals with the momentum fraction carried by the quark.

# Algebraic model for pion GPD

Propagator:

$$S(p^2) = \frac{-ip \cdot \gamma + M}{p^2 + M^2}$$

- p is the quark momentum,
- M is the effective mass of the constituent quark.

Vertex:

$$\Gamma_{\pi} \propto i \gamma_5 \int \frac{\mathrm{d}z \ M^2 \rho_{\nu}(z)}{\left(q(k,\Delta,P)^2 + M^2\right)^{\nu}}$$

- $\rho_{\nu}(z) \propto (1-z^2)^{\nu}$  is the z distribution.
- $q(k, \Delta, P) = k \frac{1-z}{2} \left(P \pm \frac{\Delta}{2}\right)$  deals with the momentum fraction carried by the quark.

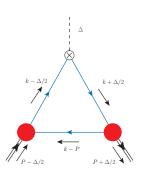
Those functions are building blocks of the realistic Bethe-Salpeter computations.

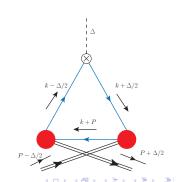
## Pion GPD model

$$\mathcal{M}_{m}(\xi, t) = \int_{-1}^{1} dx \ x^{m} \ H(x, \xi, t)$$
$$= \frac{1}{2(P \cdot n)^{m+1}} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{\psi}(0) \gamma \cdot n (i \overleftrightarrow{D} \cdot n)^{m} \psi(0) \right| \pi, P - \frac{\Delta}{2} \right\rangle.$$

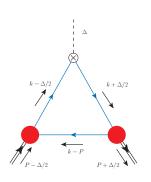
## Pion GPD model

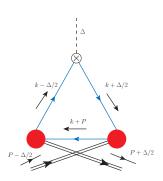
$$\mathcal{M}_{m}(\xi, t) = \int_{-1}^{1} dx \ x^{m} \ H(x, \xi, t)$$
$$= \frac{1}{2(P \cdot n)^{m+1}} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{\psi}(0) \gamma \cdot n (i \overleftrightarrow{D} \cdot n)^{m} \psi(0) \right| \pi, P - \frac{\Delta}{2} \right\rangle.$$





## Pion GPD model





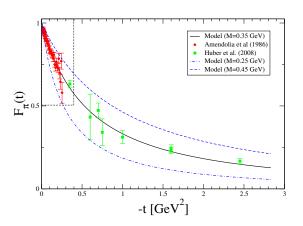
$$2(P \cdot n)^{m+1} \mathcal{M}_m(\xi, t) = \operatorname{tr}_{CFD} \int \frac{\mathrm{d}^4 k}{(2\pi)^4} (k \cdot n)^m i \Gamma_\pi (k - \frac{\Delta}{2}, P - \frac{\Delta}{2}) S(k - \frac{\Delta}{2})$$
$$i \gamma \cdot n S(k + \frac{\Delta}{2}) i \bar{\Gamma}_\pi (k + \frac{\Delta}{2}, P + \frac{\Delta}{2}) S(k - P)$$

## Form factor

$$\mathfrak{F}^q_\pi(t) = \mathfrak{M}_0(t) = \int_{-1}^1 \mathrm{d}x \ H^q(x,\xi,t)$$

#### Form factor

$$\mathcal{F}_{\pi}^{q}(t) = \mathcal{M}_{0}(t) = \int_{-1}^{1} dx \ H^{q}(x, \xi, t)$$

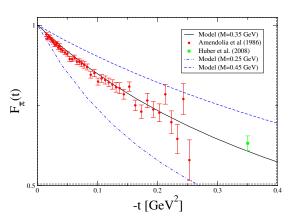


C. Mezrag et al., arXiv 1406.7425



#### Form factor

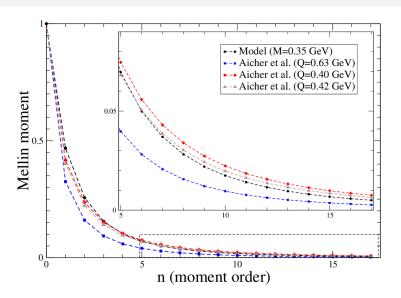
$$\mathcal{F}_{\pi}^{q}(t) = \mathcal{M}_{0}(t) = \int_{-1}^{1} dx \ H^{q}(x, \xi, t)$$



