New Method for Mass Measurement using Integral Charge Asymmetry at LHC

S. Muanza: CPPM Marseille, CNRS-IN2P3 & AMU

DIS 2015, SMU, Dallas Tx, USA

April 29, 2015

Aix*Marseille

Talk based upon a revised version of arXiv:1412.6695v2 [hep-ph], to be submitted to JHEP

Introduction

A SM Test Bench Process

- Theoretical Prediction of $A_C(W^{\pm} \rightarrow \ell^{\pm} \nu)$
- Experimental Measurement of $A_C(W^{\pm} \rightarrow \ell^{\pm} \nu)$
- Indirect Determination of $M_{W^{\pm}}$

3 A SUSY Physics Case

- Theoretical Prediction of $A_C(\tilde{\chi}_1^{\pm} + \tilde{\chi}_2^0)$
- Indirect Determination of $M_{\tilde{\chi}_1^{\pm}} + M_{\tilde{\chi}_2^0}^{-}$

4 Conclusions

Introduction

A SM Test Bench Process A SUSY Physics Case Conclusions

Introduction

Working with A Charge Asymmetric Collider

• The LHC is a charge asymmetric machine, unlike most other HE particle colliders

• For charged final states (FS^{\pm}), we define the integral charge asymmetry (ICA) as

$$A_{C} = \frac{N(FS^{+}) - N(FS^{-})}{N(FS^{+}) + N(FS^{-})}$$
(1)

• For a given inclusive process produced at the:

- LHC in p + p collisions: $A_C \ge 0$
- TEVATRON in $p + \bar{p}$ collisions: $A_C \approx 0$

The Simplest Applicable Process

- ${ullet}$ To illustrate this discussion let's pick the $W^\pm o \ell^\pm
 u + X$ process
- We obviously chose a leptonic decay mode ($\ell^{\pm}=e^{\pm}$ / μ^{\pm}) because:
 - S/B for this process in online and offline event selection
 - ullet the hard isolated lepton enables to measure the sign of the produced W^\pm
- Therefore our actual observable is:

$$A_{C} = \frac{N(\ell^{+}) - N(\ell^{-})}{N(\ell^{+}) + N(\ell^{-})}$$
(2)

Relation between $A_C(W^{\pm} \rightarrow \ell^{\pm}\nu + X)$ and the proton structure

- The ICA originates solely from the production mechanisms
- More quantitatively, let's look at the main flavour contribution to A_C :

$$A_{C} \approx \frac{u(x_{1,2}, M_{W}^{2})\bar{d}(x_{2,1}, M_{W}^{2}) - \bar{u}(x_{1,2}, M_{W}^{2})d(x_{2,1}, M_{W}^{2})}{u(x_{1,2}, M_{W}^{2})\bar{d}(x_{2,1}, M_{W}^{2}) + \bar{u}(x_{1,2}, M_{W}^{2})d(x_{2,1}, M_{W}^{2})}$$
(3)

other flavour contributions are CKM suppressed ($\frac{|V_{cs}|^2}{|V_{ud}|^2}, \frac{|V_{us}|^2}{|V_{ud}|^2}, \frac{|V_{cd}|^2}{|V_{ud}|^2}, \dots$)

- Producing W^{\pm} implies:
 - $Q^2 \approx M_{W^{\pm}}$ and $x_{1,2} = \frac{M_{W^{\pm}}}{\sqrt{s}} \cdot e^{\pm y_W}$ i.e at $\sqrt{s} = 7\text{TeV}$: $|y_W| \le 4.3 \Rightarrow x \in [1.7 \times 10^{-4}, 1.]$
- And, in this range of x's, yields a positive $A_C(W^\pm o \ell^\pm
 u + X)$
- The key and new (wrt other usage of asymmetries) idea is to correlate A_C to a mass scale
- How?
 - by varying Q \Rightarrow a DGLAP evolution of the PDFs \Rightarrow an evolution of A_C
 - a calibrated measurement of A_C constitutes an indirect measurement of $M_{W^{\pm}}$

Theoretical Prediction of $A_C(W^{\pm} \rightarrow \ell^{\pm}\nu)$ Experimental Measurement of $A_C(W^{\pm} \rightarrow \ell^{\pm}\nu)$ Indirect Determination of $M_{W^{\pm}}$

