On the resummation of non-global logarithms at finite N_c

Yazid Delenda

Université Hadj Lakhdar - Batna (Algeria)

Work done in collaboration with Kamel Khelifa-Kerfa

Université Hassiba Benbouali de Chlef (Algeria)

DIS 2015 Dallas, TX, 30th April 2015

(JHEP03(2015)094, ArXiv:1501.00475) On the resummation of NGLs at finite N_c

Y. Delenda 1 / 17

Precision at the LHC

New physics @ LHC \Rightarrow Precision measurements. Require:

New tools to boost search for new physics:	
e.g. jet substructure for boosted objects	
aim: background/signal discrimination	e.g. Butterworth, e

Analytic calculations

e.g. analytic understanding of jet substructure

MC precision

- Use "reasonable" approximations
 - e.g. large-N_c approximation how accurate?
- Tuned with data for NP parameters mis-tuning?
- Compare with analytic results for systematic improvements

(JHEP03(2015)094, ArXiv:1501.00475) On the resummation of NGLs at finite N_c

al '08

Precision at the LHC

New physics @ LHC \Rightarrow Precision measurements. Require:

New tools to boost search for new physics:

e.g. jet substructure for **boosted** objects aim: background/signal discrimination

e.g. Butterworth, et al '08

Dasgupta et al '13

Analytic calculations

e.g. analytic understanding of jet substructure

MC precision

- Use "reasonable" approximations
 - e.g. large-N_c approximation how accurate?
- Tuned with data for NP parameters mis-tuning?
- Compare with analytic results for systematic improvements

(JHEP03(2015)094, ArXiv:1501.00475) On the resummation of NGLs at finite N_c

Precision at the LHC

New physics @ LHC \Rightarrow Precision measurements. Require:

New tools to boost search for new physics:

e.g. jet substructure for **boosted** objects aim: background/signal discrimination

e.g. Butterworth, et al '08

Analytic calculations

e.g. analytic understanding of jet substructure

MC precision

- Use "reasonable" approximations
 - e.g. large- N_c approximation how accurate?
- Tuned with data for NP parameters mis-tuning?
- Compare with analytic results for systematic improvements

Dasgupta et al '13

QCD Resummation and its status

An important aspect is the resummation of large logs in QCD, typically present in exclusive observables:

 $\sigma(V) \propto \exp\left[L g_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \alpha_s^2 g_4(\alpha_s L)\right]$

L: large log which depends on generic observable V.

- Why? Cuts ⇒ miscancellation of real-virtual soft/collinear divergences
- Up to NNNLL (g₄) have been resummed (C parameter in e⁺e⁻, etc).
 Hoang et al '14
- Semi-analytical approaches available up to NLL and NNLL (CEASAR & ARES)
 Banfi et al '05, Banfi et al '14

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

QCD Resummation and its status

An important aspect is the resummation of large logs in QCD, typically present in exclusive observables:

 $\sigma(V) \propto \exp\left[L g_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \alpha_s^2 g_4(\alpha_s L)\right]$

L: large log which depends on generic observable V.

- Why? Cuts ⇒ miscancellation of real-virtual soft/collinear divergences
- Up to NNNLL (g_4) have been resummed (C parameter in e^+e^- , etc). Hoang et al '14
- Semi-analytical approaches available up to NLL and NNLL (CEASAR & ARES)
 Banfi et al '05, Banfi et al '14

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Non-global observables and non-global logarithms

Non-global observables

- Non-global observables: (typically) exclusive over angular phase space.
- They have non-global logs (NGLs).

Dasgupta & Salam '01, '02

< ロ > < 同 > < 三 > < 三 >

Many important observables are non-global:

- Some jet shapes (used in substructure techniques), jet mass, angularities...
- Gaps-between-jets observables (Interjet energy flow)
- Azimuthal decorrelations between jets (with certain jet definition)
- Some transverse momentum distributions (of angular exclusive nature)

Non-global observables and non-global logarithms

Non-global observables

- Non-global observables: (typically) exclusive over angular phase space.
- They have non-global logs (NGLs).

