

# Production of W bosons in p-Pb collisions measured with ALICE at the LHC

## **DIS 2015**

XXIII International Workshop on Deep-Inelastic Scattering and Related Subjects

> Dallas, Texas April 27 – May 1, 2015



#### E. Z. Buthelezi for the ALICE Collaboration

Department of Nuclear Physics, iThemba LABS, Cape Town, South Africa







#### **Outline**



- Physics motivation
- W-boson measurements in p-Pb collisions with ALICE
- ALICE detector setup
- Data sample
- Analysis method
- Cross-section results
- ightharpoonup Yields of  $\mu^{\pm}$   $\leftarrow$  W<sup> $\pm$ </sup> scaled to  $\langle N_{\rm coll} \rangle$
- Summary

#### **Physics Motivation**



Electroweak W boson: Mass:  $80.385 \pm 0.015 \text{ GeV/}c^2$  and life time  $\approx 0.1 \text{ fm/}c$ 

(J. Beringer et al.(Particle Data Group), PR D86, 010001 (2012))

➤ Discovered at CERN SPS in 1983

1984 Nobel Prize in Physics: Rubbia and van der Meer





- Produced in initial hard processes before formation of QGP
  - Dominant process LO approximation:  $\mathbf{q} + \overline{\mathbf{q}'} \rightarrow \mathbf{W}^{\pm}$
  - Colorless probes → not affected by the strong interaction
  - Sensitive to (valence) quark and (sea) antiquark content of the nucleus



- > W-boson production in p-Pb collisions
  - Investigate cold nuclear matter effects and constrain nuclear PDFs JHEP 1103 (2011) 071
  - Measurements serve as an important baseline for the understanding and the interpretation of the Pb-Pb data

### W-boson measurements in p-Pb collisions



➤ Measurement in the semi-muonic decay channel → no modification by strongly-interacting matter.

$$W^{+} \xrightarrow{10.57 \pm 0.15\%} \mu^{+} + \nu_{\mu} \ , \ W^{-} \xrightarrow{10.57 \pm 0.15\%} \mu^{-} + \overline{\nu_{\mu}}$$

- p<sub>T</sub> distribution peaks at p<sub>T</sub> ≈ M<sub>W</sub>/2 ≈ 40 GeV/c
- Dominant at  $p_T > 30$  GeV/c in the single muon  $p_T$  distribution
- Previous measurements in p-Pb collisions
- CMS collaboration: W→µν and W→eν,

$$|\eta_{\text{lab}}| < 2.4, p_{\text{T}} > 25 \text{ GeV/}c \text{ arXiv:1503.05825}$$



$$2.03 < y_{\rm cms}^{\mu} < 3.53$$
 and  $-4.46 < y_{\rm cms}^{\mu} < -2.96$ ,  $p_{\rm T}^{\mu} > 10$  GeV/c

- → Rapidity coverage complementary to that of CMS
- → Probe Bjorken-x region ~10<sup>-4</sup> 10<sup>-1</sup>



ALICE-INT-2006-021 & Eur. J. C49 (2007) 149



Example of cross section for W<sup>+</sup>→ /<sup>+</sup>v CMS collaboration:arXiv:1503.05825

#### **ALICE** detector setup





#### **Data Sample**



#### p-Pb and Pb-p collisions at $\sqrt{s_{NN}}$ = 5.02 TeV

#### **Forward rapidity**:

p-beam direction(proton moving towardsthe muon arm)



 $\Delta y_{\rm cms} = 0.465$  in the p-beam direction

#### **Backward rapidity:**

Pb-beam direction
(Pb nucleus moving towards the muon arm)



- Trigger condition:

  High- $p_T$  muon triggered events:

  minimum-bias (MB) events (coincidence

  of V0A  $\cap$  V0C) and muon with  $p_T \ge 4$  GeV/c
- ➤ Integrated luminosity:

  Forward: 4.9 nb<sup>-1</sup> Backward: 5.8 nb<sup>-1</sup>
- ➤ Muon track selection:
  - Geometrical acceptance

$$-4 < \eta^{\mu}_{lab} < -2.4$$
 ,  $170^{\circ} < \theta^{\mu}_{lab} < 178^{\circ}$ 

- Matching between tracking and trigger tracks
  - → reject punch-through hadrons
- pxDCA correlation of momentum (p) and the Distance of Closest Approach (DCA) to the interaction vertex
  - → remove tracks from beam-gas interactions as well as particles produced in the absorber.

#### **Analysis Method**



- $ightharpoonup W^{\pm} 
  ightharpoonup \mu^{\pm}$  main contributor in the single-muon  $p_{T}$  distribution at  $p_{T} > 30 \text{ GeV/}c$
- ➤ Main background sources:
  - Heavy-flavour decay muons: 8 < p<sub>T</sub> < 40 GeV/c</li>
  - $Z^0 / \gamma^*$ :  $p_T > 50 \text{ GeV/}c$
- ➤ Signal extraction number of  $\mu^{\pm} \leftarrow W^{\pm} (N_{\mu^{\pm} \leftarrow W^{\pm}})$  estimated through suitable fits of the  $p_{T}$  distribution

$$f(p_{\mathrm{T}}) = N_{\mathrm{bkg}} \cdot f_{\mathrm{bkg}}(p_{\mathrm{T}}) + N_{\mu \leftarrow \mathrm{W}} \cdot f_{\mu \leftarrow \mathrm{W}}(p_{\mathrm{T}}) + N_{\mu \leftarrow^{\mathrm{Z}}/_{v^{*}}} \cdot f_{\mu \leftarrow^{\mathrm{Z}}/_{v^{*}}}(p_{\mathrm{T}}),$$

