Electron-Ion Physics with the LHeC DIS2015

Ilkka Helenius on behalf of the LHeC Study Group

Lund University Department of Astronomy and Theoretical Physics

Outline

- ► Large Hadron Electron Collider
 - Kinematics
- Nuclear PDFs
 - Recent analyses
 - Current data constraints
 - Impact of LHeC data
- ightharpoonup Other e+A physics
 - ► Small-*x* physics
 - Jet production and hadronization
- ► Summary & Outlook

Thanks to

- Nestor Armesto (Univ. of Santiago de Compostela)
- ► Hannu Paukkunen (Univ. of Jyväskylä)

Large Hadron Electron Collider (LHeC)

[CDR: arXiv:1206.2913]

- ▶ LHC proton/ion beam + new e[±] accelerator
 - \blacktriangleright $E_{
 m p}=7\,{
 m TeV}$ (corresponds to $E_{
 m Pb}=2.76\,{
 m TeV}$), $E_{
 m e}=60\,{
 m GeV}$
 - ▶ Synchronous p+p and e+p (A+A and e+A) operation
 - luminosity:
 - e+p: $16 \cdot 10^{33} \, \text{cm}^{-2} \text{s}^{-1}$ (post-CDR)
 - e+A(per nucleon): $5 \cdot 10^{31} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$ (updated: few $\cdot 10^{32} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$)
- ▶ Further in the future: FCC-he ($E_{\rm p}=50\,{
 m TeV}, E_{\rm e}=175\,{
 m GeV}$)

Kinematics

▶ Deep inelastic scattering (DIS):

Invariant variables

$$Q^{2} = -q^{2}$$

$$x = \frac{Q^{2}}{2 p \cdot q}$$

$$y = \frac{p \cdot q}{p \cdot k}$$

Cross section

$$\frac{d\sigma^{\text{DIS}}}{dxdQ^2} = \frac{4\pi\alpha_{\text{EM}}^2}{Q^4} \frac{1}{x} \left[xy^2 F_1(x, Q^2) + (1 - y) F_2(x, Q^2) \right]$$

- Measured structure functions $F_i(x, Q^2)$ can be directly related to parton distribution functions (PDFs)
- ▶ Also other interesting (non-inclusive) measurements in e + p/A!

Nuclear PDFs

Structure functions modified in nuclear collisions:

► Modifications absorbed into *process independent* nuclear PDFs:

$$f_i^A(x, Q^2) = R_i^A(x, Q^2) f_i(x, Q^2)$$

- ► Global DGLAP analyses
 - Provide the nuclear modifications $R_i^A(x,Q^2)$
 - ► Test factorization of nuclear effects

Recent nPDF analyses

	HKN07	EPS09	DSSZ	nCTEQ prelim.
Ref.	Phys. Rev. C76 (2007) 065207	JHEP 0904 (2009) 065	Phys.Rev. D85 (2012) 074028	arXiv:1307.3454
Order	LO & NLO	LO & NLO	NLO	NLO
Neutral current e+A / e+d DIS	√	√	√	√
Drell-Yan dileptons in p+A / p+d	√	√	√	√
RHIC pions in d+Au / p+p		√	√	
Neutrino-nucleus DIS			√	
Q ² cut in DIS	1GeV	1.3GeV	1GeV	2GeV
# of data points	1241	929	1579	708
Free parameters	12	15	25	17
Error sets available		√	√	√
Error tolerance Δχ²	13.7	50	30	35
Baseline	MRST98	CTEQ6.1	MSTW2008	CTEQ6M
Heavy quark treatment	ZM_VFNS	ZM_VFNS	GM_VFNS	GM_VFNS

[from H. Paukkunen]

▶ DIS, DY and inc. hadrons:

- ▶ Brahms data not included to fits
- ► Lower Q² cut varies between analyses (EPS09 cut shown)

► Neutrino DIS:

- Included only to DSSZ so far
- Provides flavor separation

▶ DIS, DY and inc. hadrons:

- ▶ Brahms data not included to fits
- ► Lower Q² cut varies between analyses (EPS09 cut shown)

Comparison to proton PDF fits:

- Much broader reach due to HERA and LHC data
- p+Pb data will improve kinematic reach of nPDF analyses

▶ DIS, DY and inc. hadrons:

- ▶ Brahms data not included to fits
- ► Lower Q² cut varies between analyses (EPS09 cut shown)

▶ The expected coverage of LHeC:

- ► LHeC data would provide a huge improve for the kinematic reach!
- e+A much cleaner measurement than p+A

▶ DIS, DY and inc. hadrons:

- ▶ Brahms data not included to fits
- ► Lower Q² cut varies between analyses (EPS09 cut shown)

The expected coverage of FCC-eA:

- ► Further extension of kinematics
- Large electron energy requires large acceptance

Comparison between different fits:

[Nucl.Phys.A926 (2014) 24-33]

- ► nCTEQ analysis provides somewhat larger uncertainties [Talk by A. Kusina at 14.00 (WG1)]
- ▶ Recent p+Pb data from LHC constrains nPDFs mostly at x>0.01 [Talk by I.H. at 14.25 (WG1)]
- ▶ Uncertainties remain large at small-x regions
 ⇒ No accurate baseline for heavy-ion physics at LHC
- ► Impact of the LHeC?

