

These results submitted to PRL : arXiv:1502.01391 [hep-ex]

Mike Albrow, Fermilab

Mike Albrow, Fermilab

PHYSICS MOTIVATION

 Pomeron : Strongly interacting color singlet exchange Carrier of 4-momentum (t-channel) in elastic scattering and other diffractive – large rapidity gap – interactions.

Non-perturbative QCD : models required for calculations. At leading order gluon pair $\{gg\}$ in color singlet. Vacuum quantum numbers I PC = 0 ++ s-channel continuation would be a glueball $\{gg\}$

Double Pomeron Exchange (DPE) : P + P → X
 Excellent channel for meson spectroscopy I^GJ^{PC} = 0⁺even⁺⁺
 Especially for scalar and tensor (J=2) glueballs
 Uniquely produced in isolation (or an isolated pair)

Mike Albrow, Fermilab

Introduction

 $p + \overline{p} \longrightarrow p(*) + X + \overline{p}(*)$

In this study $X = \pi^+\pi^-$ and central : $|y(\pi^+\pi^-)| < 1.0$ + : Rapidity gaps $\Delta \eta > 4.6$ with no detected particles. Allowed t-channel exchanges only γ or P(dominant)

Quantum numbers of state X have to be Q = S = B = 0Isospin I = 0, Parity = +1, C-parity = +1, spin J = 0 or 2

Established states (PDG) : f0(500, 980, 1370, 1500, 1710) f2(1270, 1525, 1950, 2010, 2300, 2340) $\chi_{c0}(1P), \chi_{c2}(1P), \chi_{c0}(2P), \chi_{c2}(2P) - \chi_{b0}(1P), \chi_{b2}(1P), \chi_{b0}(2P), \chi_{b2}(2P)$ & Higgs(125) ! (@ LHC?)

Central exclusive pion production in CDF

J = 0, 2 GLUEBALL IN HERE?

Tevatron and CDF

 $\sqrt{s} = 1960 \text{ GeV p-pbar}$ & $\sqrt{s} = 900 \text{ GeV}$ (special run for this & ...)

Outgoing protons not detected – Dissociation e.g. $p\pi\pi$ allowed if all $|\eta| > 5.9$

Level 1 Trigger:

2 Calo towers $|\eta| < 1.3$ with $E_T > 0.5$ GeV

& all these in VETO :

BSC = Beam Shower Counters $|\eta| = 5.4 - 5.9$ CLC = Cherenkov Lumi Counters $|\eta| = 3.75 - 4.75$ Plug Calorimeter $|\eta| = 2.11 - 3.64$

Mike Albrow, Fermilab

Only single, no pile-up, interactions usable Data mostly at end of stores when pile-up is low.

Off-line select exactly two tracks on a common vertex & excluding cones of R = 0.3 in calo around extrapolated tracks, full detector $-5.9 < \eta < +5.9$ "empty" = consistent with noise.

 $R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$ Determining noise levels (exclusivity cuts)
Zero bias (bunch crossing) triggers, same periods
Make two distinct classes:
A)"No Interaction" = no tracks, no CLC hits, no muon stubs
B) "Interaction" = All other events

Plot distributions of A and B for ΣE , ΣADC counts, hottest PMT for each subdetector

Mike Albrow, Fermilab

Examples of determining noise levels = exclusivity cuts

Good noise-hits separation Red under noise = genuine gaps

Shift cuts for systematics

These are for the "west" side. East side plots ~ identical

Applying all exclusivity cuts to zero-bias data \rightarrow Probability empty detector fn L_{bunch} $\epsilon(excl)$ vs L_{bunch} -- 36 x 36 bunches not all equal Intercept = 1.0 (no beams no noise!) P(0) is exponential Slope \rightarrow detected inelastic cross section

	1960 GeV	900 GeV
σ _{obs} (η <5.9)	55.9(4) mb	65.8(4) mb
L _{eff}	1.15/pb	0.059/pb

Higher M(diss.) allowed at 1960 GeV Provides the effective no-pileup luminosity, convoluting L_{bunch} distribution of data

Mike Albrow, Fermilab

Further analysis:

Exactly two tracks, opposite charge (|Q| = 2 kept for B/G control) on a common vertex in interaction region.

Track quality (χ^2) cuts, and $p_T(\text{track}) > 0.4 \text{ GeV/c}$, $|\eta(\text{track})| < 1.3 |y(\pi+\pi-)| < 1.0$

Additional noise cut on hottest EM tower ($E_T < 90$ MeV) outside track cones.

Cosmic ray background = 0 after cuts

Final sample: 127,340 events at $\sqrt{s} = 1960 \text{ GeV}$ 6,240 events at $\sqrt{s} = 900 \text{ GeV}$

The "hottest" EM tower must be less than 90 MeV

Mike Albrow, Fermilab

Invariant mass distribution, not corrected for acceptance

Acceptance very low for $M_{\pi\pi} < 1 \text{ GeV/c}^2 (p_T \text{ cut})$ But no significant ρ (forbidden in DPE) f0(980)/cusp at KK threshold Strong f2(1270) with f0(1300) shoulder Structures at higher masses Need to correct for acceptance!

