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The Golden Channel: Deep-Virtual Compton Scattering

Deep-Virtual Compton
Scattering (DVCS)

q q'

z/2-z/2

e-

Long Range 

Short Range

P-Δ/2 P+Δ/2

Short range → perturbation
theory.
Long range → non pertubative
objects: GPDs.
Encode the hadrons 3D partonic
structure and the spin structure.
Universality
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Kinematic Variables

H(x,ξ,t)

x-ξ x+ξ

(1-ξ) (1+ξ)
+ +

t Δ= 2P P

H stands for GPD,
depending on 3 variables: x , ξ,
t.

ξ−x −x−ξ

−1≤ x≤−ξ

x +ξ ξ−x

−ξ≤ x ≤ ξ

x+ξ x−ξ

ξ≤ x≤ 1
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Formal Definition

Proton case:

1
2

∫
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〈P +

∆

2
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)γ+q(

z
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)|P − ∆

2
〉dz−|z+=0,z=0

=
1

2P+
[Hq(x , ξ, t)ū(P +

∆

2
)γ+u(P − ∆

2
)

+Eq(x , ξ, t)ū(P +
∆

2
)
iσ+α∆α

2M
u(P − ∆

2
)].

X. Ji,1997
D. Müller et al.,1994
A. Radyushkin,1997
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The pion? But why?

P

P

P

1

2

Advantages :
I Two-body system.
I Pseudo-scalar meson.
I Valence quarks u and d.
I Isospin symmetry.

Drawbacks
I Very few experimental data

available.
I No data at ξ 6= 0
→ The model can be
compared only at ξ = 0, i.e.
to the Parton Distribution
Function (PDF) and to the
form factor.

I Amrath et al., Eur. Phys. J.
C58 179

Good starting point before dealing with more complicated objects.
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GPD properties

x

ξ
-1

-1

1

1

Support properties:
|x | ≤ 1 and |ξ| ≤ 1
Valence case: −ξ ≤ x ≤ 1

Special limits:
I if t = 0 and ξ = 0→ PDF,
I if

∫
dx → form factor.

Polynomiality:
I The Mellin Moments are

polynomials in ξ
I This comes from Lorentz

symmetry.
Time reversal invariance:

I H(x , ξ, t) = H(x ,−ξ, t)

Those properties make GPD modeling a challenge.
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GPD properties
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GPD properties
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Models of GPDs

Double Distribution models:

I Vanderhaeghen-Guichon-Guidal model (VGG) (1999),
I Goloskokov-Kroll model (GK) (2005).

Dual model:
I M.V. Polyakov (1999), M.V. Polyakov and A.G. Shuvaev (2002), M.V.

Polyakov and K.M. Semenov-Tian-Shansky (2009).
Mellin-Barnes approach:

I D. Müller and A. Schäfer (2006), K. Kumericki and D. Müller (2010).

Mellin-Barnes approach and Dual models are in fact equivalent (D.
Müller, M.V. Polyakov, K.M. Semenov-Tian-Shansky 2014)
Quark-diquark models:

I G. Goldstein, J. Hernandez, S. Liuti (2010)
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Alternative ideas

Lattice QCD:
I Computations of Mellin Moments.
I Until now, only the very first Mellin moments have been computed.
I Still, new proposals done by X. Ji (X. Ji, 2013).

Dyson-Schwinger Equations:
I Very powerful non pertubative method,
I Approximations scheme have been developed for QCD.

Dyson-Schwinger equations seem to be a very promising approach to model
GPDs!

C. Mezrag (CEA Saclay - IRFU/SPhN) Modeling the pion GPD April 29th , 2015 8 / 27



Alternative ideas

Lattice QCD:
I Computations of Mellin Moments.
I Until now, only the very first Mellin moments have been computed.
I Still, new proposals done by X. Ji (X. Ji, 2013).

Dyson-Schwinger Equations:
I Very powerful non pertubative method,
I Approximations scheme have been developed for QCD.

Dyson-Schwinger equations seem to be a very promising approach to model
GPDs!

C. Mezrag (CEA Saclay - IRFU/SPhN) Modeling the pion GPD April 29th , 2015 8 / 27



Alternative ideas

Lattice QCD:
I Computations of Mellin Moments.
I Until now, only the very first Mellin moments have been computed.
I Still, new proposals done by X. Ji (X. Ji, 2013).

Dyson-Schwinger Equations:
I Very powerful non pertubative method,
I Approximations scheme have been developed for QCD.

