Electron-Ion Physics with the LHeC

DIS2015

Ilkka Helenius
on behalf of the LHeC Study Group

Lund University
Department of Astronomy
and Theoretical Physics

28.4.2015
Outline

- Large Hadron Electron Collider
 - Kinematics
- Nuclear PDFs
 - Recent analyses
 - Current data constraints
 - Impact of LHeC data
- Other $e+\Lambda$ physics
 - Small-x physics
 - Jet production and hadronization
- Summary & Outlook

Thanks to

- Nestor Armesto (Univ. of Santiago de Compostela)
- Hannu Paukkunen (Univ. of Jyväskylä)
Large Hadron Electron Collider (LHeC)

LHC proton/ion beam + new e^\pm accelerator

- $E_p = 7$ TeV (corresponds to $E_{Pb} = 2.76$ TeV), $E_e = 60$ GeV
- Synchronous $p+p$ and $e+p (A+A$ and $e+A)$ operation
- Luminosity:
 - $e+p$: $16 \cdot 10^{33}$ cm$^{-2}$s$^{-1}$ (post-CDR)
 - $e+A$(per nucleon): $5 \cdot 10^{31}$ cm$^{-2}$s$^{-1}$ (updated: few $\cdot 10^{32}$ cm$^{-2}$s$^{-1}$)

Further in the future: FCC-he ($E_p = 50$ TeV, $E_e = 175$ GeV)

[from N. Armesto]
Kinematics

Deep inelastic scattering (DIS):

\[q = k - k' \]

\[p \]

\[M \]

\[k' \]

\[M_x \]

Invariant variables

\[Q^2 = -q^2 \]

\[x = \frac{Q^2}{2 p \cdot q} \]

\[y = \frac{p \cdot q}{p \cdot k} \]

Cross section

\[
\frac{d\sigma^{\text{DIS}}}{dx dQ^2} = \frac{4\pi \alpha_{\text{EM}}^2}{Q^4} \frac{1}{x} \left[xy^2 F_1(x, Q^2) + (1 - y) F_2(x, Q^2) \right]
\]

Measured structure functions \(F_i(x, Q^2) \) can be directly related to parton distribution functions (PDFs)

Also other interesting (non-inclusive) measurements in \(e + p/A \)!
Structure functions modified in nuclear collisions:

Modifications absorbed into process independent nuclear PDFs:

\[f_i^A(x, Q^2) = R_i^A(x, Q^2) f_i(x, Q^2) \]

Global DGLAP analyses

- Provide the nuclear modifications \(R_i^A(x, Q^2) \)
- Test factorization of nuclear effects
Recent nPDF analyses

<table>
<thead>
<tr>
<th>Ref.</th>
<th>HKN07</th>
<th>EPS09</th>
<th>DSSZ</th>
<th>nCTEQ prelim.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order</td>
<td>LO & NLO</td>
<td>LO & NLO</td>
<td>NLO</td>
<td>NLO</td>
</tr>
<tr>
<td>Neutral current e+A / e+d DIS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Drell-Yan dileptons in p+A / p+d</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RHIC pions in d+Au / p+p</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Neutrino-nucleus DIS</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Q² cut in DIS</td>
<td>1GeV</td>
<td>1.3GeV</td>
<td>1GeV</td>
<td>2GeV</td>
</tr>
<tr>
<td># of data points</td>
<td>1241</td>
<td>929</td>
<td>1579</td>
<td>708</td>
</tr>
<tr>
<td>Free parameters</td>
<td>12</td>
<td>15</td>
<td>25</td>
<td>17</td>
</tr>
<tr>
<td>Error sets available</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Error tolerance Δχ²</td>
<td>13.7</td>
<td>50</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>Baseline</td>
<td>MRST98</td>
<td>CTEQ6.1</td>
<td>MSTW2008</td>
<td>CTEQ6M</td>
</tr>
<tr>
<td>Heavy quark treatment</td>
<td>ZM_VFNS</td>
<td>ZM_VFNS</td>
<td>GM_VFNS</td>
<td>GM_VFNS</td>
</tr>
</tbody>
</table>

[from H. Paukkunen]
Kinematic coverage of data in current nPDF fits

- DIS, DY and inc. hadrons:
 - Brahms data not included to fits
 - Lower Q^2 cut varies between analyses (EPS09 cut shown)