C. Mezrag et al., arXiv 1406.7425



### PDF's Mellin moments



C.Mezrag et al, arXiv 1406.7425

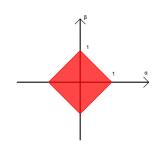


### Double Distributions

Müller et al. (1994), Radyushkin (1996), Teryaev (2001)

Double Distributions are formally the Radon transform of the GPDs.

$$H(x,\xi) = \int_{\Omega} d\alpha d\beta (F(\beta,\alpha) + \xi G(\beta,\alpha)) \delta(x - \beta - \xi \alpha)$$



$$\Omega = \{(\alpha, \beta)||\alpha| + |\beta| \le 1\}$$

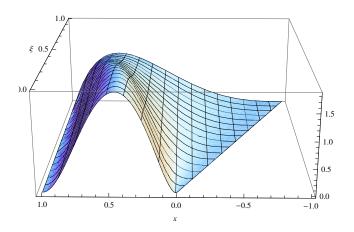
### Advantage:

Easy way to respect the polynomiality in  $\xi$ 

$$\int_{-1}^{1} x^{n} H(x, \xi) dx$$

$$= \int_{\Omega} (\beta + \xi \alpha)^{n} (F(\beta, \alpha) + \xi G(\beta, \alpha)) d\Omega$$

# Reconstruction (t = 0)



### We get back the support properties!

• Support is stricly respected.

- Support is stricly respected.
- Reconstruction is exact (no numerical noise).

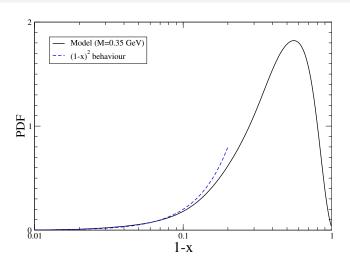
- Support is stricly respected.
- Reconstruction is exact (no numerical noise).
- Prove the continuity at  $x = \xi$ .

- Support is stricly respected.
- Reconstruction is exact (no numerical noise).
- Prove the continuity at  $x = \xi$ .
- ullet Double Distributions ensure polynomiality and parity in  $\xi$

- Support is stricly respected.
- Reconstruction is exact (no numerical noise).
- Prove the continuity at  $x = \xi$ .
- Double Distributions ensure polynomiality and parity in  $\xi$
- We can get analytic expressions. For the PDF( $\nu = 1$ ):

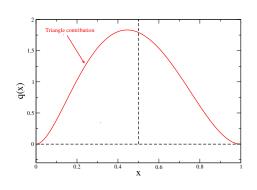
$$q(x) = \frac{72}{25} (x^3(x(-2(x-4)x-15)+30)\log(x) + (2x^2+3)(x-1)^4\log(1-x) + x(x(x(2x-5)-15)-3)(x-1))$$

# Large x behavior

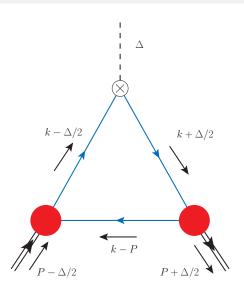


At large x:

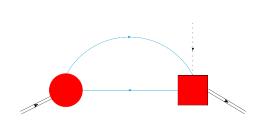
$$q(x) \approx (1-x)^2$$



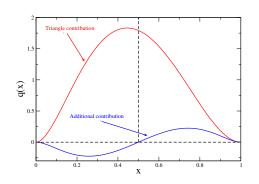
• The PDF appears not to be symmetric around  $x = \frac{1}{2}$ .



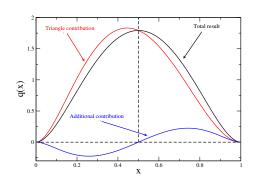
- The PDF appears not to be symmetric around  $x = \frac{1}{2}$ .
- Part of the gluon contribution is neglected in the triangle diagram approach.



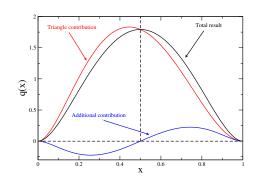
- The PDF appears not to be symmetric around  $x = \frac{1}{2}$ .
- Part of the gluon contribution is neglected in the triangle diagram approach.
- Adding this contribution allows us to recover a symmetric PDF (C. Mezrag et al., PLB 737).



- The PDF appears not to be symmetric around  $x = \frac{1}{2}$ .
- Part of the gluon contribution is neglected in the triangle diagram approach.
- Adding this contribution allows us to recover a symmetric PDF (C. Mezrag et al., PLB 737).