Dyson-Schwinger equations seem to be a very promising approach to model
GPDs!

C. Mezrag (CEA Saclay - IRFU/SPhN) Modeling the pion GPD April 29th , 2015 8 / 27



Dyson-Schwinger Equations

Equations between non pertubative Green functions.
Infinite number of coupled equations → no one has solved it until now!
This requires approximations. In QCD, there are mainly two:

I Rainbow Ladder (RL), resumming over a certain class of diagrams,
I Dynamical Chiral Symmetry Breaking (DCSB).

See for instance L.Chang et al.,PRC87,2013 for details about
truncation schemes.
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Example: the quark propagator

Pertubative case:

= + +...

Dyson-Schwinger case:

=( ) ( )
-1 -1
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Solutions of the BSE-DSE

DSE-BSE equations have been solved numerically and solutions have been
fitted on specific parametrisations (L. Chang et al., 2013).

Propagator → linear combination of free propagators using complex
conjugate poles:

S(k) =
m∑

j=1

(
zj

i/k + mj
+

z∗j
i/k + m∗j

)

Pion Bethe-Salpeter amplitude → use the Nakanishi representation:

Γπ(k ,P) = cj
∫ 1

−1
dz

ρν(z)Λ2ν
j[(

k − 1−z
2 P

)2
+ Λ2

j

]ν + ...
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Algebraic model for pion GPD

Propagator:

S(p2) =
−ip · γ + M
p2 + M2

p is the quark momentum,
M is the effective mass of
the constituent quark.

Vertex:

Γπ ∝ iγ5

∫
dz M2ρν(z)

(q(k ,∆,P)2 + M2)ν

ρν(z) ∝ (1− z2)ν is the z
distribution.
q(k ,∆,P) = k − 1−z

2

(
P ± ∆

2

)
deals with the momentum
fraction carried by the quark.

Those functions are building blocks of the realistic Bethe-Salpeter
computations.
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Pion GPD model

Mm(ξ, t) =

∫ 1

−1
dx xm H(x , ξ, t)

=
1

2(P · n)m+1

〈
π,P +

∆

2

∣∣∣ψ̄(0)γ · n(i
←→
D · n)mψ(0)

∣∣∣π,P − ∆

2

〉
.

k −∆/2 k +∆/2

k − P

P +∆/2P −∆/2

∆

k −∆/2 k + ∆/2

∆

k + P

P −∆/2 P +∆/2
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Pion GPD model

k −∆/2 k +∆/2

k − P

P +∆/2P −∆/2

∆

k −∆/2 k + ∆/2

∆

k + P

P −∆/2 P +∆/2

2(P · n)m+1Mm(ξ, t) = trCFD

∫
d4k

(2π)4 (k · n)m iΓπ(k − ∆

2
,P − ∆

2
) S(k − ∆

2
)

iγ · n S(k +
∆

2
) i Γ̄π(k +

∆

2
,P +

∆

2
) S(k − P)

C. Mezrag (CEA Saclay - IRFU/SPhN) Modeling the pion GPD April 29th , 2015 13 / 27



Form factor

Fq
π(t) = M0(t) =

∫ 1

−1
dx Hq(x , ξ, t)

C. Mezrag et al., arXiv 1406.7425
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PDF’s Mellin moments

C.Mezrag et al, arXiv 1406.7425
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Double Distributions

Müller et al. (1994), Radyushkin (1996), Teryaev (2001)
Double Distributions are formally the Radon transform of the GPDs.

H(x , ξ) =

∫
Ω

dαdβ(F (β, α) + ξG (β, α))δ(x − β − ξα)

1

1

α

β Ω = {(α, β)||α|+ |β| ≤ 1}
Advantage:
Easy way to respect the polynomiality in ξ∫ 1

−1
xnH(x , ξ)dx

=

∫
Ω

(β + ξα)n(F (β, α) + ξG (β, α))dΩ
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Reconstruction (t = 0)

0.0

0.5

1.0

Ξ

-1.0-0.50.00.51.0

x

0.0

0.5

1.0

1.5

We get back the support properties!
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Advantages of DDs

Support is stricly respected.