How to study impact of new data

- 1. Generate "pseudodata" corresponding the expected measurement
- 2. Add the pseudodata to global analysis on top of existing data
- 3. Perform a re-analysis and compare the results

For the LHeC

Samples of neutral current DIS reduced cross section

$$\sigma_{\rm reduced} = \frac{xQ^4}{2\pi\alpha_{\rm EM}^2Y_+} \frac{{\rm d}^2\sigma^{DIS}}{{\rm d}x{\rm d}Q^2} \quad {\rm where} \quad Y_+ = 1 + (1-y)^2$$

were generated in the kinematic window

- $10^{-5} < x < 1$
- $ightharpoonup 2 < Q^2 < 10^5 \, {\rm GeV^2}$
- Nuclear modifications from EPS09

▶ Low- Q^2 pseudodata and prediction before the inclusion:

[H. Paukkunen, preliminary]

▶ Low- Q^2 pseudodata and prediction after the inclusion:

Significant reduction of nPDF-originating uncertainties (blue bands)

Impact to the nPDF uncertainties

- lacktriangle Huge reduction of the small-x uncertainties for gluons and sea quarks
- ▶ Results still preliminary: the form of the fit function at low *x* might have impact also to size of the uncertainties
- ► Charged current (c and b) data should constrain flavor dependence (Currently unconstrained, some constraints from W[±] in p+Pb)

Small-*x* physics

- lacktriangle Linear QCD-evolution leads to large number of gluons at small x
- ▶ Breakdown at high densities ⇒ saturation?

 $\begin{tabular}{l} \blacktriangleright & Q_s^2 \propto A^{1/3} x^{-0.3} \Rightarrow \mbox{ saturation} \\ \mbox{more pronounced at large } A \end{tabular}$

Inclusive hadrons in p+Pb (NLO):

- ► Hard to be sensitive to small-x physics in p+Pb
- \Rightarrow LHeC should be sensitive to saturation physics especially with e+A

Jets in e+A

ightharpoonup Photoproduction of jets: direct and resolved (γ PDFs) processes

- ▶ Large E_T jets also in e+A
- Useful to study parton dynamics and photon structure
- Not all theoretical uncertainties considered yet

Hadronization in nuclear medium

► LHeC provides clean environment to study hadron production with nuclear target ("cold nuclear matter")

- Low energy:
 - hadronization happens inside the nuclear medium
 - pre-hadronic absorbtion?

- High energy:
 - hadronization happens outside the nuclear medium
 - partonic evolution inside the medium

- ▶ Benchmark for hadron production in A+A and p+A
- ► See Phys.Rev. D81 (2010) 054001 for medium modified FF analysis

Nuclear PDFs

- Data constraining current nPDF fits quite limited in kinematics
- ▶ p+Pb data from LHC will improve fits at $x \gtrsim 0.01$
- ▶ LHeC would provide very precise data down to $x \sim 10^{-5}$
 - ⇒ Drastic reduction of the nPDF uncertainties!
 - \Rightarrow Flavor decomposition from charged current and heavy quark data

Other e+A physics

- ► Clean environment to study small-*x* phenomena such as saturation
- ▶ Photoproduction of jets can be used to study photon (nuclear) PDFs
- Cold nuclear matter effects to hadron production
- + Topics not covered here (Diffraction, Vector Mesons, ...)

Theoretical improvements

- Finalize the nPDF re-analysis with pseudodata
 - Include charged current data
 - ⇒ Relax the assumption of flavor symmetry
 - ► Chart the uncertainty due to the initial parametrization
- Details of jet production and reconstruction
- ▶ Monte Carlo generators for e+p/A

TDR during this year

Extra Slides

Backup

▶ High- Q^2 pseudodata and prediction before the inclusion:

▶ High- Q^2 pseudodata and prediction after the inclusion:

▶ the nPDF-originating uncertainties (blue bands) already rather small at high- Q^2

Vector Meson (VM) production

- ► The *t*-differential cross-section of exclusive diffractive VM production can be related to impact parameter
 - ⇒ Transverse profile of hadron/nucleus can be extracted

 Also sizable saturation effects expected

Elastic VM production

Coherent VM production:

Predictions available showing large saturation \Rightarrow

Incoherent VM production:

Energy denpendence of coherent VM

Charged hadron production

► Nuclear modification factor at forward rapidities for charged hadrons

- ▶ Data induces tension in global analysis
- NLO calculation agree with the d+Au spectra but not with the p+p baseline