Dasgupta & Salam '01, '02

(4 同) (4 回) (4 回)

Many important observables are non-global:

- Some jet shapes (used in substructure techniques), jet mass, angularities...
- Gaps-between-jets observables (Interjet energy flow)
- Azimuthal decorrelations between jets (with certain jet definition)
- Some transverse momentum distributions (of angular exclusive nature)

Resummation of NGLs

Non-trivial resummation:

- Gluon multiplicity (solution: large- N_c limit)
- Prohibitive integrations (non-iterative geometry) (solution: MC)

Analytic all-order treatment of NGLs @ large N_c is encoded in BMS equation Banfi et al '02

- No proper analytic solution available (only MC)
- $\, \bullet \,$ Until recently NGLs were only resummed numerically at large N_c

Why Precision is spoiled by these approximations?

• Large N_c : \Rightarrow uncertainties $\mathcal{O}(1/N_c^2)$

- solution: k_t clustering reduces NGLs
- however anti- k_t algorithm is preferred
- Clustering logs introduced by k_t algorithm Banfi et al'05, Delenda et al'06

<ロト < 同ト < 三ト <

Appleby et al'03

Resummation of NGLs

Non-trivial resummation:

- Gluon multiplicity (solution: large-N_c limit)
- Prohibitive integrations (non-iterative geometry) (solution: MC)

Analytic all-order treatment of NGLs @ large N_c is encoded in BMS equation Banfi et al '02

- No proper analytic solution available (only MC)
- $\bullet\,$ Until recently NGLs were only resummed numerically at large N_c
- Why Precision is spoiled by these approximations?
 - Large N_c : \Rightarrow uncertainties $\mathcal{O}(1/N_c^2)$
 - \bullet solution: k_t clustering reduces NGLs
 - however anti- k_t algorithm is preferred
 - Clustering logs introduced by k_t algorithm Banfi et al'05, Delenda et al'06

Resummation of NGLs

Non-trivial resummation:

- Gluon multiplicity (solution: large-N_c limit)
- Prohibitive integrations (non-iterative geometry) (solution: MC)

Analytic all-order treatment of NGLs @ large N_c is encoded in BMS equation Banfi et al '02

- No proper analytic solution available (only MC)
- Until recently NGLs were only resummed numerically at large N_c

Why Precision is spoiled by these approximations?

- Large $N_c\!\!:\Rightarrow$ uncertainties $\mathcal{O}(1/N_c^2)$
 - solution: k_t clustering reduces NGLs

Appleby et al'03

- however anti- k_t algorithm is preferred
- Clustering logs introduced by k_t algorithm Banfi et al'05, Delenda et al'06

Y. Delenda 5 / 17

・ロト ・同ト ・ヨト ・ヨト

Recent progress in NGLs resummation

Numerical resummation @ finite N_c for gap energy Hatta & Ueda '13

- **Result:** finite N_c corrections negligible in e^+e^- collisions
- Expect: significant contributions from finite N_c correction in hadronic collision!

Analytic solution to the BMS equation at fixed order up to five loops for hemisphere mass distribution [defined later]. Schwartz & Zhu '14

$$\begin{split} \Sigma_{\rm SZ}^{\rm NG} = & 1 - \frac{\pi^2}{24} \widehat{L}^2 + \frac{\zeta_3}{12} \widehat{L}^3 + \frac{\pi^4}{34\,560} \widehat{L}^4 + \left(-\frac{\pi^2 \zeta_3}{360} + \frac{17}{480} \zeta_5 \right) \widehat{L}^5 + \mathcal{O}(\alpha_s^6) \,, \end{split}$$
with $\widehat{L} = N_c \alpha_s \ln(1/\rho)/\pi$

Recent progress in NGLs resummation

Numerical resummation @ finite N_c for gap energy Hatta & Ueda '13

- **Result:** finite N_c corrections negligible in e^+e^- collisions
- **Expect:** significant contributions from finite N_c correction in hadronic collision!

