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Motivation: Precision at the LHC

Precision at the LHC

New physics @ LHC ⇒ Precision measurements. Require:

New tools to boost search for new physics:

e.g. jet substructure for boosted objects
aim: background/signal discrimination e.g. Butterworth, et al ’08

Analytic calculations

e.g. analytic understanding of jet substructure Dasgupta et al ’13

MC precision

Use “reasonable” approximations

e.g. large-Nc approximation – how accurate?

Tuned with data for NP parameters – mis-tuning?

Compare with analytic results for systematic improvements
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QCD resummation and NGLs

QCD Resummation and its status

An important aspect is the resummation of large logs in QCD, typically
present in exclusive observables:

σ(V ) ∝ exp
[
Lg1(αsL) + g2(αsL) + αsg3(αsL) + α2

sg4(αsL)
]

L: large log which depends on generic observable V .

Why? Cuts ⇒ miscancellation of real-virtual soft/collinear
divergences

Up to NNNLL (g4) have been resummed (C parameter in e+e−, etc).
Hoang et al ’14

Semi-analytical approaches available up to NLL and NNLL (CEASAR
& ARES) Banfi et al ’05, Banfi et al ’14
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QCD resummation and NGLs

Non-global observables and non-global logarithms

Non-global observables

Non-global observables: (typically) exclusive over angular phase
space.

They have non-global logs (NGLs). Dasgupta & Salam ’01, ’02

Many important observables are non-global:

Some jet shapes (used in substructure techniques), jet mass,
angularities...

Gaps-between-jets observables (Interjet energy flow)

Azimuthal decorrelations between jets (with certain jet definition)

Some transverse momentum distributions (of angular exclusive
nature)

(JHEP03(2015)094, ArXiv:1501.00475) On the resummation of NGLs at finite Nc Y. Delenda 4 / 17



QCD resummation and NGLs

Non-global observables and non-global logarithms

Non-global observables

Non-global observables: (typically) exclusive over angular phase
space.

They have non-global logs (NGLs). Dasgupta & Salam ’01, ’02

Many important observables are non-global:

Some jet shapes (used in substructure techniques), jet mass,
angularities...

Gaps-between-jets observables (Interjet energy flow)

Azimuthal decorrelations between jets (with certain jet definition)

Some transverse momentum distributions (of angular exclusive
nature)

(JHEP03(2015)094, ArXiv:1501.00475) On the resummation of NGLs at finite Nc Y. Delenda 4 / 17



QCD resummation and NGLs

Resummation of NGLs

Non-trivial resummation:

Gluon multiplicity (solution: large-Nc limit)

Prohibitive integrations (non-iterative geometry) (solution: MC)

Analytic all-order treatment of NGLs @ large Nc is encoded in BMS
equation Banfi et al ’02

No proper analytic solution available (only MC)

Until recently NGLs were only resummed numerically at large Nc

Why Precision is spoiled by these approximations?

Large Nc: ⇒ uncertainties O(1/N2
c )

solution: kt clustering reduces NGLs Appleby et al’03
however anti-kt algorithm is preferred
Clustering logs introduced by kt algorithm Banfi et al’05, Delenda et
al’06
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Recent progress in NGLs resummation

Recent progress in NGLs resummation

Numerical resummation @ finite Nc for gap energy Hatta & Ueda ’13

Result: finite Nc corrections negligible in e+e− collisions

Expect: significant contributions from finite Nc correction in
hadronic collision!

Analytic solution to the BMS equation at fixed order up to five loops for
hemisphere mass distribution [defined later]. Schwartz & Zhu ’14

ΣNG
SZ =1− π2

24
L̂2 +

ζ3
12
L̂3 +

π4

34 560
L̂4 +

(
−π

2ζ3
360

+
17

480
ζ5

)
L̂5 +O(α6

s) ,

with L̂ = Ncαs ln(1/ρ)/π
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NGLs @ finite Nc

NGLs @ finite Nc

Here we are interested in the analytic resummaion of NGLs at finite Nc:

Do by c.f. hemisphere mass distribution in e+e− → di-jets

qq̄

HRHL

measured hemisphere

k1 k2

ρ =

pq +
∑
i∈HR

ki

2

/Q2 ≈ 2
∑
i∈HR

ki.pq/Q
2 =

∑
i

xi e
−ηi ,

Q: CoM energy, kti gluon transverse momenta, xi = kti/Q, ηi: rapidity
Work with energy-ordering: Q� kt1 � kt2 � · · · � ktn.
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NGLs @ finite Nc

Hemisphere mass distribution

Compute Born-normalised integrated hemisphere mass distribution:

Σ(ρ) =

∫ ρ

0

1

σ0

dσ

dρ′
dρ′ = 1 + Σ1(ρ) + Σ2(ρ) + · · · ,

Σm(ρ) =
∑
X

∫ (
1

m!

m∏
i=1

dΦi

)
ÛmWX

12···m ,

i.e. probability that measured hemisphere mass is less than ρ.

WX
12···m =WX(k1, k2, · · · , km): Born-normalised eikonal squared

amplitudes for emission of m gluons of configuration X.