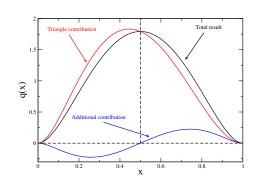


- The PDF appears not to be symmetric around  $x = \frac{1}{2}$ .
- Part of the gluon contribution is neglected in the triangle diagram approach.
- Adding this contribution allows us to recover a symmetric PDF (C. Mezrag et al., PLB 737).



- The PDF appears not to be symmetric around  $x = \frac{1}{2}$ .
- Part of the gluon contribution is neglected in the triangle diagram approach.
- Adding this contribution allows us to recover a symmetric PDF (C. Mezrag et al., PLB 737).

No obvious way to generalise this to the non forward case.



- The PDF appears not to be symmetric around  $x = \frac{1}{2}$ .
- Part of the gluon contribution is neglected in the triangle diagram approach.
- Adding this contribution allows us to recover a symmetric PDF (C. Mezrag et al., PLB 737).

No obvious way to generalise this to the non forward case.

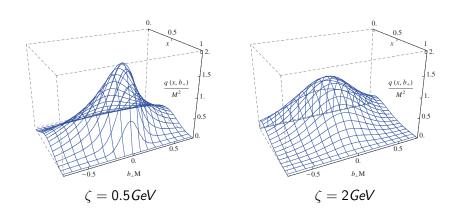
It gives us some insight to go to non zero t.

# Sketching the pion 3D structure

$$\rho^q(x,b_\perp) = \int_0^\infty \frac{\mathrm{d}|\Delta_\perp|}{2\pi} |\Delta_\perp| J_0(|b_\perp|\cdot|\Delta_\perp|) H^q(x,0,-\Delta_\perp^2),$$

- $b_{\perp}$  is the Fourier conjugate of  $\Delta_{\perp}$ .
- $b_{\perp}$  is the position in the plane transverse to the hadron direction.
- J<sub>0</sub> is the first kind Bessel function.
- $\rho^q(x, b_{\perp})$  is the probability density to find a quark q at a given position  $b_{\perp}$  in the transverse plane and with a given longitudinal momentum fraction x.

# Sketching the pion 3D structure



Plots from C. Mezrag et. al., PLB 741



### Soft Pion Theorem

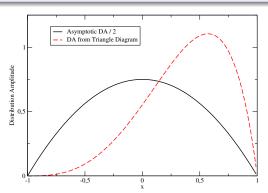
Polyakov soft pion theorem: if  $\xi = 1$  and t = 0 then  $H \propto$  Pion DA.

(Polyakov,1999)

### Soft Pion Theorem

Polyakov soft pion theorem: if  $\xi = 1$  and t = 0 then  $H \propto$  Pion DA.

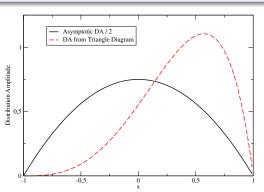
(Polyakov, 1999)



### Soft Pion Theorem

Polyakov soft pion theorem: if  $\xi = 1$  and t = 0 then  $H \propto \text{Pion DA}$ .

(Polyakov, 1999)



Here the soft pion theorem is violated. Why?

Propagator:

$$S^{-1}(k) = -i\gamma \cdot k \ A(k^2) + B(k^2)$$

Vertex:

$$\Gamma_{\pi}(k,P) = \gamma_5 \left( i \frac{E_{\pi}(k,P)}{P} + \gamma \cdot P \ F_{\pi}(k,P) + \gamma \cdot k \ P \cdot k \ G_{\pi}(k,P) + \ldots \right)$$

AVWTI leads to the relation:

$$f_{\pi}E_{\pi}(k,0)=B(k^2)$$

• AVWTI leads to the relation:

$$f_{\pi}E_{\pi}(k,0)=B(k^2)$$

In our model:

$$M\frac{M^2}{k^2+M^2}\neq M$$

• AVWTI leads to the relation:

$$f_{\pi}E_{\pi}(k,0)=B(k^2)$$

In our model:

$$M\frac{M^2}{k^2+M^2}\neq M$$

#### Problem!

Freezing the mass leads to a violation of AVWTI!

AVWTI leads to the relation:

$$f_{\pi}E_{\pi}(k,0)=B(k^2)$$

In our model:

$$M\frac{M^2}{k^2+M^2}\neq M$$

#### Problem!

Freezing the mass leads to a violation of AVWTI!