A SM Test Bench Process

Parton Level Setup in MCFM v5.8

• Calculate separately $\sigma^{\pm}=\sigma(p+p
ightarrow W^{\pm}
ightarrow \ell^{\pm}
u)$ at $\sqrt{s}=$ 7 TeV

•
$$A_C^{Theory} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$$

- LO Matrix Elements (ME): $W^{\pm} + 0Lp \& W^{\pm} + 1Lp$ (Lp: light partons, i.e. u/d/s/g)
- QCD Scales: $\mu_R = \mu_F = \mu_0 = \sqrt{M^2(W^{\pm}) + p_T^2(W^{\pm})}$
- LO PDFs: MRST2007lomod (default), CTEQ6L1, and MSTW2008lo68cl
- Vary M_W±: 20.1, 40.2, 80.4, 160.8, 321.6, 643.2, 1286.4 GeV

Sources of Theoretical Uncertainties

• Statistical:
$$\delta_{Stat}A_{C} = \frac{2\sqrt{(\sigma - \delta\sigma_{Stat}^{+})^{2} + (\sigma + \delta\sigma_{Stat}^{-})^{2}}}{(\sigma^{+} + \sigma^{-})^{2}}$$

• PDF:
$$\begin{cases} \delta\sigma_{PDF}^{Up} = \sqrt{\sum_{i=1}^{N} [Max(\sigma_{i}^{+} - \sigma_{0}, \sigma_{i}^{-} - \sigma_{0}, 0)]^{2}} \\ \delta\sigma_{PDF}^{Down} = \sqrt{\sum_{i=1}^{N} [Max(\sigma_{0} - \sigma_{i}^{+}, \sigma_{0} - \sigma_{i}^{-}, 0)]^{2}} \end{cases}$$

• QCD Scales:
$$\delta\sigma_{Scale}^{Up} = \sigma(\mu_{0}/2) - \sigma(\mu_{0}) \text{ and } \delta\sigma_{Scale}^{Down} = \sigma(2\mu_{0}) - \sigma(\mu_{0})$$

• Total:
$$\delta\sigma_{Total}^{Up/Down} = \sqrt{(\delta\sigma_{PDF}^{Up/Down})^{2} + (\delta\sigma_{Scale}^{Up/Down})^{2} + (\delta\sigma_{Stat})^{2}}$$

Theoretical Prediction of $A_C(W^{\pm} \rightarrow \ell^{\pm} \nu)$ Experimental Measurement of $A_C(W^{\pm} \rightarrow \ell^{\pm} \nu)$ Indirect Determination of $M_{W^{\pm}}$

$A_C(W^{\pm} ightarrow e^{\pm} u_e)$ for MRST2007lomod (1/2)

M _W ± (GeV)	A _C (%)	$\delta_{Stat}A_C$ (%)	$\delta_{Scale} A_C$ (%)	$\delta_{PDF}A_C$ (%)	$\delta_{Total} A_C$ (%)
20.1	2.20	±0.24	$\begin{cases} +0.47 \\ +0.10 \end{cases}$	0.00	$\begin{cases} +0.52\\ -0.26 \end{cases}$
40.2	6.77	±0.12	$\begin{cases} +0.02\\ -0.11 \end{cases}$	0.00	$\begin{cases} +0.12 \\ -0.16 \end{cases}$
<u>80.4</u>	20.18	±0.06	$\begin{cases} +0.05\\ -0.03 \end{cases}$	0.00	$\begin{cases} +0.08\\ -0.07 \end{cases}$
160.8	29.39	±0.05	$\begin{cases} +0.00\\ +0.03 \end{cases}$	0.00	$\begin{cases} +0.05 \\ -0.06 \end{cases}$
321.6	35.92	±0.05	$\begin{cases} -0.11 \\ +0.10 \end{cases}$	0.00	$\begin{cases} +0.11 \\ -0.11 \end{cases}$
643.2	43.99	±0.05	$\begin{cases} -0.14 \\ +0.13 \end{cases}$	0.00	$\begin{cases} +0.15\\ -0.14 \end{cases}$
1286.4	52.36	±0.06	$\begin{cases} +0.03\\ -0.02 \end{cases}$	0.00	$\begin{cases} +0.07\\ -0.07 \end{cases}$

Table : MRST2007lomod A_C table with the breakdown of the different sources of theoretical uncertainty.