Analytic solution to the BMS equation at fixed order up to five loops for hemisphere mass distribution [defined later]. Schwartz & Zhu '14

$$\Sigma_{\rm SZ}^{\rm NG} = 1 - \frac{\pi^2}{24} \widehat{L}^2 + \frac{\zeta_3}{12} \widehat{L}^3 + \frac{\pi^4}{34560} \widehat{L}^4 + \left(-\frac{\pi^2 \zeta_3}{360} + \frac{17}{480} \zeta_5 \right) \widehat{L}^5 + \mathcal{O}(\alpha_s^6) \,,$$

with $\widehat{L} = N_c \alpha_s \ln(1/\rho)/\pi$

NGLs @ finite N_c

Here we are interested in the analytic resummaion of NGLs at finite N_c :

Work with energy-ordering: $Q \gg k_{t1} \gg k_{t2} \gg \cdots \gg k_{tn}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hemisphere mass distribution

Compute Born-normalised integrated hemisphere mass distribution:

$$\Sigma(\rho) = \int_0^\rho \frac{1}{\sigma_0} \frac{\mathrm{d}\sigma}{\mathrm{d}\rho'} \,\mathrm{d}\rho' = 1 + \Sigma_1(\rho) + \Sigma_2(\rho) + \cdots,$$

$$\Sigma_m(\rho) = \sum_X \int \left(\frac{1}{m!} \prod_{i=1}^m \mathrm{d}\Phi_i\right) \hat{\mathcal{U}}_m \,\mathcal{W}_{12\cdots m}^X,$$

i.e. probability that measured hemisphere mass is less than ρ .

- $\mathcal{W}_{12\cdots m}^{X} = \mathcal{W}^{X}(k_{1}, k_{2}, \cdots, k_{m})$: Born-normalised eikonal squared amplitudes for emission of m gluons of configuration X.
- X: real (R)/virtual (V) configurations of gluons.
- $\prod_{i=1}^{m} \mathrm{d}\Phi_i$: phase-space of emitted gluons
- $\hat{\mathcal{U}}_m$: measurement operator: cut events with hemisphere mass $> \rho$.

(JHEP03(2015)094, ArXiv:1501.00475) On the resummation of NGLs at finite N_c

Brute force calculation method of NGLs at finite N_c

Issues to tackle:

- Evaluate eikonal squared amplitudes $\mathcal{W}_{12\cdots m}^X$:
 - Account for all gluon branchings
 - Calculate traces of color matrices for each diagram using ColorMath Sjödahl '12
 - Consider all real-virtual configurations and compute mis-match between them
 - See next talk for details

Perform integrations (semi-)analytically [up to 7-D @ 4 loops]

Perform Resummation of the logs

Brute force calculation method of NGLs at finite N_c

Issues to tackle:

- Evaluate eikonal squared amplitudes $\mathcal{W}_{12\cdots m}^X$:
 - Account for all gluon branchings
 - Calculate traces of color matrices for each diagram using ColorMath Sjödahl '12
 - Consider all real-virtual configurations and compute mis-match between them
 - See next talk for details
- Perform integrations (semi-)analytically [up to 7-D @ 4 loops]

Perform Resummation of the logs

Brute force calculation method of NGLs at finite N_c

Issues to tackle:

- Evaluate eikonal squared amplitudes $\mathcal{W}_{12\cdots m}^X$:
 - Account for all gluon branchings
 - Calculate traces of color matrices for each diagram using ColorMath Sjödahl '12
 - Consider all real-virtual configurations and compute mis-match between them
 - See next talk for details
- Perform integrations (semi-)analytically [up to 7-D @ 4 loops]
- Perform Resummation of the logs

Results: factorisation of NGLs from global logs

Result: The hemisphere mass distrubution is:

 $\Sigma(\rho) = \Sigma^{\mathrm{P}}(\rho) \times \Sigma^{\mathrm{NG}}(\rho) \,,$

 Σ^{P} : Sudakov form factor (global logs):

$$\Sigma^{\mathrm{P}}(\rho) = \exp\left(\Sigma_{1}^{\mathrm{P}}\right) = \exp\left(-\mathrm{C}_{\mathrm{F}}\bar{\alpha}_{s}L^{2}\right),$$

 $L = \ln(1/\rho), \ \bar{\alpha}_s = \alpha_s/2\pi.$ Why double logs? \Rightarrow soft and collinear logs.

The non-global factor:

$$\Sigma^{\mathrm{NG}}(\rho) = 1 + \Sigma_2^{\mathrm{NG}}(\rho) + \Sigma_3^{\mathrm{NG}}(\rho) + \cdots$$

resums NGLs starting from two loops [only single logs].

