PHENIX Forward Transverse Spin Measurements Kenneth N. Barish for the PHENIX Collaboration ### **Transverse Spin Asymmetries** - ➤ The persistence of large transverse asymmetries at RHIC energies, where collinear pQCD describes the cross-sections well, was a surprise. - ➤ The transverse structure of the nucleon is largely unknown - Large transverse asymmetries carry potential information about QCD dynamics beyond 1-D picture ### **Transverse Spin Asymmetry Sources** #### (I) Initial State Effects: "Sivers" **Correlation between proton-spin and intrinsic transverse quark momentum** $$\propto \underline{\bar{f}_{1T}^{\perp q}(x,k_{\perp}^2)} \cdot D_q^h(z)$$ **Sivers distribution (initial state)** D. Sivers, Phys. Rev. D 41, 83 (1990) Twist-3 quark-gluon/gluon-gluon correlators in polarized hadron. #### (II) Final State Effects: "Collins" Correlation between proton & quark spin + spin dependant fragmentation function $$\propto \delta q(x) \cdot H_1^{\perp}(z_2, \overline{k}_{\perp}^2)$$ **Quark transverse Collins FF (final state) spin distribution** J. C. Collins, Nucl. Phys. **B396**, 161 (1993) Twist-3 quark-gluon fragmentation function. ### **Transverse Spin Measurements** - ➤ Inclusive A_N (central/forward) - Central π^0 , η - Forward π^0 , η , μ , J/ψ - ➤ Photon A_N (MPC-EX) - Jet correlations/structure, DY (fsPHENIX) #### **The PHENIX Detector** #### **Central Arms** $$|\eta| < 0.35$$ - charged hadrons - \bullet π^0 , η - direct photon - ❖ J/Ψ - heavy flavor # Muon Arms $1.2 < |\eta| < 2.4$ - ❖ J/Ψ - charged hadrons - heavy flavor MPC $3.1 < |\eta| < 3.9$ \bullet π^0 , η #### **MPC** detectors - \triangleright Lead-tungstate EMCal (3.1< $|\eta|$ <3.8) - » Enables measurements of forward π^0 and η mesons - ➤ Photon merging effects significant for E>20 GeV (p_T>2 GeV/c) tower size 2.25² cm² 220 cm from vertex - » For \sqrt{s} =62 GeV, 20 GeV \rightarrow 0.65 $x_F \Rightarrow$ two photon π^0 analysis - » For \sqrt{s} =200 GeV, 20 GeV \rightarrow 0.20 x_F \Rightarrow "Single clusters" #### > Single Clusters - » π^0 's are dominant source. - » With increasing p_T, there is a sizable increase in contributions from direct and other photons. #### **Polarized Protons at RHIC-PHENIX** #### 20 Transverse Data | Year | √s (GeV) | L (pb ⁻¹) | Р | FoM (P ² L) | |------|----------|-----------------------|-------------|------------------------| | 2006 | 62.4 | 0.02 | 48% | 0.0046 | | 2006 | 200 | 2.7 | 51 % | 0.7 | | 2008 | 200 | 5.2 | 46% | 1.1 | | 2012 | 200 | 9.2 | 58% | 3.1 | K. Barish # A_N : mid-rapidity π^0 and η - > π^0 asymmetries consistent with zero observed over a wide p_T range - Exceed precision of previous publication (Phys. Rev. D 74, 094011) by a factor of 20 and extends p_T range. - Constrains gluon Sivers - η asymmetries are also consistent with zero. # Forward π^0 A_N (62.4 GeV) # π^0 process contribution in PHENIX forward arms - Significant asymmetries for x_F>0 (~ linear for x_F > 0.2) - \rightarrow A_N consistent with zero for x_F<0 - Quark-gluon is the dominant partonic component. # Forward π⁰ A_N √s dependence - Sizable forward non-zero asymmetries - No dependence on √s apparent from 19.6 GeV to 200GeV - Note: slight differences in pseudorapidity and/or p_T ### Forward A_N for EM Clusters #### **MPC** tower size 2.25² cm² 220 cm from vertex **Decay photon impact positions** for low and high energy π^0 's. #### $\sqrt{s} = 200 \text{ GeV}$ #### **EM Cluster contribution** **Magnitude of forward** asymmetries similar to E704 (19.4 GeV/c²) and STAR at (200GeV/c²) ### Comparison of clusters with STAR π^0 - **>** Good agreement for x_F < 0.4. - For $x_F>0.4$, statistically limited, but there is a possible difference between clusters and π^0 's, leaving room a direct photon contribution. ### Forward η cross-section - Consistent with pQCD calculations at a scale of μ=p_T consistent with data. - Can be used to improve constraints on η fragmentation functions. - pQCD calculations by M. Stratmann (pp->hx + η FF) PhysRev.D.67, 054005(2003), Phys.Rev.D83, 034002 (2011) - Comparison of π , η , and K may provide info about initial vs final