Mike Albrow, Fermilab

<u>Components to acceptance x efficiency:</u>

Trigger efficiency (p_T, η, ϕ) Single track acceptance (p_T, η, ϕ) Two track acceptance ($M_{\pi\pi}$, $p_{T\pi\pi}$, $y_{\pi\pi}$) we assume isotropic decay (S-wave): the only model dependence Will be checked by comparing with data ... compatible with isotropic?

Single track acceptance (p_T, η, ϕ)

Probability of triggering exactly 1 tower > At high p_T 2 or more towers trigger

Track Pt [GeV/c]

Mike Albrow, Fermilab

Central exclusive pion production in CDF

0.0 Probability of 1

10

Acceptance x efficiency for $\pi\pi$, function of M_{$\pi\pi$} and p_{T $\pi\pi$}

Avoid (low M, low p_T) hole and edges: select two regions

Mike Albrow, Fermilab

Data, corrected for acceptance and efficiencies in M, p_T and effective luminosity:

Cross sections, integrated over p_T in two regions (1960 GeV)

Broad continuum below 1 GeV/c^2 "Cusp" at KK threshold/f0(980) $\overline{\text{Resonance}(s)} \text{ up to } 1500 \text{ MeV/c}^2$ dominated by f2(1270) \dots asymmetric: probable f0(1300) Change (~dip) at 1500 MeV/c² Possible higher mass structures

Mike Albrow, Fermilab

$M_{\pi\pi} > 1600 \text{ MeV/c}^2 \text{ structures}?$ Fit $1600 - 3600 \text{ MeV/c}^2$ to 4^{th} order polynomial

Cannot say more now: other channels e.g. KK, KK $\pi\pi$, $\phi\phi$ etc very desirable. (LHC Low pile-up running?) Peak at 3100 MeV/c² is consistent with photoproduced J/ $\psi \rightarrow e^+e^-$ (muon stubs were veto'd)

\sqrt{s} dependence 0.9 TeV and 1.96 TeV

R(0.9:1.96) from $1000 - 2000 \text{ MeV/c}^2 = 1.284 \pm 0.039$ Consistent with R ~ 1.3 from Regge phenomenology, $\sigma(p+X+p) \sim 1/\ln(s)$ [but p* included] R(0.9:1.96) from $2000 < M < 3000 \text{ MeV/c}^2 = 1.560 \pm 0.056$. Why higher?

Mike Albrow, Fermilab

Backgrounds

I: Same sign sample (non-exclusive)

- Remove $Q(\pi\pi) = 0$ requirement. Same charge pairs are
- 6.1% (900 GeV) and 7.1% (1960 GeV)
- Some non-exclusive background with 2 or more undetected charged particles. Can be:
- \rightarrow very low p_T (with no reconstructed track
- and calorimeter E/E_T below the noise level or in a crack)
- \rightarrow very forward $|\eta| = 4.75 5.40$ or $|\eta| > 5.9$

The M($\pi\pi$) distribution for ++/- - pairs is featureless \rightarrow But is indication of a similar background from $\pi^+\pi^-\pi^+\pi^-$ (e.g.) events in $\pi^+\pi^-$ sample \rightarrow We do not subtract.

Mike Albrow, Fermilab

II: Non- $\pi^+\pi^-$ background

ToF counter hodoscope information used (coverage only $|\eta| < 0.9$)

For $|\eta| < 1.3$: 67% of the pairs have both particles identified. Of those 89% are $\pi^+\pi^-$ pairs

For $|\eta| < 0.7$: 90% of the pairs have both particles identified (cracks in coverage) \rightarrow No significant change in the composition

Assigning pion masses

We do not subtract non- $\pi^+\pi^-$ backgrounds; systematics would be large.

Mike Albrow, Fermilab

Mean $p_T(\pi^+\pi^-)$ as a function of $M_{\pi^+\pi^-}$

Decrease above 1 GeV/c2 can be acceptance effect Sharp jump at 1.5 GeV/c2 cannot be. Interesting region

Mike Albrow, Fermilab

Angular distributions (not a full partial wave analysis)

In $\pi^+\pi^-$ frame, cos 9 distribution of π^+ w.r.t. X direction. Flat for J = 0 S-wave if 4π coverage, sculpted by central acceptance. Black points are data, red histogram is S-wave Monte Carlo with acceptance. Four mass bands: 0.8 < M < 1.5 GeV isotropic (even through f2(1270) peak) Above 1.5 GeV Forward-Backward peaking.

Mike Albrow, Fermilab

Conclusions

- We have measured π⁺π⁻ pairs between large rapidity gaps Δη > 4.6 in CDF at the Tevatron, which should be dominated by double pomeron exchange.
- Contribution of non-π⁺π⁻ pairs background and nonexclusive backgrounds is small
- The mass spectra show several structures:
 - Broad continuum below 1 GeV/c²,
 - Sharp drop at 1 GeV/c²
 - Resonant enhancement around $1.0 1.5 \text{ GeV/c}^2$.
- This is the only measurement from the Tevatron, and has much higher statistics than preliminary data from the LHC experiments.

Glueballs remain elusive, but this is a promising channel (LHC!)

Thank you

Mike Albrow, Fermilab

Back Ups

Mike Albrow, Fermilab

Mike Albrow, Fermilab

Trigger Efficiency

Mike Albrow, Fermilab

1500 MeV/c² region ? f0(1500) as dip in $\pi\pi$, peak in KK, $\sigma\sigma$?

Mike Albrow, Fermilab