Results: factorisation of NGLs from global logs

Result: The hemisphere mass distrubution is:

 $\Sigma(\rho) = \Sigma^{\mathrm{P}}(\rho) \times \Sigma^{\mathrm{NG}}(\rho) \,,$

 Σ^P : Sudakov form factor (global logs):

$$\Sigma^{\mathrm{P}}(\rho) = \exp\left(\Sigma_{1}^{\mathrm{P}}\right) = \exp\left(-C_{\mathrm{F}}\bar{\alpha}_{s}L^{2}\right),$$

 $L = \ln(1/\rho), \ \bar{\alpha}_s = \alpha_s/2\pi.$ Why double logs? \Rightarrow soft and collinear logs. The non-global factor:

$$\Sigma^{\mathrm{NG}}(\rho) = 1 + \Sigma_2^{\mathrm{NG}}(\rho) + \Sigma_3^{\mathrm{NG}}(\rho) + \cdots$$

resums NGLs starting from two loops [only single logs].

Results: NGLs series

Up to four loops (fully) and five loops (partially):

$$egin{aligned} \Sigma^{ ext{NG}}(
ho) =& 1 - rac{ar{L}^2}{2!} ext{C}_{ ext{F}} ext{C}_{ ext{A}} \zeta_2 + rac{ar{L}^3}{3!} ext{C}_{ ext{F}} ext{C}_{ ext{A}}^2 \zeta_3 + \ & - rac{ar{L}^4}{4!} \left[rac{25}{8} ext{C}_{ ext{F}} ext{C}_{ ext{A}}^3 \zeta_4 - rac{13}{5} ext{C}_{ ext{F}}^2 ext{C}_{ ext{A}}^2 \zeta_2^2
ight] + \ & - rac{ar{L}^5}{2!3!} ext{C}_{ ext{F}}^2 ext{C}_{ ext{A}}^3 \zeta_2 \zeta_3 + rac{ar{L}^5}{5!} ext{C}_{ ext{F}} ext{C}_{ ext{A}}^4 \zeta_5 \left[lpha + eta \left(rac{ ext{C}_{ ext{F}}}{ ext{C}_{ ext{A}}} - rac{1}{2}
ight)
ight] + \ & + \mathcal{O}(lpha_s^6). \end{aligned}$$

 $\bar{L} = \bar{\alpha}_s L$, α and β are undetermine fixed coefficients. **Observation 1:** At four loop finite- N_c corrections are $\mathcal{O}(1.5\%)$ of large N_c result [agreement with findings of Hatta & Ueda '13]

(JHEP03(2015)094, ArXiv:1501.00475) On the resummation of NGLs at finite N_c

- 4 同 6 4 日 6 4 日 6

Results: NGLs series

Up to four loops (fully) and five loops (partially):

$$egin{aligned} \Sigma^{
m NG}(
ho) =& 1 - rac{ar{L}^2}{2!} \mathrm{C_F} \mathrm{C_A} \zeta_2 + rac{ar{L}^3}{3!} \mathrm{C_F} \mathrm{C_A^2} \zeta_3 + \ & - rac{ar{L}^4}{4!} \left[rac{25}{8} \mathrm{C_F} \mathrm{C_A^3} \zeta_4 - rac{13}{5} \, \mathrm{C_F} \mathrm{C_A^2} \, \zeta_2^2
ight] + \ & - rac{ar{L}^5}{2!3!} \, \mathrm{C_F} \mathrm{C_B^3} \, \zeta_2 \zeta_3 + rac{ar{L}^5}{5!} \, \mathrm{C_F} \mathrm{C_A^4} \, \zeta_5 \left[lpha + eta \left(rac{\mathrm{C_F}}{\mathrm{C_A}} - rac{1}{2}
ight)
ight] + \ & + \mathcal{O}(lpha_s^6). \end{aligned}$$

 $\bar{L} = \bar{\alpha}_s L$, α and β are undetermine fixed coefficients. **Observation 1:** At four loop finite- N_c corrections are $\mathcal{O}(1.5\%)$ of large N_c result [agreement with findings of Hatta & Ueda '13]