### Question?

Is it sufficient to respect the AVWTI to get back the soft pion theorem?

• AVWTI leads to the relation:

$$f_{\pi}E_{\pi}(k,0)=B(k^2)$$

• In our model:

$$M\frac{M^2}{k^2+M^2}\neq M$$

### Problem!

Freezing the mass leads to a violation of AVWTI!

### Question?

Is it sufficient to respect the AVWTI to get back the soft pion theorem?

#### Answer

Yes, providing that the truncation scheme is consistent enough.

• Generaly speaking:

- Generaly speaking:
  - Working in the triangle diagram approximation.

- Generaly speaking:
  - Working in the triangle diagram approximation.
  - ▶ Working in the rainbow ladder approximation.

- Generaly speaking:
  - Working in the triangle diagram approximation.
  - ▶ Working in the rainbow ladder approximation.
  - Solving the DSE-BSE equations consistently to preserve the Axial-Vector WTI.

- Generaly speaking:
  - Working in the triangle diagram approximation.
  - Working in the rainbow ladder approximation.
  - Solving the DSE-BSE equations consistently to preserve the Axial-Vector WTI.

One has the soft pion theorem for free!

- Generaly speaking:
  - Working in the triangle diagram approximation.
  - Working in the rainbow ladder approximation.
  - ► Solving the DSE-BSE equations consistently to preserve the Axial-Vector WTI.

One has the soft pion theorem for free!

This emphases the consistency of our approach.

- Generaly speaking:
  - Working in the triangle diagram approximation.
  - Working in the rainbow ladder approximation.
  - ► Solving the DSE-BSE equations consistently to preserve the Axial-Vector WTI.

One has the soft pion theorem for free!

This emphases the consistency of our approach.

In our case:

- Generaly speaking:
  - Working in the triangle diagram approximation.
  - Working in the rainbow ladder approximation.
  - Solving the DSE-BSE equations consistently to preserve the Axial-Vector WTI.

One has the soft pion theorem for free!

This emphases the consistency of our approach.

- In our case:
  - Using only one building block breaks the Axial-Vector WTI and thus the soft pion theorem.

- Generaly speaking:
  - Working in the triangle diagram approximation.
  - ▶ Working in the rainbow ladder approximation.
  - Solving the DSE-BSE equations consistently to preserve the Axial-Vector WTI.

One has the soft pion theorem for free!

This emphases the consistency of our approach.

- In our case:
  - ▶ Using only one building block breaks the Axial-Vector WTI and thus the soft pion theorem.
  - ▶ This problem will vanish with the full solutions of the DSE-BSE.

- Generaly speaking:
  - Working in the triangle diagram approximation.
  - Working in the rainbow ladder approximation.
  - Solving the DSE-BSE equations consistently to preserve the Axial-Vector WTI.

One has the soft pion theorem for free!

This emphases the consistency of our approach.

- In our case:
  - ▶ Using only one building block breaks the Axial-Vector WTI and thus the soft pion theorem.
  - ▶ This problem will vanish with the full solutions of the DSE-BSE.

The soft pion theorem will be automatically implemented when modeling the pion  $\mbox{GPD}$  from the full solutions of the  $\mbox{BSE-DSE}$ .

(C. Mezrag et al., PLB 741).

#### Summary and conclusions

- We presented a new model for pion GPD which fulfills most of the required symmetry properties.
- Double Distributions make the full problem analytic.
- Our comparisons with available experimental data are very encouraging.
- Limitations highlight physics key points.

#### Summary and conclusions

- We presented a new model for pion GPD which fulfills most of the required symmetry properties.
- Double Distributions make the full problem analytic.
- Our comparisons with available experimental data are very encouraging.
- Limitations highlight physics key points.

If the GPDs remain the good objects to understand the physics, DDs are the good objects to deal with support properties and full reconstruction.

#### Outlooks

- We want to reconstruct the GPD thanks to DD in the realistic case, *i.e.* with vertices and propagators coming from numerical solutions of the Dyson-Schwinger equations.
- Compare our model with the existing phenomenological DD models, *i.e.* Radyushkin Ansatz.
- The proton case remains the Holy Grail...