Theoretical Prediction of $A_C(W^{\pm} \rightarrow \ell^{\pm} \nu)$ Experimental Measurement of $A_C(W^{\pm} \rightarrow \ell^{\pm} \nu)$ Indirect Determination of $M_{W^{\pm}}$

$A_C(W^{\pm} \rightarrow e^{\pm}\nu_e)$ for MRST2007lomod (2/2)

- Fits functional form: $A_C[M_{W^{\pm}}] = \sum_{i=0}^{N} A_i \times [Log[Log[M_{W^{\pm}}]]]^i$, inspired by the analytical solution of DGLAP equations
- Fit replaces discrete sampling of $A_C[M_{W^{\pm}}]$ and $\delta A_C[M_{W^{\pm}}]$ accounts for the correlation between the fit parameters

Theoretical Prediction of $A_C(W^\pm \to \ell^\pm \nu)$ Experimental Measurement of $A_C(W^\pm \to \ell^\pm \nu)$ Indirect Determination of M_{W^\pm}

$A_{\mathcal{C}}(W^{\pm} ightarrow e^{\pm} u_{e})$ for CTEQ6L1 & MSTW2008lo68cl

S. Muanza: CPPM Marseille, CNRS-IN2P3 & AMU

New Method for Mass Measurement using Integral Charge Asymmetry at LH

Theoretical Prediction of $A_C(W^{\pm} \rightarrow \ell^{\pm} \nu)$ Experimental Measurement of $A_C(W^{\pm} \rightarrow \ell^{\pm} \nu)$ Indirect Determination of $M_{W^{\pm}}$

Event Selection: Electron Channel

- Generator: Herwig++ v2.5.0
- Detector Fast Simulation: Delphes v1.9
- Collider Hypotheses:
 - $\sqrt{s} = 7 \text{ TeV}$ • L=1 fb⁻¹
- $p_T(e^{\pm}) > 25 \text{ GeV}$
- $|\eta(e^{\pm})| < 1.37$ or $1.53 < |\eta(e^{\pm})| < 2.4$
- Isolation: Tracker & Calorimeter
- $M_T > 40 \text{ GeV}$

Theoretical Prediction of $A_C(W^{\pm} \rightarrow \ell^{\pm} \nu)$ Experimental Measurement of $A_C(W^{\pm} \rightarrow \ell^{\pm} \nu)$ Indirect Determination of $M_{W^{\pm}}$

Event Yields & Expected ICA

Process	е (%)	N _{exp} (k evts)	$A_C \pm \delta A_C^{Stat}$ (%)	
Signal: $W^{\pm} \rightarrow e^{\pm}\nu_{e}$ $M_{W\pm} = 40.2 \text{ GeV}$ $M_{W\pm} = 60.3 \text{ GeV}$ $M_{W\pm} = 80.4 \text{ GeV}$ $M_{W\pm} = 100.5 \text{ GeV}$ $M_{W\pm} = 120.6 \text{ GeV}$ $M_{W\pm} = 140.7 \text{ GeV}$ $M_{W\pm} = 140.7 \text{ GeV}$	$\begin{array}{c} 0.81 \pm 0.01 \\ 13.69 \pm 0.05 \\ 29.59 \pm 0.04 \\ 39.19 \pm 0.07 \\ 44.84 \pm 0.07 \\ 48.66 \pm 0.07 \\ 51.29 \pm 0.07 \end{array}$	290.367 2561.508 3343.195 2926.093 2357.557 1899.820	9.66 \pm 1.57 11.2 \pm 0.38 16.70 \pm 0.18 20.77 \pm 0.22 23.1 \pm 0.21 25.29 \pm 0.20 26.84 0.10	
$M_{W\pm} = 100.0 \text{ GeV}$ $M_{W\pm} = 201.0 \text{ GeV}$	51.20 ± 0.07 54.54 ± 0.07	1.032	29.26 ± 0.18	
$W^{\pm} \rightarrow \mu^{\pm} \nu_{\mu} / \tau^{\pm} \nu_{\tau} / q\bar{q}' $ $t\bar{t}$	- 0.211 \pm 0.003 5.76 \pm 0.02	91.014 ± 1.700 71.350 6.600	$ 10.07 \pm 0.15 12.92 \pm 1.25 1.00 \pm 0.37 $	
$\frac{t+b, t+q(+b)}{W+W, W+\gamma^*/Z, \gamma^*/Z+\gamma^*/Z}$	3.59 ± 0.01 2.94 ± 0.01	1.926 2.331	$\frac{28.97 \pm 0.35}{10.65 \pm 0.35}$	
$\gamma + \gamma, \ \gamma + jets, \ \gamma + W^{\perp}, \ \gamma + Z$ γ^*/Z	$\frac{0.201 \pm 0.001}{0.535 \pm 0.001}$	0.759	17.25 ± 0.53 4.43 ± 0.23	
QCD HF QCD LF	$(0.44 \pm 0.17) \times 10^{-1}$ $(0.87 \pm 0.33) \times 10^{-4}$	1.347 1.555	14.29 ± 37.41 71.43 ± 26.45	