Results: NGLs at large N_c

Observation 2: Our result at large N_c agrees with Schwartz and Zhu's result (obtained via BMS equation):

$$\Sigma^{\text{NG}} = 1 - \frac{\pi^2}{24} (N_c \bar{L})^2 + \frac{\zeta_3}{12} (N_c \bar{L})^3 + \frac{\pi^4}{34560} (N_c \bar{L})^4 + \left(-\frac{\pi^2 \zeta_3}{288} + \alpha \frac{\zeta_5}{240} \right) (N_c \bar{L})^5 + \mathcal{O} \left((N_c \bar{L})^6 \right) \,,$$

5chwartz & Zhu '14

deduce $\alpha = \frac{17}{2} + \frac{\zeta_2 \zeta_3}{\zeta_5}$. Anstaz for $\beta = 2\frac{\zeta_2 \zeta_3}{\zeta_5}$ based on observed pattern of zeta functions.

Results: NGLs at large N_c

Observation 2: Our result at large N_c agrees with Schwartz and Zhu's result (obtained via BMS equation):

$$\Sigma^{\text{NG}} = 1 - \frac{\pi^2}{24} (N_c \bar{L})^2 + \frac{\zeta_3}{12} (N_c \bar{L})^3 + \frac{\pi^4}{34560} (N_c \bar{L})^4 + \left(-\frac{\pi^2 \zeta_3}{288} + \alpha \frac{\zeta_5}{240} \right) (N_c \bar{L})^5 + \mathcal{O} \left((N_c \bar{L})^6 \right) \,,$$

deduce $\alpha = \frac{17}{2} + \frac{\zeta_2 \zeta_3}{\zeta_5}$. Anstaz for $\beta = 2\frac{\zeta_2 \zeta_3}{\zeta_5}$ based on observed pattern of zeta functions.

◆□ > ◆□ > ◆豆 > ◆豆 > ◆□ > ◆□ >

Results: Exponentiation of NGLs

Observation 3: NGLs exhibit a pattern of exponentiation:

$$\begin{split} \Sigma^{\rm NG}(\rho) &= \exp\left\{-\frac{\bar{L}^2}{2!} C_{\rm F} C_{\rm A} \zeta_2 + \frac{\bar{L}^3}{3!} C_{\rm F} C_{\rm A}^2 \zeta_3 \\ &- \frac{\bar{L}^4}{4!} C_{\rm F} C_{\rm A}^3 \zeta_4 \left[\frac{29}{8} + \left(\frac{C_{\rm F}}{C_{\rm A}} - \frac{1}{2}\right)\right] + \\ &+ \frac{\bar{L}^5}{5!} C_{\rm F} C_{\rm A}^4 \zeta_5 \left[\alpha + \beta \left(\frac{C_{\rm F}}{C_{\rm A}} - \frac{1}{2}\right)\right] + \mathcal{O}(\alpha_s^6) \right\}. \end{split}$$

$$\Sigma^{\mathrm{NG}}(\rho) = \exp\left\{-\frac{\bar{L}^2}{2!}\mathrm{C}_{\mathrm{F}}\mathrm{C}_{\mathrm{A}}\zeta_2 + \frac{\bar{L}^3}{3!}\mathrm{C}_{\mathrm{F}}\mathrm{C}_{\mathrm{A}}^2\zeta_3 - \frac{\bar{L}^4}{4!}\left[\frac{25}{8}\,\mathrm{C}_{\mathrm{F}}\mathrm{C}_{\mathrm{A}}^3\,\zeta_4 + \frac{2}{5}\,\mathrm{C}_{\mathrm{F}}^2\mathrm{C}_{\mathrm{A}}^2\,\zeta_2^2\right] + \frac{\bar{L}^5}{5!}\left[\frac{17}{2}\,\mathrm{C}_{\mathrm{F}}\mathrm{C}_{\mathrm{A}}^4\,\zeta_5 + 2\,\mathrm{C}_{\mathrm{F}}^2\mathrm{C}_{\mathrm{A}}^3\,\zeta_2\zeta_3\right] + \mathcal{O}(\alpha_s^6)\right\}.$$