spin-momentum correlations as well as possible isospin, strangeness, and mass effects # Forward $A_N(\eta) x_F$ dependence - Rising A_N ranging from 2% to 20% for positive (forward) x_F - Consistent with flat & zero (1.7σ) at negative (backward) x_F ## Forward A_N(η) p_T dependence - $x_F > 0.2$: Non-zero asymmetry is seen $A_N > 0.061 \pm 0.012$. - \rightarrow x_F < -0.2: Consistent with zero within 1.7 σ ### Comparison with π^0 meson results #### Similar to previous $A_N(\pi^0)$ results despite - » Differences in isospin, mass, and strangeness - » Potentially different polarized fragmentation functions - \Rightarrow Initial state spin momentum correlations could play a role or a common spin-momentum correlation is present in the fragmentation of the π^0 and η mesons. #### **Comparison with η meson results** For $X_F>0.55$ STAR $A_N(\eta)$ may be larger, but consistent within uncertainty. ### Comparison with twist-3 calculations #### Phys.Rev.D. 90, 0728008 - Measurement consistent with this particular calculation at low and high p_T and x_F , but consistency with mid x_F and p_T not clear. - Theoretical uncertainties uncertain. Development of theoretical framework underway (e.g. Pitonyak and Y. Koike, ArXiv: 1404,1033) - With higher statistics data, a double differential measurement of A_N if x_F and p_T could provide a more stringent test of models. # A_N Forward J/ψ at 200GeV (Run 12) - ➢ Only color single generates SSA ₀₀₅ ⇒ sensitive to production mechanism. - \triangleright A_N is consistent with zero. - Precession limited by statistics. ## A_N Forward single muon (200 GeV) #### Single muon A_N from D meson decay - » Production dominated by gg fusion - » Probes gluon related correlation functions (initial state) - Koike and Yoshida, Phys Rev. D84 (2011) 014026. - » Sensitive to gluon Sivers distribution - > A_N consistent with zero - ➤ A large 2012 data sample will increase sensitivity. - A new Forward Silicon Vertex Detector (FVTX) will help in rejecting hadronic decay background in Run 15. K. Barish ## A_N : forward γ (MPC-EX) - > 8 layer Silicon minipad Tungsten sandwich pre-shower in front of lead-tungstate MPC electromagnetic calorimeter (3.1<|η|<3.8) - Reconstruct and reject π^0 mesons \Rightarrow enhances π^0/γ separation (up to >80GeV) - Spin Physics Motivation: - Sign mismatch between twist-3 quark gluon distribution functions $T_{q,F}(x, x)$ extracted from RHIC (assuming no Collins) and moments of the Sivers function from SIDIS measurements. - The Collins fragmentation functions in the p+p measurements may be the reason. - A_N of prompt photons (free of contribution from the Collins effect) can be used to verify this & check consistency of theory. - > Timescale: Run 15 (p+p run just ended). ### **Summary and Outlook** - > Central rapidity measurements - A_N for π^0 and η => constrain gluon Sivers - > Forward rapidity measurements - A_N for π^0 , EM Clusters, and η including p_T , x_F dependence - Comparison with data at different √s and charged pions - Provides info to constrain Collins, Sivers, and twist-3 effects - > Upgrades will significantly extend physics capabilities - FVTX will enhance forward heavy-flavor program (μ , J/ ψ) - MPC-EX will enable forward A_N (γ) measurements - Polarized p + A measurements sensitive to gluon saturation - Proposed new Forward Spectrometer (fsPHENIX) for jet correlations/structure and Drell-Yan measurements (talk by Nils Feege) - The fsPHENIX would also be well matched with ePHENIX (talk by Nils Feege). #### Extra slides... # Isospin Comparison of pion A_N $$\sqrt{s} = 62.4 \text{ GeV}$$ #### **Quark origins of pions (PYTHIA):** ightharpoonup u ightharpoonup π^+ / d ightharpoonup π^+ : 100 / 0 $ightharpoonup u ightharpoonup \pi^0 / d ightharpoonup \pi^0$: 75 / 25 > $u \to \pi^- / d \to \pi^-$: 50 / 50 Data cannot be explained by initial state effects of quarks (Sivers) alone (assuming u and d quark Sivers functions extracted from SIDIS) ## A_N as a function of p_T Phys.Rev.D. 90, 012006 A significant decrease of the asymmetry as expected from higher twist calculations is not conclusive.