#### Outlooks

- We want to reconstruct the GPD thanks to DD in the realistic case,
   i.e. with vertices and propagators coming from numerical solutions of the Dyson-Schwinger equations.
- Compare our model with the existing phenomenological DD models,
   i.e. Radyushkin Ansatz.
- The proton case remains the Holy Grail... which may be reached in the valence region using a quark-diquark model.

## Thank You!

# Back up

#### Kroll - Goloskokov model.

• Factorised Ansatz. For i = g, sea or val :

$$H_{i}(x,\xi,t) = \int_{|\alpha|+|\beta|\leq 1} d\beta d\alpha \, \delta(\beta+\xi\alpha-x) f_{i}(\beta,\alpha,t)$$

$$f_{i}(\beta,\alpha,t) = e^{b_{i}t} \frac{1}{|\beta|^{\alpha't}} h_{i}(\beta) \pi_{n_{i}}(\beta,\alpha)$$

$$\pi_{n_{i}}(\beta,\alpha) = \frac{\Gamma(2n_{i}+2)}{2^{2n_{i}+1}\Gamma^{2}(n_{i}+1)} \frac{(1-|\beta|)^{2}-\alpha^{2}]^{n_{i}}}{(1-|\beta|)^{2n_{i}+1}}$$

Expressions for h<sub>i</sub> and n<sub>i</sub> :

$$\begin{array}{llll} h_{g}(\beta) & = & |\beta|g(|\beta|) & & n_{g} & = & 2 \\ h_{\rm sea}^{q}(\beta) & = & q_{\rm sea}(|\beta|){\rm sign}(\beta) & & n_{\rm sea} & = & 2 \\ h_{\rm val}^{q}(\beta) & = & q_{\rm val}(\beta)\Theta(\beta) & & n_{\rm val} & = & 1 \end{array}$$

Goloskokov and Kroll, Eur. Phys. J. C42, 281 (2005)

Comparison to existing DVCS measurements at LO.

Kroll *et al.*, Eur. Phys. J. **C73**, 2278 (2013)

## Double Distribution Ambiguity

Teryaev Phys. Lett. B **510** (2001) 125 Tiburzi Phys. Rev. D 70 (2004) 057504

Rewrite the non forward matrix element in terms of DD:

$$\begin{split} &\langle P - \frac{r}{2} | \bar{\psi}(-\frac{z}{2}) \not \pm \psi(\frac{z}{2}) | P + \frac{r}{2} \rangle \\ &= \int_{\Omega} e^{-i\beta(Pz) - i\alpha \frac{(rz)}{2}} (2(Pz)F(\beta, \alpha) + (rz)G(\beta, \alpha)) d\alpha d\beta \end{split}$$

Matrix element invariant under the following transformation :

$$F(\beta, \alpha) \rightarrow F(\beta, \alpha) + \frac{\partial \sigma}{\partial \alpha}$$

$$G(\beta, \alpha) \rightarrow G(\beta, \alpha) - \frac{\partial \sigma}{\partial \beta}$$

$$\sigma(\beta, \alpha) = -\sigma(\beta, -\alpha)$$

This invariance allows for **different** methods to parametrise GPDs.

#### Positivity

Positivity condition in the DGLAP region:

$$|H(x,\xi,t)| \leq \sqrt{q(\frac{x-\xi}{1-\xi})q(\frac{x+\xi}{1+\xi})}$$

Pire, Soffer, Tervaev, 1999

- In our two-body problem,  $q(x) \propto x^2$  at small x.
- Consequently  $H(x, \xi, t)$  should vanish on the line  $x = \xi$ .
- We'll see how the more realistic model behaves.

#### Double Distributions

Double Distributions are formally the Radon transform of the GPDs.

$$H(x,\xi) = \int_{\Omega} d\alpha d\beta (F(\beta,\alpha) + \xi G(\beta,\alpha)) \delta(x - \beta - \xi \alpha)$$



$$\Omega = \{(\alpha, \beta)||\alpha| + |\beta| \le 1\}$$

#### Advantage:

Easy way to respect the polynomiality in  $\xi$ 

$$\int_{-1}^{1} x^{n} H(x, \xi) dx$$

$$= \int_{\Omega} (\beta + \xi \alpha)^{n} (F(\beta, \alpha) + \xi G(\beta, \alpha)) d\Omega$$

$$H(x,\xi,t) = \int_{-1}^{1} \mathrm{d}\beta \int_{-1+|\beta|}^{1-|\beta|} \mathrm{d}\alpha \left(F(\beta,\alpha,t) + \xi G(\beta,\alpha,t)\right) \delta(x-\beta-\alpha\xi)$$