- Neutrino DIS:
 - Included only to DSSZ so far
 - Provides flavor separation
Kinematic coverage of data in current nPDF fits

- DIS, DY and inc. hadrons:
 - Lower Q^2 cut varies between analyses (EPS09 cut shown)
 - Brahms data not included to fits

- Comparison to proton PDF fits:
 - Much broader reach due to HERA and LHC data
 - $p+Pb$ data will improve kinematic reach of nPDF analyses
Kinematic coverage of data in current nPDF fits

- DIS, DY and inc. hadrons:
- Brahms data not included to fits
- Lower Q^2 cut varies between analyses (EPS09 cut shown)

The expected coverage of LHeC:

- LHeC data would provide a huge improve for the kinematic reach!
- $e+A$ much cleaner measurement than $p+A$
Kinematic coverage of data in current nPDF fits

- DIS, DY and inc. hadrons:
 - Lower Q^2 cut varies between analyses (EPS09 cut shown)
 - Brahms data not included to fits

The expected coverage of FCC-eA:

- Further extension of kinematics
- Large electron energy requires large acceptance
Uncertainties in the current nPDF fits

Comparison between different fits:

- nCTEQ analysis provides somewhat larger uncertainties
 [Talk by A. Kusina at 14.00 (WG1)]

- Recent p+Pb data from LHC constrains nPDFs mostly at $x > 0.01$
 [Talk by I.H. at 14.25 (WG1)]

- Uncertainties remain large at small-x regions
 \Rightarrow No accurate baseline for heavy-ion physics at LHC

- Impact of the LHeC?
Impact of LHeC data

How to study impact of new data

1. Generate "pseudodata" corresponding the expected measurement
2. Add the pseudodata to global analysis on top of existing data
3. Perform a re-analysis and compare the results

For the LHeC

- Samples of neutral current DIS reduced cross section

\[
\sigma_{\text{reduced}} = \frac{xQ^4}{2\pi\alpha^2_{\text{EM}}Y_+} \frac{d^2\sigma^{\text{DIS}}}{dx dQ^2}
\]

where \(Y_+ = 1 + (1 - y)^2 \)

were generated in the kinematic window

- \(10^{-5} < x < 1 \)
- \(2 < Q^2 < 10^5 \text{ GeV}^2 \)

- Nuclear modifications from EPS09
Impact of LHeC data

- Low-Q^2 pseudodata and prediction before the inclusion:

60 GeV lepton beam

Pseudodata

Standard Fit

\(Q^2 = 2 \text{ GeV}^2 \)

\(Q^2 = 5 \text{ GeV}^2 \)

\(Q^2 = 10 \text{ GeV}^2 \)

\(Q^2 = 20 \text{ GeV}^2 \)

\(Q^2 = 50 \text{ GeV}^2 \)

\(Q^2 = 100 \text{ GeV}^2 \)

\(Q^2 = 200 \text{ GeV}^2 \)

\(Q^2 = 500 \text{ GeV}^2 \)

[H. Paukkonen, preliminary]
Impact of LHeC data

- Low-Q^2 pseudodata and prediction after the inclusion:

![Graph showing impact of pseudodata and standard fit at different Q^2 values (2 GeV^2 to 500 GeV^2)]

- Significant reduction of nPDF-originating uncertainties (blue bands)

[H. Paukkunen, preliminary]
Impact of LHeC data

- Impact to the nPDF uncertainties

- Huge reduction of the small-x uncertainties for gluons and sea quarks
- Results still preliminary: the form of the fit function at low x might have impact also to size of the uncertainties
- Charged current (c and b) data should constrain flavor dependence (Currently unconstrained, some constraints from W^\pm in $p+Pb$)
Small-x physics

- Linear QCD-evolution leads to large number of gluons at small x
- Breakdown at high densities \Rightarrow saturation?