X: real (R)/virtual (V) configurations of gluons.∏m
i=1 dΦi: phase-space of emitted gluons

Ûm: measurement operator: cut events with hemisphere mass > ρ.
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NGLs @ finite Nc

Brute force calculation method of NGLs at finite Nc

Issues to tackle:

Evaluate eikonal squared amplitudes WX
12···m:

Account for all gluon branchings
Calculate traces of color matrices for each diagram using ColorMath

Sjödahl ’12
Consider all real-virtual configurations and compute mis-match
between them
See next talk for details

Perform integrations (semi-)analytically [up to 7-D @ 4 loops]

Perform Resummation of the logs
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Results

Results: factorisation of NGLs from global logs

Result: The hemisphere mass distrubution is:

Σ(ρ) = ΣP(ρ)× ΣNG(ρ) ,

ΣP: Sudakov form factor (global logs):

ΣP(ρ) = exp
(
ΣP
1

)
= exp

(
−CFᾱsL

2
)
,

L = ln(1/ρ), ᾱs = αs/2π.
Why double logs? ⇒ soft and collinear logs.
The non-global factor:

ΣNG(ρ) = 1 + ΣNG
2 (ρ) + ΣNG

3 (ρ) + · · · .

resums NGLs starting from two loops [only single logs].
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−CFᾱsL

2
)
,

L = ln(1/ρ), ᾱs = αs/2π.
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Results

Results: NGLs series

Up to four loops (fully) and five loops (partially):

ΣNG(ρ) =1−
L̄2

2!
CFCAζ2 +

L̄3

3!
CFC2

Aζ3+

−
L̄4

4!

[
25

8
CFC3

Aζ4 −
13

5
C2

FC2
A ζ

2
2

]
+

−
L̄5

2!3!
C2

FC3
A ζ2ζ3 +

L̄5

5!
CFC4

A ζ5

[
α+ β

(
CF

CA
−

1

2

)]
+

+O(α6
s).

L̄ = ᾱsL, α and β are undetermine fixed coefficients.
Observation 1: At four loop finite-Nc corrections are O(1.5%) of large
Nc result [agreement with findings of Hatta & Ueda ’13]
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Results

Results: NGLs at large Nc

Observation 2: Our result at large Nc agrees with Schwartz and Zhu’s
result (obtained via BMS equation):

ΣNG =1− π2

24
(NcL̄)2 +

ζ3
12

(NcL̄)3 +
π4

34 560
(NcL̄)4+

+

(
−π

2ζ3
288

+ α
ζ5

240

)
(NcL̄)5 +O

(
(NcL̄)6

)
,

Schwartz & Zhu ’14

deduce α = 17
2 + ζ2ζ3

ζ5
. Anstaz for β = 2 ζ2ζ3ζ5 based on observed pattern of

zeta functions.
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Results

Results: Exponentiation of NGLs
Observation 3: NGLs exhibit a pattern of exponentiation:

ΣNG(ρ) = exp

{
− L̄2

2!
CFCAζ2 +

L̄3

3!
CFC2

Aζ3

− L̄4

4!
CFC3

A ζ4

[
29

8
+

(
CF

CA
− 1

2

)]
+

+
L̄5

5!
CFC4

A ζ5

[
α+ β

(
CF

CA
− 1

2

)]
+O(α6

s)

}
.

with observed pattern we may write (anstaz):

ΣNG(ρ) = exp

{
− L̄2

2!
CFCAζ2 +

L̄3

3!
CFC2

Aζ3−

− L̄4

4!

[
25

8
CFC3

A ζ4 +
2

5
C2
FC2

A ζ
2
2

]
+

+
L̄5

5!

[
17

2
CFC4

A ζ5 + 2 C2
FC3

A ζ2ζ3

]
+O(α6

s)

}
.
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Results

Convergence of the series

0.9

1

1.1

1.2

1.3

1.4

0 0.1 0.2 0.3 0.4 0.5

Σ
N
G
/
ex
p
(Σ

N
G

2
)

L̄

3-loops
4-loops

Up to 4-loops is insufficient for good convergence. A few more terms
should suffice!
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Results

Comparison with Monte Carlo

At finite Nc

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

Σ
N

G
(t

)

t

 finite Nc

Σ
NG
DS

2-loops

3-loops

4-loops
 0.8

 1

 1.2

 0  0.05  0.1  0.15  0.2  0.25  0.3

Σ
N

G
 /

 Σ
N

G
D

S

t

finite Nc 

2-loops

3-lo
ops

4-loops

ΣNG
DS (t) = exp

(
−CFCA

π2

3

1 + (0.85CAt)
2

1 + (0.86CAt)1.33
t2
)
.

t =
1

4πβ0
ln

1

1− 2β0αsL
,

parametrisation of MC by Dasgupta & Salam ’01
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Results

Comparison with Monte Carlo

At large Nc
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Conclusions

Conclusions and outlook

Summary

High precision @ LHC ⇒ assess accuracy of MC’s

How good are approximations used therein (large Nc?, got all logs
resummed appropriately? – e.g. clustering logs?, NGLs?)

Non-global logs major problem in QCD resummation

First analytic attempt at the resummation of NGLs at finite Nc

More work is underway in this subject:

Eikonal amplitudes beyond 5 loops

Analytic solution to the BMS equation

(Hopefully) full analytic resummation of NGLs

role of jet algorithms for NGLs at finite Nc
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