- Time reversal invariance is encoded in the parity in  $\alpha$ :
  - $F(\beta, \alpha)$  must be even in  $\alpha$
  - $G(\beta, \alpha)$  must be odd in  $\alpha$

$$H(x,\xi,t) = \int_{-1}^{1} \mathrm{d}\beta \int_{-1+|\beta|}^{1-|\beta|} \mathrm{d}\alpha \left( F(\beta,\alpha,t) + \xi G(\beta,\alpha,t) \right) \delta(x-\beta-\alpha\xi)$$

- Time reversal invariance is encoded in the parity in  $\alpha$ :
  - $F(\beta, \alpha)$  must be even in  $\alpha$
  - $G(\beta, \alpha)$  must be odd in  $\alpha$
- PDF case:

$$q(x) = H(x,0,0) = \int_{-1}^{1} \mathrm{d}\beta \int_{-1+|\beta|}^{1-|\beta|} \mathrm{d}\alpha \ F(\beta,\alpha,t)\delta(x-\beta)$$

$$H(x,\xi,t) = \int_{-1}^{1} d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \left( F(\beta,\alpha,t) + \xi G(\beta,\alpha,t) \right) \delta(x-\beta-\alpha\xi)$$

- Time reversal invariance is encoded in the parity in  $\alpha$ :
  - $F(\beta, \alpha)$  must be even in  $\alpha$
  - $G(\beta, \alpha)$  must be odd in  $\alpha$
- PDF case:

$$q(x) = H(x,0,0) = \int_{-1}^{1} \mathrm{d}\beta \int_{-1+|\beta|}^{1-|\beta|} \mathrm{d}\alpha \ F(\beta,\alpha,t)\delta(x-\beta)$$

Form Factor case:

$$\mathcal{F}(t) = \int_{-1}^{1} \mathrm{d}x \ H(x,\xi,t) = \int_{-1}^{1} \mathrm{d}\beta \ \int_{-1+|\beta|}^{1-|\beta|} \mathrm{d}\alpha \ F(\beta,\alpha,t)$$

$$H(x,\xi,t) = \int_{-1}^{1} \mathrm{d}\beta \int_{-1+|\beta|}^{1-|\beta|} \mathrm{d}\alpha \left(F(\beta,\alpha,t) + \xi G(\beta,\alpha,t)\right) \delta(x-\beta-\alpha\xi)$$

- Time reversal invariance is encoded in the parity in  $\alpha$ :
  - $F(\beta, \alpha)$  must be even in  $\alpha$
- $G(\beta, \alpha)$  must be odd in  $\alpha$ • PDF case:

$$q(x) = H(x,0,0) = \int_{-1}^{1} \mathrm{d}\beta \int_{-1+|\beta|}^{1-|\beta|} \mathrm{d}\alpha \ F(\beta,\alpha,t)\delta(x-\beta)$$

Form Factor case:

$$\mathcal{F}(t) = \int_{-1}^{1} dx \ H(x, \xi, t) = \int_{-1}^{1} d\beta \int_{-1 + |\beta|}^{1 - |\beta|} d\alpha \ F(\beta, \alpha, t)$$

 $G(\beta, \alpha)$  does not play any role in those cases.

### Properties of Mellin moments

Polynomiality:

$$\begin{split} & = \frac{1}{2(P \cdot n)^{m+1}} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{\psi}(0) \gamma \cdot n (i \overleftrightarrow{D} \cdot n)^{m} \psi(0) \right| \pi, P - \frac{\Delta}{2} \right\rangle \\ & = \frac{n_{\mu} n_{\mu_{1} \dots n_{\mu_{m}}}}{(P \cdot n)^{m+1}} P^{\{\mu} \sum_{j=0}^{m} \binom{m}{j} F_{m,j}(t) P^{\mu_{1}} \dots P^{\mu_{j}} \left( -\frac{\Delta}{2} \right)^{\mu_{j+1}} \dots \left( -\frac{\Delta}{2} \right)^{\mu_{m}\}} \\ & - n_{\mu} n_{\mu_{1} \dots n_{\mu_{m}}} \frac{\Delta}{2} \sum_{j=0}^{m} \binom{m}{j} G_{m,j}(t) P^{\mu_{1}} \dots P^{\mu_{j}} \left( -\frac{\Delta}{2} \right)^{\mu_{j+1}} \dots \left( -\frac{\Delta}{2} \right)^{\mu_{m}\}} \end{split}$$

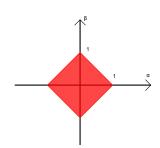
 $\xi = -\frac{\Delta \cdot n}{2P \cdot n} \Rightarrow \mathcal{M}_m(\xi, t)$  is a polynomial in  $\xi$  of order m+1.