Reconstruction is exact (no numerical noise).
Prove the continuity at x = ξ.
Double Distributions ensure polynomiality and parity in ξ
We can get analytic expressions. For the PDF(ν = 1):

q(x) =
72
25
(
x3(x(−2(x − 4)x − 15) + 30) log(x)

+
(
2x2 + 3

)
(x − 1)4 log(1− x)

+x(x(x(2x − 5)− 15)− 3)(x − 1))
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Prove the continuity at x = ξ.
Double Distributions ensure polynomiality and parity in ξ

We can get analytic expressions. For the PDF(ν = 1):
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Large x behavior

0.01 0.1 1

1-x

0

1

2

P
D

F
Model (M=0.35 GeV)

(1-x)
2
 behaviour

At large x :
q(x) ≈ (1− x)2

C. Mezrag (CEA Saclay - IRFU/SPhN) Modeling the pion GPD April 29th , 2015 19 / 27



Limits of triangle diagrams

0 0.2 0.4 0.6 0.8 1

x

0

0.5

1

1.5

2

q
(x

)

Triangle contribution

The PDF appears not to
be symmetric around
x = 1

2 .

Part of the gluon
contribution is neglected
in the triangle diagram
approach.
Adding this contribution
allows us to recover a
symmetric PDF (C.
Mezrag et al.,PLB 737).

No obvious way to generalise this to the non forward case.

It gives us some insight to go to non zero t.
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Sketching the pion 3D structure

ρq(x , b⊥) =

∫ ∞
0

d|∆⊥|
2π

|∆⊥|J0
(
|b⊥| · |∆⊥|

)
Hq(x , 0,−∆2

⊥),

b⊥ is the Fourier conjugate of ∆⊥.
b⊥ is the position in the plane transverse to the hadron direction.
J0 is the first kind Bessel function.
ρq(x , b⊥) is the probability density to find a quark q at a given
position b⊥ in the transverse plane and with a given longitudinal
momentum fraction x .
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Plots from C. Mezrag et. al., PLB 741
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Soft Pion Theorem

Polyakov soft pion theorem: if ξ = 1 and t = 0 then H ∝ Pion DA.

(Polyakov,1999)
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Asymptotic DA / 2

DA from Triangle Diagram

Here the soft pion theorem is violated. Why?
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Relation between Pion and quark propagator

Propagator:
S−1(k) = −iγ · k A(k2) + B(k2)

Vertex:

Γπ(k ,P) = γ5 (iEπ(k ,P) + γ ·P Fπ(k ,P) + γ · k P · k Gπ(k ,P) + ...)

AVWTI leads to the relation:

fπEπ(k , 0) = B(k2)

In our model:

M
M2

k2 + M2 6= M

Problem!
Freezing the mass leads to a violation of AVWTI!

Question?
Is it sufficient to respect the AVWTI to get back the soft pion theorem?

Answer
Yes, providing that the truncation scheme is consistent enough.
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Soft Pion Theorem: the solution

Generaly speaking:

I Working in the triangle diagram approximation.
I Working in the rainbow ladder approximation.
I Solving the DSE-BSE equations consistently to preserve the

Axial-Vector WTI.

One has the soft pion theorem for free!

This emphases the consistency of our approach.

In our case:

I Using only one building block breaks the Axial-Vector WTI and thus
the soft pion theorem.

I This problem will vanish with the full solutions of the DSE-BSE.

The soft pion theorem will be automatically implemented when modeling
the pion GPD from the full solutions of the BSE-DSE.

(C. Mezrag et al., PLB 741).
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Summary and conclusions

We presented a new model for pion GPD which fulfills most of the
required symmetry properties.
Double Distributions make the full problem analytic.
Our comparisons with available experimental data are very
encouraging.
Limitations highlight physics key points.

If the GPDs remain the good objects to understand the physics, DDs are
the good objects to deal with support properties and full reconstruction.
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Outlooks

We want to reconstruct the GPD thanks to DD in the realistic case,
i.e. with vertices and propagators coming from numerical solutions of
the Dyson-Schwinger equations.
Compare our model with the existing phenomenological DD models,
i.e. Radyushkin Ansatz.
The proton case remains the Holy Grail...

which may be reached in
the valence region using a quark-diquark model.
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Thank You!
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Back up
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Kroll - Goloskokov model.
Factorised Ansatz. For i = g , sea or val :

Hi (x , ξ, t) =

∫
|α|+|β|≤1

dβdα δ(β + ξα− x)fi (β, α, t)

fi (β, α, t) = ebi t 1
|β|α′t hi (β)πni (β, α)

πni (β, α) =
Γ(2ni + 2)

22ni +1Γ2(ni + 1)

(1− |β|)2 − α2]ni

(1− |β|)2ni +1

Expressions for hi and ni :

hg (β) = |β|g(|β|) ng = 2
hq
sea(β) = qsea(|β|)sign(β) nsea = 2

hq
val(β) = qval(β)Θ(β) nval = 1

Goloskokov and Kroll, Eur. Phys. J. C42, 281 (2005)