Theoretical Prediction of $A_C(W^{\pm} \rightarrow \ell^{\pm} \nu)$ **Experimental Measurement of** $A_C(W^{\pm} \rightarrow \ell^{\pm} \nu)$ Indirect Determination of $M_{W^{\pm}}$

$A_C(S)$ after Background Subtraction

• In presence of B, the measured A_C is that of S+B, not just of S

•
$$A_C^{Exp}(S+B) = \frac{A_C^{Exp}(S) + \alpha^{Exp} \cdot A_C^{Exp}(B)}{1 + \alpha^{Exp}}$$
, where $\alpha^{Exp} = \frac{N_B^{Exp}}{N_S^{Exp}}$

• Invert the relation to get the "background subtraction equation":

$$A_{\mathcal{C}}^{\mathsf{Exp}}(S) = (1 + \alpha^{\mathsf{Exp}}) \cdot A_{\mathcal{C}}^{\mathsf{Exp}}(S + B) - \alpha^{\mathsf{Exp}} \cdot A_{\mathcal{C}}^{\mathsf{Exp}}(B)$$
(4)

ICA Experimental Systematic Uncertainties

- Strategy:
 - instead of trying to derive unreliable systematics using Delphes,
 - · we use systematics quoted in analyses of real data
 - $\delta_{Syst} A_C (W^{\pm} \rightarrow e^{\pm} \nu_e / \mu^{\pm} \nu_{\mu}) = 1.0 / 0.4\%$ [arXiv:1206.2598 / arXiv:1312.6283 [hep-ex]]
 - $\delta_{Syst} \frac{\sigma(pp \rightarrow W^{\pm} \rightarrow \ell^{\pm} \nu_{\ell})}{\sigma(pp \rightarrow \gamma^{*}/Z \rightarrow \ell^{\pm} \ell^{\mp})} = 1.0\% \text{ [arXiv:1107.4789 [hep-ex]]}$
- Gaussian smearings of N_S^{\pm} and N_B^{\pm} propagated into the subtraction equation
- Enable to calculate both A^{Meas}_C(S) and δA^{Meas}_C(S) account for the correlations between A_C(S + B), A_C(B), and α
- Build reconstruted $A_C^{Meas}(S) \pm \delta A_C^{Meas}(S)$ mass templates
- Fit these templates with polynomials of Log(Log) and include the correlations between the fit parameters into δA^{Meas.Fit}(S)

Theoretical Prediction of $A_C(W^{\pm} \rightarrow \ell^{\pm} \nu)$ Experimental Measurement of $A_C(W^{\pm} \rightarrow \ell^{\pm} \nu)$ Indirect Determination of $M_{W^{\pm}}$

Experimental Template Curve for the Electron Channel

the remaining background

Theoretical Prediction of $A_C(W^{\pm} \rightarrow \ell^{\pm} \nu)$ Experimental Measurement of $A_C(W^{\pm} \rightarrow \ell^{\pm} \nu)$ Indirect Determination of $M_{W^{\pm}}$