### Properties of Mellin moments

#### Double distributions:

$$F_{m,j}(t) = \int_{-1}^{1} d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \beta^{m-j} \alpha^{j} F(\beta, \alpha, t)$$

$$G_{m,j}(t) = \int_{-1}^{1} d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \beta^{m-j} \alpha^{j} G(\beta, \alpha, t)$$



### Properties of Mellin moments

$$\mathfrak{M}_{m}(\xi, t) = n_{\mu} n_{\mu_{1}} ... n_{\mu_{m}} \sum_{j=0}^{m} {m \choose j} \int_{-1}^{1} d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \beta^{m-j} \alpha^{j} 
F(\beta, \alpha, t) P^{\{\mu} P^{\mu_{1}} ... P^{\mu_{j}} \left(-\frac{\Delta}{2}\right)^{\mu_{j+1}} ... \left(-\frac{\Delta}{2}\right)^{\mu_{m}} 
-G(\beta, \alpha, t) \frac{\Delta}{2}^{\{\mu} P^{\mu_{1}} ... P^{\mu_{j}} \left(-\frac{\Delta}{2}\right)^{\mu_{j+1}} ... \left(-\frac{\Delta}{2}\right)^{\mu_{m}}$$

#### Analytic Results

$$\begin{split} F^{\textbf{\textit{u}}}(\beta,\alpha,t) & = & \frac{48}{5} \left\{ -\frac{18M^{4}t(\beta-1)(\alpha-\beta+1)(\alpha+\beta-1)\left(\left(\alpha^{2}-(\beta-1)^{2}\right)\tanh^{-1}\left(\frac{2\beta}{-\alpha^{2}+\beta^{2}+1}\right)+2\beta\right)}{(4M^{2}+t\left((\beta-1)^{2}-\alpha^{2}\right))^{3}} \right. \\ & + \frac{9M^{4}(\alpha-\beta+1)\left(-4\beta\left(-\alpha^{2}+\beta^{2}+1\right)+2\tanh^{-1}\left(\frac{2\beta}{-\alpha^{2}+\beta^{2}+1}\right)\right)}{4(\alpha-\beta-1)\left(4M^{2}+t\left((\beta-1)^{2}-\alpha^{2}\right)\right)^{2}} \\ & + \frac{9M^{4}(\alpha-\beta+1)\left(\left(\alpha^{4}-2\alpha^{2}\left(\beta^{2}+1\right)+\beta^{2}\left(\beta^{2}-2\right)\right)\log\left(\frac{(\alpha-\beta-1)(\alpha+\beta+1)}{\alpha^{2}-(\beta-1)^{2}}\right)\right)}{4(\alpha-\beta-1)\left(4M^{2}+t\left((\beta-1)^{2}-\alpha^{2}\right)\right)^{2}} \\ & + \frac{9M^{4}(\alpha+\beta-1)\left(-4\beta\left(-\alpha^{2}+\beta^{2}+1\right)+2\tanh^{-1}\left(\frac{2\beta}{-\alpha^{2}+\beta^{2}+1}\right)\right)}{4(\alpha+\beta+1)\left(4M^{2}+t\left((\beta-1)^{2}-\alpha^{2}\right)\right)^{2}} \\ & + \frac{9M^{4}(\alpha+\beta-1)\left(\left(\alpha^{4}-2\alpha^{2}\left(\beta^{2}+1\right)+\beta^{4}-2\beta^{2}\right)\log\left(\frac{(\alpha-\beta-1)(\alpha+\beta+1)}{\alpha^{2}-(\beta-1)^{2}}\right)\right)}{4(\alpha+\beta+1)\left(4M^{2}+t\left((\beta-1)^{2}-\alpha^{2}\right)\right)^{2}} \\ & + \frac{9M^{4}\beta(\alpha-\beta+1)^{2}(\alpha+\beta-1)^{2}\left(\frac{2\left(\alpha^{2}\beta-\beta^{3}+\beta\right)}{\alpha^{4}-2\alpha^{2}\left(\beta^{2}+1\right)+(\beta^{2}-1)^{2}}\right)}{(4M^{2}+t\left((\beta-1)^{2}-\alpha^{2}\right))^{2}} \\ & + \frac{9M^{4}\beta(\alpha-\beta+1)^{2}(\alpha+\beta-1)^{2}\left(-\tanh^{-1}(\alpha-\beta)+\tanh^{-1}(\alpha+\beta)\right)}{(4M^{2}+t\left((\beta-1)^{2}-\alpha^{2}\right))^{2}}\right\}, \end{split}$$