Comparison to existing DVCS measurements at LO.
Kroll et al., Eur. Phys. J. C73, 2278 (2013)
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Double Distribution Ambiguity

Teryaev Phys. Lett. B 510 (2001) 125
Tiburzi Phys. Rev. D 70 (2004) 057504

Rewrite the non forward matrix element in terms of DD :

〈P − r
2
|ψ̄(−z

2
)/zψ(

z
2

)|P +
r
2
〉

=

∫
Ω

e−iβ(Pz)−iα (rz)
2 (2(Pz)F (β, α) + (rz)G(β, α))dαdβ

Matrix element invariant under the following transformation :

F (β, α) → F (β, α) +
∂σ

∂α

G(β, α) → G(β, α)− ∂σ

∂β

σ(β, α) = −σ(β,−α)

This invariance allows for different methods to parametrise GPDs.
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Positivity

Positivity condition in the DGLAP region:

|H(x , ξ, t)| ≤
√

q(
x − ξ
1− ξ )q(

x + ξ

1 + ξ
)

Pire, Soffer, Teryaev, 1999
In our two-body problem, q(x) ∝ x2 at small x .
Consequently H(x , ξ, t) should vanish on the line x = ξ.
We’ll see how the more realistic model behaves.
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Double Distributions

Double Distributions are formally the Radon transform of the GPDs.

H(x , ξ) =

∫
Ω

dαdβ(F (β, α) + ξG (β, α))δ(x − β − ξα)

1

1

α

β Ω = {(α, β)||α|+ |β| ≤ 1}
Advantage:
Easy way to respect the polynomiality in ξ∫ 1

−1
xnH(x , ξ)dx

=

∫
Ω

(β + ξα)n(F (β, α) + ξG (β, α))dΩ
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From Mellin moments to Double Distributions (DD)

H(x , ξ, t) =

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dα (F (β, α, t) + ξG (β, α, t)) δ(x − β − αξ)

Time reversal invariance is encoded in the parity in α:
I F (β, α) must be even in α
I G (β, α) must be odd in α

PDF case:

q(x) = H(x , 0, 0) =

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dα F (β, α, t)δ(x − β)

Form Factor case:

F(t) =

∫ 1

−1
dx H(x , ξ, t) =

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dα F (β, α, t)

G (β, α) does not play any role in those cases.
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dα F (β, α, t)δ(x − β)

Form Factor case:

F(t) =

∫ 1

−1
dx H(x , ξ, t) =

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dα F (β, α, t)

G (β, α) does not play any role in those cases.
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From Mellin moments to Double Distributions (DD)
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Properties of Mellin moments

Polynomiality:

Mm(ξ, t)

=
1

2(P · n)m+1

〈
π,P +

∆

2

∣∣∣ψ̄(0)γ · n(i
←→
D · n)mψ(0)

∣∣∣π,P − ∆

2

〉
=

nµnµ1 ...nµm

(P · n)m+1 P{µ
m∑

j=0

(
m
j

)
Fm,j(t)Pµ1 ...Pµj

(
−∆

2

)µj+1

...

(
−∆

2

)µm}

−nµnµ1 ...nµm

∆

2

{µ m∑
j=0

(
m
j

)
Gm,j(t)Pµ1 ...Pµj

(
−∆

2

)µj+1

...

(
−∆

2

)µm}

ξ = − ∆ · n
2P · n ⇒Mm(ξ, t) is a polynomial in ξ of order m + 1.
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Properties of Mellin moments

Double distributions:

Fm,j(t) =

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dα βm−jαj F (β, α, t)

Gm,j(t) =

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dα βm−jαj G (β, α, t)

1

1

α

β
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Properties of Mellin moments

Mm(ξ, t) = nµnµ1 ...nµm

m∑
j=0

(
m
j

)∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dα βm−jαj

F (β, α, t)P{µPµ1 ...Pµj

(
−∆

2

)µj+1

...

(
−∆

2

)µm}

−G (β, α, t)
∆

2

{µ
Pµ1 ...Pµj

(
−∆

2

)µj+1

...