(JHEP03(2015)094, ArXiv:1501.00475) On the resummation of NGLs at finite N_c

Y. Delenda

13 / 17

Results: Exponentiation of NGLs

Observation 3: NGLs exhibit a pattern of exponentiation:

$$\begin{split} \Sigma^{\rm NG}(\rho) &= \exp\left\{-\frac{\bar{L}^2}{2!} C_{\rm F} C_{\rm A} \zeta_2 + \frac{\bar{L}^3}{3!} C_{\rm F} C_{\rm A}^2 \zeta_3 \\ &- \frac{\bar{L}^4}{4!} C_{\rm F} C_{\rm A}^3 \zeta_4 \left[\frac{29}{8} + \left(\frac{C_{\rm F}}{C_{\rm A}} - \frac{1}{2}\right)\right] + \\ &+ \frac{\bar{L}^5}{5!} C_{\rm F} C_{\rm A}^4 \zeta_5 \left[\alpha + \beta \left(\frac{C_{\rm F}}{C_{\rm A}} - \frac{1}{2}\right)\right] + \mathcal{O}(\alpha_s^6) \right\}. \end{split}$$

with observed pattern we may write (anstaz):

$$\begin{split} \Sigma^{\rm NG}(\rho) &= \exp\left\{-\frac{\bar{L}^2}{2!} C_{\rm F} C_{\rm A} \zeta_2 + \frac{\bar{L}^3}{3!} C_{\rm F} C_{\rm A}^2 \zeta_3 - \\ &- \frac{\bar{L}^4}{4!} \left[\frac{25}{8} C_{\rm F} C_{\rm A}^3 \zeta_4 + \frac{2}{5} C_{\rm F}^2 C_{\rm A}^2 \zeta_2^2\right] + \\ &+ \frac{\bar{L}^5}{5!} \left[\frac{17}{2} C_{\rm F} C_{\rm A}^4 \zeta_5 + 2 C_{\rm F}^2 C_{\rm A}^3 \zeta_2 \zeta_3\right] + \mathcal{O}(\alpha_s^6) \right\}. \end{split}$$

(JHEP03(2015)094, ArXiv:1501.00475) On the resummation of NGLs at finite N_c

Y. Delenda 13 / 17

Convergence of the series

Up to 4-loops is insufficient for good convergence. A few more terms should suffice!

Comparison with Monte Carlo

At finite N_c

$$\begin{split} \Sigma_{\rm DS}^{\rm NG}(t) &= \exp\left(-{\rm C_F C_A} \frac{\pi^2}{3} \frac{1+(0.85{\rm C_A}t)^2}{1+(0.86{\rm C_A}t)^{1.33}} t^2\right) \\ t &= & \frac{1}{4\pi\beta_0} \ln \frac{1}{1-2\beta_0\alpha_s L} \,, \end{split}$$

parametrisation of MC by Dasgupta & Salam 'Q1 ~

(JHEP03(2015)094, ArXiv:1501.00475) On the resummation of NGLs at finite N_c

Comparison with Monte Carlo

At large N_c

Y. Delenda 16 / 17

Conclusions and outlook

Summary

- High precision @ LHC \Rightarrow assess accuracy of MC's
- How good are approximations used therein (large N_c?, got all logs resummed appropriately? – e.g. clustering logs?, NGLs?)
- Non-global logs major problem in QCD resummation
- First analytic attempt at the resummation of NGLs at finite N_c

More work is underway in this subject:

- Eikonal amplitudes beyond 5 loops
- Analytic solution to the BMS equation
- (Hopefully) full analytic resummation of NGLs
- role of jet algorithms for NGLs at finite N_c

Conclusions and outlook

Summary

- High precision @ LHC \Rightarrow assess accuracy of MC's
- How good are approximations used therein (large N_c?, got all logs resummed appropriately? – e.g. clustering logs?, NGLs?)
- Non-global logs major problem in QCD resummation
- First analytic attempt at the resummation of NGLs at finite N_c

More work is underway in this subject:

- Eikonal amplitudes beyond 5 loops
- Analytic solution to the BMS equation
- (Hopefully) full analytic resummation of NGLs
- role of jet algorithms for NGLs at finite N_c