#### Analytic Results

$$\begin{split} H^{u}_{\mathbf{x} \geq \xi}(x,\xi,0) &= & \frac{48}{5} \left\{ \frac{3 \left( -2(x-1)^4 \left( 2x^2 - 5\xi^2 + 3 \right) \log(1-x) \right)}{20 \left( \xi^2 - 1 \right)^3} \right. \\ &= & \frac{3 \left( +4\xi \left( 15x^2(x+3) + \left( 19x + 29 \right)\xi^4 + 5(x(x(x+11)+21)+3)\xi^2 \right) \tanh^{-1} \left( \frac{(x-1)\xi}{x-\xi^2} \right) \right)}{20 \left( \xi^2 - 1 \right)^3} \\ &+ \frac{3 \left( x^3(x(2(x-4)x+15) - 30) - 15(2x(x+5)+5)\xi^4 \right) \log \left( x^2 - \xi^2 \right)}{20 \left( \xi^2 - 1 \right)^3} \\ &+ \frac{3 \left( -5x(x(x(x+2)+36)+18)\xi^2 - 15\xi^6 \right) \log \left( x^2 - \xi^2 \right)}{20 \left( \xi^2 - 1 \right)^3} \\ &+ \frac{3 \left( 2(x-1) \left( (23x+58)\xi^4 + (x(x(x+67)+112)+6)\xi^2 + x(x((5-2x)x+15)+3) \right) \right)}{20 \left( \xi^2 - 1 \right)^3} \\ &+ \frac{3 \left( \left( 15(2x(x+5)+5)\xi^4 + 10x(3x(x+5)+11)\xi^2 \right) \log \left( 1 - \xi^2 \right) \right)}{20 \left( \xi^2 - 1 \right)^3} \\ &+ \frac{3 \left( 2x(5x(x+2)-6) + 15\xi^6 - 5\xi^2 + 3 \right) \log \left( 1 - \xi^2 \right)}{20 \left( \xi^2 - 1 \right)^3} \right\}, \end{split}$$

#### Analytic Results

$$\begin{split} H^{u}_{|\mathbf{x}| \leq \xi}(x,\xi,0) &= & \frac{48}{5} \left\{ \frac{6\xi(x-1)^{\mathbf{4}} \left( -\left(2x^2 - 5\xi^2 + 3\right)\right) \log(1-x)}{40\xi\left(\xi^2 - 1\right)^3} \right. \\ &+ \frac{6\xi \left( -4\xi \left(15x^2(x+3) + (19x+29)\xi^{\mathbf{4}} + 5(x(x(x+11)+21)+3)\xi^2\right) \log(2\xi)\right)}{40\xi\left(\xi^2 - 1\right)^3} \\ &+ \frac{6\xi(\xi+1)^3 \left( (38x+13)\xi^2 + 6x(5x+6)\xi + 2x(5x(x+2)-6) + 15\xi^3 - 9\xi + 3\right) \log(\xi+1)}{40\xi\left(\xi^2 - 1\right)^3} \\ &+ \frac{6\xi(x-\xi)^3 \left( (7x-58)\xi^2 + 6(x-4)x\xi + x(2(x-4)x+15) + 15\xi^3 + 75\xi - 30\right) \log(\xi-x)}{40\xi\left(\xi^2 - 1\right)^3} \\ &+ \frac{3(\xi-1)(x+\xi) \left( 4x^4\xi - 2x^3\xi(\xi+7) + x^2(\xi((119-25\xi)\xi-5) + 15)\right)}{40\xi\left(\xi^2 - 1\right)^3} \\ &+ \frac{3(\xi-1)(x+\xi) \left( x\xi(\xi(\xi(71\xi+5)+219)+9) + 2\xi(\xi(2\xi(34\xi+5)+9)+3)\right)}{40\xi\left(\xi^2 - 1\right)^3} \right\}. \end{split}$$