Extracting $M_{W^{\pm}}$ in the Electron and Muon Channels

- Analogous analysis performed to the muon channel
- Measured ICA of both channels are translated into indirect $M_{W^{\pm}}$ measurements:

$$M_C^{Meas}(S) = (16.70 \pm 0.35)\% \Rightarrow M^{Meas}(W^{\pm} \to e^{\pm}\nu_e) = 81.08^{+2.06}_{-2.02} \text{ GeV}$$
 (6)

$$M_C^{Meas}(S) = (17.52 \pm 0.18)\% \Rightarrow M^{Meas}(W^{\pm} \to \mu^{\pm}\nu_{\mu}) = 80.83^{+0.82}_{-0.82} \text{ GeV}$$
 (7)

Combine using weighted mean & RMS:

$$M^{Comb.Meas.}(W^{\pm}) = 80.86 \pm 0.54$$
(Exp.Comb.) GeV (8)

- $\bullet\,$ Theory uncertainties for this given mass (±0.24 GeV) obtained by looking-up the theoretical template curve
- Sum in quadrature experimental & theory uncertainties

$$M_{W^{\pm}} = 80.86^{+0.59}_{-0.59}$$
 (Tot. MRST2007lomod) GeV (9)

Repeat the whole procedure for CTEQ6L1 & MSTW2008lo68cl:

$$M_{W^{\pm}} = 80.14^{+0.60}_{-0.60} \text{ (Tot. CTEQ6L1) GeV}$$
 (10)

$$M_{W^{\pm}} = 81.36^{+1.48}_{-1.44} \text{ (Tot. MSTW2008lo68cl) GeV}$$
 (11)

Theoretical Prediction of $A_{\mathcal{C}}(\tilde{\chi}_1^{\pm} + \tilde{\chi}_2^0)$ Experimental Measurement of $A_{\mathcal{C}}(\tilde{\chi}_1^{\pm} + \tilde{\chi}_2^0 \rightarrow 3\ell^{\pm} + \ell_T)$ Indirect Determination of $M_{_{\sim}\pm} + M_{_{\sim}0}$

A SUSY Physics Case

Parton Level Setup using Resummino v1.0.0

- Calculate separately at $\sqrt{s} = 8$ TeV:
 - $\sigma^+ = \sigma(\rho + \rho \rightarrow \tilde{\chi}_1^+ + \tilde{\chi}_2^0)$
 - $\sigma^- = \sigma(p + p \rightarrow \tilde{\chi}_1^- + \tilde{\chi}_2^0)$
- $A_C^{Theory} = \frac{\sigma^+ \sigma^-}{\sigma^+ + \sigma^-}$
- LO MEs & LO PDFs: MRST2007lomod (default), CTEQ6L1, and MSTW2008lo68cl
- QCD Scales:

$$\mu_{R} = \mu_{F} = \mu_{0} = M_{\tilde{\chi}_{1}^{\pm}} + M_{\tilde{\chi}_{2}^{0}}$$

• Vary: $M_{\tilde{\chi}_1^\pm} = M_{\tilde{\chi}_2^0} =$ 100, 105, 115, 125, 135, 145, 150, 200, 250, 300, 400, 500, 600, 700 GeV

A SM Test Bench Process A SUSY Physics Case Conclusions

Different SUSY Scenarios (1/2)

• S1 Signal:

• Lightest SUSY particles: $\tilde{\chi}^{\pm}_1$, $\tilde{\chi}^{0}_{1,2}$, $\tilde{\ell}^{\pm}$

•
$$M_{\tilde{\chi}_1^{\pm}} = M_{\tilde{\chi}_2^0}$$

• $BR(\tilde{\chi}^{\pm} \to \tilde{\ell}^{\pm} (\to \ell^{\pm} \tilde{\chi}^0) + \mu) = 100\%$

•
$$BR(\tilde{\chi}_1^0 \to \tilde{\ell}^{\pm}(\to \ell^{\pm}\tilde{\chi}_1^0) + \ell^{\mp}) = 100\%$$

• Vary: $M_{\tilde{\chi}^0_2} \in [100, 700]$ GeV by steps of 100 GeV

• Set:
$$M_{\tilde{\chi}_1^0} = M_{\tilde{\chi}_2^0}/2$$
 and
 $M_{\tilde{\ell}^{\pm}} = [M_{\tilde{\chi}_2^0} + M_{\tilde{\chi}_1^{\pm}}]/2$

Different SUSY Scenarios (2/2)

S2 Signal:

• Lightest SUSY particles:
$$ilde{\chi}^\pm_1$$
, $ilde{\chi}^0_{1,2}$

•
$$M_{\tilde{\chi}_{1}^{\pm}} = M_{\tilde{\chi}_{2}^{0}}$$

• $BR(\tilde{\chi}_{1}^{\pm} \to \tilde{\ell}^{\pm}(\to \ell^{\pm}\tilde{\chi}_{1}^{0}) + \nu) = 100\%$

•
$$BR(\tilde{\chi}_{2}^{0} \to \tilde{\ell}^{\pm}(\to \ell^{\pm}\tilde{\chi}_{1}^{0}) + \ell^{\mp}) = 100\%$$

• Set:
$$M_{\tilde{\chi}_1^0} = M_{\tilde{\chi}_2^0}/2$$

• Case S2a: W and Z decay off-shell,
$$M_{\tilde{\chi}^0_2} = 100 \text{ GeV}$$
 and $M_{\tilde{\chi}^0_1} = 50 \text{ GeV}$

• Case S2b: W and Z decay on-shell,

$$M_{\tilde{\chi}_2^0} \in [200, 700]$$
 GeV by steps of 100
GeV, also
 $M_{\tilde{\chi}_2^0} \in [105, 145]$ GeV by steps of 10
GeV with $M_{\tilde{\chi}_1^0} = 13.8$ GeV, plus

$$[M_{\tilde{\chi}^0_2}, M_{\tilde{\chi}^0_1}] = [150, 50]$$
 GeV and [250, 125] GeV

Theoretical Prediction of $A_C(\tilde{\chi}_1^\pm + \tilde{\chi}_2^0)$ **Experimental Measurement of** $A_C^T(\tilde{\chi}_1^\pm + \tilde{\chi}_2^0 \rightarrow 3\ell^\pm + 1)$ Indirect Determination of $M_{\tilde{\chi}_2^\pm} + M_{\tilde{\chi}_2^0}$

Event Selection for $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow 3\ell^{\pm} + \overline{\not{\mu}_T}$ analysis

- Generators: Herwig++, Alpgen & Pythia8
- Fast Sim.: Delphes
- Collider Hypotheses:
 - $\sqrt{s} = 8$ TeV, L=20 fb⁻¹
- Electron Candidates: $|\eta(e^{\pm})| < 1.37 \text{ or} \\ 1.53 < |\eta(e^{\pm})| < 2.47 \\ p_T(e^{\pm}) > 10 \text{ GeV}$
- Muon Candidates: $|\eta(\mu^{\pm})| < 2.4$ $p_{T}(\mu^{\pm}) > 10 \text{ GeV}$
- $p_T(\ell_{1,2,3}^{\pm}) > 20, 10, 10 \text{ GeV}$
- Isolation: Tracker & Calorimeter
- $M_{T2} > 75 \text{ GeV}$