(
−∆

2

)µm}
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Analytic Results

Fu (β, α, t) =
48

5

−
18M4t(β − 1)(α− β + 1)(α + β − 1)

((
α2 − (β − 1)2

)
tanh−1

(
2β

−α2+β2+1

)
+ 2β

)
(4M2 + t ((β − 1)2 − α2))3

+
9M4(α− β + 1)

(
−4β

(
−α2 + β2 + 1

)
+ 2 tanh−1

(
2β

−α2+β2+1

))
4(α− β − 1) (4M2 + t ((β − 1)2 − α2))2

+

9M4(α− β + 1)

((
α4 − 2α2

(
β2 + 1

)
+ β2

(
β2 − 2

))
log
(

(α−β−1)(α+β+1)

α2−(β−1)2

))
4(α− β − 1) (4M2 + t ((β − 1)2 − α2))2

+
9M4(α + β − 1)

(
−4β

(
−α2 + β2 + 1

)
+ 2 tanh−1

(
2β

−α2+β2+1

))
4(α + β + 1) (4M2 + t ((β − 1)2 − α2))2

+

9M4(α + β − 1)

((
α4 − 2α2

(
β2 + 1

)
+ β4 − 2β2

)
log
(

(α−β−1)(α+β+1)

α2−(β−1)2

))
4(α + β + 1) (4M2 + t ((β − 1)2 − α2))2

+

9M4β(α− β + 1)2(α + β − 1)2
(

2
(
α2β−β3+β

)
α4−2α2(β2+1)+(β2−1)2

)
(4M2 + t ((β − 1)2 − α2))2

+
9M4β(α− β + 1)2(α + β − 1)2

(
− tanh−1(α− β) + tanh−1(α + β)

)
(4M2 + t ((β − 1)2 − α2))2

 ,
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Analytic Results

Hu
x≥ξ(x, ξ, 0) =

48

5

 3
(
−2(x − 1)4

(
2x2 − 5ξ2 + 3

)
log(1− x)

)
20 (ξ2 − 1)3

3
(

+4ξ
(
15x2(x + 3) + (19x + 29)ξ4 + 5(x(x(x + 11) + 21) + 3)ξ2

)
tanh−1

(
(x−1)ξ

x−ξ2

))
20 (ξ2 − 1)3

+
3
(
x3(x(2(x − 4)x + 15)− 30)− 15(2x(x + 5) + 5)ξ4

)
log
(
x2 − ξ2

)
20 (ξ2 − 1)3

+
3
(
−5x(x(x(x + 2) + 36) + 18)ξ2 − 15ξ6

)
log
(
x2 − ξ2

)
20 (ξ2 − 1)3

+
3
(
2(x − 1)

(
(23x + 58)ξ4 + (x(x(x + 67) + 112) + 6)ξ2 + x(x((5− 2x)x + 15) + 3)

))
20 (ξ2 − 1)3

+
3
((

15(2x(x + 5) + 5)ξ4 + 10x(3x(x + 5) + 11)ξ2
)

log
(
1− ξ2

))
20 (ξ2 − 1)3

+
3
(
2x(5x(x + 2)− 6) + 15ξ6 − 5ξ2 + 3

)
log
(
1− ξ2

)
20 (ξ2 − 1)3

 ,
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Analytic Results

Hu
|x|≤ξ(x, ξ, 0) =

48

5

 6ξ(x − 1)4
(
−
(
2x2 − 5ξ2 + 3

))
log(1− x)

40ξ (ξ2 − 1)3

+
6ξ
(
−4ξ

(
15x2(x + 3) + (19x + 29)ξ4 + 5(x(x(x + 11) + 21) + 3)ξ2

)
log(2ξ)

)
40ξ (ξ2 − 1)3

+
6ξ(ξ + 1)3

(
(38x + 13)ξ2 + 6x(5x + 6)ξ + 2x(5x(x + 2)− 6) + 15ξ3 − 9ξ + 3

)
log(ξ + 1)

40ξ (ξ2 − 1)3

+
6ξ(x − ξ)3

(
(7x − 58)ξ2 + 6(x − 4)xξ + x(2(x − 4)x + 15) + 15ξ3 + 75ξ − 30

)
log(ξ − x)

40ξ (ξ2 − 1)3

+
3(ξ − 1)(x + ξ)

(
4x4ξ − 2x3ξ(ξ + 7) + x2(ξ((119− 25ξ)ξ − 5) + 15)

)
40ξ (ξ2 − 1)3

+
3(ξ − 1)(x + ξ) (xξ(ξ(ξ(71ξ + 5) + 219) + 9) + 2ξ(ξ(2ξ(34ξ + 5) + 9) + 3))

40ξ (ξ2 − 1)3

}
.
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