$Q_s^2 \propto A^{1/3} x^{-0.3} \Rightarrow$ saturation more pronounced at large A

\Rightarrow LHeC should be sensitive to saturation physics especially with $e + A$

Inclusive hadrons in $p + Pb$ (NLO):

In $p + Pb$, $\sqrt{s} = 5.0$ TeV, $p_T = 5$ GeV

d$(\sigma_{\pi^0} / dp_T dy d(\log(x^2)))$ [pb]

$y = 0$
$y = 2$
$y = 4$
Jets in $e+A$

- Photoproduction of jets: direct and resolved (γ PDFs) processes

$\frac{d\sigma^\gamma_{Q^2=0}}{dE_{T\text{jet}}} (\mu b/GeV \text{ per nucleon})$

$\frac{d\sigma^\gamma_{Q^2=0}}{d\eta_{\text{jet}}} (\mu b \text{ per nucleon})$

- Large E_T jets also in $e+A$
- Useful to study parton dynamics and photon structure
- Not all theoretical uncertainties considered yet
Hadronization in nuclear medium

- LHeC provides clean environment to study hadron production with nuclear target ("cold nuclear matter")
 - Low energy:
 - hadronization happens inside the nuclear medium
 - pre-hadronic absorption?
 - High energy:
 - hadronization happens outside the nuclear medium
 - partonic evolution inside the medium

- Benchmark for hadron production in $A+A$ and $p+A$
- See *Phys. Rev. D81 (2010) 054001* for medium modified FF analysis
Summary

Nuclear PDFs

- Data constraining current nPDF fits quite limited in kinematics
- $p+Pb$ data from LHC will improve fits at $x \gtrsim 0.01$
- LHeC would provide very precise data down to $x \sim 10^{-5}$
 ⇒ Drastic reduction of the nPDF uncertainties!
 ⇒ Flavor decomposition from charged current and heavy quark data

Other $e+A$ physics

- Clean environment to study small-x phenomena such as saturation
- Photoproduction of jets can be used to study photon (nuclear) PDFs
- Cold nuclear matter effects to hadron production
+ Topics not covered here (Diffraction, Vector Mesons, ...)
Outlook

Theoretical improvements

- Finalize the nPDF re-analysis with pseudodata
 - Include charged current data
 ⇒ Relax the assumption of flavor symmetry
 - Chart the uncertainty due to the initial parametrization
- Details of jet production and reconstruction
- Monte Carlo generators for $e+p/A$

TDR during this year
Backup
Impact of LHeC data

- High-Q^2 pseudodata and prediction before the inclusion:

- The nPDF-originating uncertainties (blue bands) already rather small at high-Q^2.
Impact of LHeC data

- High-Q^2 pseudodata and prediction after the inclusion:

- the nPDF-originating uncertainties (blue bands) already rather small at high-Q^2
Vector Meson (VM) production

- The t-differential cross-section of exclusive diffractive VM production can be related to impact parameter
 \Rightarrow Transverse profile of hadron/nucleus can be extracted

- Also sizable saturation effects expected

\[\gamma^* A \rightarrow J/\Psi A \quad Q^2 = 0 \]

\[d\sigma/dt \ (nb/GeV^2) \]

\[10^{-5} \quad 10^{-4} \quad 10^{-3} \quad 10^{-2} \quad 10^{-1} \]

\[0 \quad 0.02 \quad 0.04 \quad 0.06 \quad 0.08 \quad 0.1 \quad 0.12 \quad 0.14 \quad 0.16 \quad 0.18 \]

\[t \ (GeV^2) \]

DIS2015 28.4.2015 I. Helenius (Lund U.)
Elastic VM production

- Coherent VM production:
 \[\gamma (Q^2) \rightarrow VM (W) \]

 Predictions available showing large saturation \(\Rightarrow \)

- Incoherent VM production:
 \[\gamma (Q^2) \rightarrow VM (W) \]

Energy dependence of coherent VM

\[\gamma^* A \rightarrow J/\Psi A \]

\[b - \text{Sat} \]

\(t = 0, \; Q^2 = 0 \)

\[\frac{1}{A^2} \frac{d\sigma}{dt} \text{ (\(\mu b/GeV^2 \))} \]

- nosat
- proton
- Calcium
- Lead

W (GeV)

0 200 400 600 800 1000
Charged hadron production

- Nuclear modification factor at forward rapidities for charged hadrons

Data induces tension in global analysis

- NLO calculation agree with the d+Au spectra but not with the p+p baseline