Expected and Measured ICA

Process	$\alpha^{Exp} \pm \delta \alpha^{Stat}$	Z _N	$A_C^{Exp} \pm \delta A_C^{Stat}$	$A_C^{Meas.} \pm \delta A_C^{Meas.}$
S1 Signal		(8)	(%)	(70)
$[M_{\tilde{\chi}_{2}^{0}}, M_{\tilde{\ell}\pm}, M_{\tilde{\chi}_{1}^{0}}] \text{ GeV}$				
[100, 75, 50]	$(9.98 \pm 0.26) \times 10^{-2}$	31.70	7.70 ± 0.27	7.70 ± 0.83
[200, 150, 100]	$(15.58 \pm 0.36) \times 10^{-2}$	23.86	16.06 ± 0.20	16.06 ± 0.85
[300, 225, 150]	$(34.28 \pm 0.79) \times 10^{-2}$	13.79	21.30 ± 0.17	21.30 ± 0.96
[400, 300, 200]	$(96.89 \pm 2.22) \times 10^{-2}$	6.04	24.40 ± 0.18	24.40 ± 1.29
[500, 375, 250]	$(288.49 \pm 6.61) \times 10^{-2}$	2.25	27.21 ± 0.16	27.21 ± 1.75
[600, 450, 300]	$(869.13 \pm 19.89) \times 10^{-2}$	0.74	27.20 ± 0.14	27.20 ± 1.97
[700, 525, 350]	$(2417.44 \pm 55.45) \times 10^{-2}$	0.23	29.06 ± 0.15	29.06 ± 2.02
S2 Signal				
$\begin{bmatrix} M_{\tilde{\chi}_2^0}, M_{\tilde{\chi}_1^0} \end{bmatrix}$ GeV				
[100, 50]	$(78.221 \pm 6989.644) \times 10^{1}$	-0.06	7.62 ± 0.38	7.62 ± 0.88
[105, 13.8]	$(177.34 \pm 4.21) \times 10^{-2}$	3.55	7.84 ± 0.23	7.85 ± 1.58
[115, 13.8]	$(167.29 \pm 3.91) \times 10^{-2}$	3.74	7.73 ± 0.21	7.73 ± 1.55
[125, 13.8]	$(190.49 \pm 4.44) \times 10^{-2}$	3.32	9.34 ± 0.21	9.34 ± 1.60
[135, 13.8]	$(199.69 \pm 4.61) \times 10^{-2}$	3.18	10.43 ± 0.17	10.43 ± 1.62
[145, 13.8]	$(223.26 \pm 5.16) \times 10^{-2}$	2.87	11.50 ± 0.19	11.50 ± 1.67
[150, 50]	$(382.23 \pm 8.90) \times 10^{-2}$	1.71	12.06 ± 0.19	12.06 ± 1.85
[200, 100]	$(1023.46 \pm 23.44) \times 10^{-2}$	0.62	16.66 ± 0.20	16.66 ± 2.00
[250, 125]	$(1405.78 \pm 32.29) \times 10^{-2}$	0.44	18.28 ± 0.18	18.28 ± 2.01
[300, 150]	$(2164.23 \pm 49.59) \times 10^{-2}$	0.26	20.98 ± 0.18	20.98 ± 2.02
[400, 200]	$(6083.89 \pm 138.89) \times 10^{-2}$	0.05	24.11 ± 0.17	24.11 ± 2.03
[500, 250]	$(18.881 \pm 0.431) \times 10^{-5}$	-0.03	27.51 ± 0.16	27.51 ± 2.03
[600, 300]	$(57.637 \pm 1.316) \times 10^{-5}$	-0.06	27.25 ± 0.18	27.25 ± 2.03
[700, 350]	$(182.517 \pm 4.167) \times 10^{-5}$	-0.07	27.91 ± 0.17	27.91 ± 2.03

S. Muanza: CPPM Marseille, CNRS-IN2P3 & AMU New Method for Mass Measurement using Integral Charge Asymmetry at LH

Experimental Template Curves for S1 Signal

S. Muanza: CPPM Marseille, CNRS-IN2P3 & AMU New Method for Mass Measurement using Integral Charge Asymmetry at LH

 $\begin{array}{l} \text{Theoretical Prediction of } A_C(\tilde{\chi}_1^{\pm} + \tilde{\chi}_2^0) \\ \text{Experimental Measurement of } A_C(\tilde{\chi}_1^{\pm} + \tilde{\chi}_2^0) \\ \text{Indirect Determination of } M_{\tilde{\chi}_1^{\pm}}^{\pm} + M_{\tilde{\chi}_2^0} \\ \end{array} \rightarrow 3\ell^{\pm} + \ell_{\mathcal{T}}) \end{array}$

Indirect Determination of $M_{ ilde{\chi}_1^\pm} + M_{ ilde{\chi}_2^0}$ (Exp. Uncert.)

Input $M_{\tilde{\chi}_1^{\pm}} + M_{\tilde{\chi}_2^0}$ (GeV)	$A_C^{Meas.Fit} \pm \delta A_C^{Meas.Fit}$ (%)	Meas. $M_{\tilde{\chi}_1^{\pm}} + M_{\tilde{\chi}_2^0}$ (GeV)		
S1 Signal				
200.	7.70 ± 1.62	$201.79^{+26.30}_{-22.78}$		
400.	16.06 ± 0.52	386.63+17.42		
600.	21.30 ± 0.56	624.12 ^{+33.36} -31.43		
800.	24.40 ± 0.67	831.24 ^{+55.66} -51.70		
1000.	27.21 ± 0.80	1100.14 + 91.85 - 83.85		
1200.	27.20 ± 0.78	1063.52+84.32		
1400.	29.06 ± 0.89	$1285.12^{+121.49}_{-109.70}$		
	S2 Signal			
200.	7.62 ± 0.74	214.89 + 12.08 - 11.33		
210.	7.85 ± 0.60	212.28 + 9.83 - 9.32		
230.	7.73 ± 0.60	210.37 + 9.81 - 9.30		
250.	9.34 ± 0.53	236.25 ^{+10.02} -9.54		
270.	10.43 ± 0.50	257.54 ^{+10.34} -9.85		
290.	11.50 ± 0.47	280.68 ^{+10.83} -10.34		
300.	12.06 ± 0.46	$293.53^{+11.19}_{-10.71}$		
400.	16.66 ± 0.49	432.55 ^{+18.63} -17.73		
500.	18.28 ± 0.54	495.50+24.10 -22.79		
600.	20.98 ± 0.66	633.64 ^{+39.45} -36.79		
800.	24.11 ± 0.83	850.74+71.20		
1000.	27.51 ± 1.07	$1222.74^{+143.06}_{-126.20}$		

S. Muanza: CPPM Marseille, CNRS-IN2P3 & AMU New Method for Mass Measurement using Integral Charge Asymmetry at LH

 $\begin{array}{l} \text{Theoretical Prediction of } A_C(\bar{\chi}_1^\pm + \bar{\chi}_2^0) \\ \text{Experimental Measurement of } A_C(\bar{\chi}_1^\pm + \bar{\chi}_2^0 \rightarrow 3\ell^\pm + \mathcal{E}_T) \\ \text{Indirect Determination of } M_{\tilde{\chi}_1^\pm} + M_{\tilde{\chi}_2^0} \end{array}$

Closure Tests w/ Expt. Uncert.: S1 Signal (LHS), S2 Signals (RHS)

A SM Test Bench Process A SUSY Physics Case Conclusions $\begin{array}{l} \text{Theoretical Prediction of } A_C(\tilde{\chi}_1^{\pm}+\tilde{\chi}_2^0)\\ \text{Experimental Measurement of } A_C(\tilde{\chi}_1^{\pm}+\tilde{\chi}_2^0)\rightarrow 3\ell^{\pm}+\mathcal{B}_T)\\ \text{Indirect Determination of } M_{\tilde{\chi}_1^{\pm}}+M_{\tilde{\chi}_2^0} \end{array} \rightarrow 3\ell^{\pm}+\mathcal{B}_T) \end{array}$

Final Plots w/ Full Uncert.: S1 Signal (LHS), S2 Signal (RHS)

Conclusions (1/2)

New Method

- Designed for charged-current production processes at LHC
- Independent of the final state kinematics
- Model Independent
 - Does not depend on BSM couplings
 - Only depends on proton PDF
- Especially well-suited when many final state particles escape detection

Accuracy of Indirect Measurements

-	W±	S1 Signal		W [±] S1 Signal S2 Signal		nal	Ī
-	$M_{W^{\pm}} = 80.4 \text{ GeV}$	5 <i>σ</i> : [200-800] GeV	[1.0-1.4] TeV	3σ: [210-270] GeV	[0.29-1.4] TeV		
$\frac{\frac{\delta M^{Fit}}{FS\pm}}{M^{Fit}}_{FS\pm}(\%)$	1.8	1.3-6.7	8-9	4.0-4.6	4-12		
$\frac{ M_{FS\pm}^{Fit} - M_{FS\pm}^{True} }{M_{FS\pm}^{True}} (\%)$	1.8	0.9-3.9	8.2-11.4	0.2-0.9	3.2-16.4		
$\frac{ M_{FS\pm}^{Fit} - M_{FS\pm}^{True} }{\delta M_{FS\pm}^{Fit}}(\sigma)$	1.0	0.1-0.6	0.9-1.6	0.2-1.2	0.6-1.7		

Note: W results include δ_{PDF}, SUSY results don't

S. Muanza: CPPM Marseille, CNRS-IN2P3 & AMU

New Method for Mass Measurement using Integral Charge Asymmetry at LH

Conclusions (2/2)

Linearity & Bias

- This indirect mass measurement technique
 - does not need any linearity corrections
 - does not need any offset corrections

Thanks for your attention

- Don't be sorry Garfield!
- Remember, you have to stay positive for me to measure your mass at LHC