 $f_{\rm bkg}(p_{\rm T}) 
ightarrow {
m Fixed Order Next-to-Leading-Log (FONLL)}$  based template JHEP 1210 (2012) 137

 $f_{\mu \leftarrow W}(p_T)$  and  $f_{\mu \leftarrow \mathbb{Z}_{/_{v^*}}}(p_T) \Rightarrow Monte Carlo templates (POWHEG)$ 

 $N_{\rm bkg}$  and  $N_{\mu \leftarrow W} \rightarrow$  free normalization parameters

 $N_{\mu \leftarrow Z_{/\gamma^*}} \rightarrow \text{fixed to } N_{\mu \leftarrow W}$ 

- $\triangleright$  Correct signal  $(N_{\mu\pm\leftarrow W\pm})$  for acceptance x efficiency  $(A \times \varepsilon)$
- ➤ Normalize the yield of  $\mu^{\pm} \leftarrow W^{\pm} (Y_{\mu^{\pm} \leftarrow W^{\pm}})$  to MB cross section
- ➤ Compare cross-section results with pQCD at NLO calculations JHEP 1103 (2011) 071
- ightharpoonup Measure the yield of  $\mu^{\pm} \leftarrow W^{\pm} (Y_{\mu \pm \leftarrow W \pm})$  scaled to  $\langle N_{\text{coll}} \rangle$

### Signal Extraction



- W and Z<sup>0</sup>/γ\* templates from realistic Monte Carlo (MC) simulations are used for signal extraction
  - $N_{\mu\pm\leftarrow W\pm}$  and  $N_{Z}^{0}_{/\gamma^{*}}$  generated with POWHEG<sup>1</sup> using CTEQ6m<sup>2</sup> PDF set in pp and pn collisions
  - Forced to decay to μ<sup>±</sup>
  - Shadowing effects evaluated using PYTHIA 6.43
  - Systematics determination
- Simulation: pp and pn collisions are considered.

Templates obtained by combining results using:

$$\frac{1}{N_{pPb}} \cdot \frac{dN_{pPb}}{dp_{T}} = \frac{Z}{A} \cdot \frac{dN_{pp}}{dp_{T}} + \frac{A-Z}{Z} \cdot \frac{dN_{pn}}{dp_{T}},$$

- A = 208 (mass number of Pb nucleus),
- **Z** = 82 (atomic number of Pb nucleus)
- Background consists of muons from heavy-flavour decays
  - Small shadowing effects expected at high  $p_T \rightarrow$  FONLL based template JHEP 1210 (2012) 137
- $\triangleright \mu^{\pm} \leftarrow W^{\pm}$  yields  $(Y_{\mu \pm} \leftarrow W^{\pm})$  obtained by correcting  $N_{\mu \pm} \leftarrow W^{\pm}$  for acceptance x efficiency  $(Ax\epsilon)$



<sup>2</sup> (JHEP 0207 (2002) 012)

### Systematic uncertainties



- ightharpoonup Number of  $\mu^{\pm}\leftarrow$  W<sup> $\pm$ </sup> is a weighted average over a number of fit trials obtained by varying
  - p<sub>T</sub> range of the fit
  - QCD background description
  - Fraction of Z<sup>0</sup>/γ\* to W decay muons obtained from PYTHIA and POWHEG
  - Alignment effects varying the position of detector elements
- Systematic uncertainties considered are

| Summary of systematic uncertainties                                                                                                      |                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Signal extraction                                                                                                                        | ~ 6-10%                                            |
| Acceptance x efficiency - Tracking / trigger efficiency - Alignment                                                                      | 2.5%<br>1%                                         |
| Normalization to MB $ \begin{array}{l} \text{-} F_{\text{norm}} \\ \text{-} \sigma_{\text{MB}} \\ \text{-} \text{ Pile up} \end{array} $ | 1%<br>3.2% (forward) and 3% (backward)<br>0 - 7.5% |

# Measured cross sections at forward and backward rapidity





- $ightharpoonup \sigma_{\mu\pm\leftarrow~W\pm}$  measured in rapidity intervals: 2.03 <  $y_{\rm cms}^{\mu}$  < 3.53 and -4.46 <  $y_{\rm cms}^{\mu}$  < -2.96
- ➤ Isospin effects are visible at backward rapidity: more d quarks than u quarks in Pb compared to proton
  - $\rightarrow \sigma_{W_{-}} \sim \sigma_{W_{+}}$  at forward rapidity and  $\sigma_{W_{-}} > \sigma_{W_{+}}$  at backward rapidity

### Measured cross sections vs POWHEG predictions





- ho  $\sigma_{\mu\pm\leftarrow~W\pm}$  measured in rapidity intervals: 2.03 <  $y_{\rm cms}^{\mu}$  < 3.53 and -4.46 <  $y_{\rm cms}^{\mu}$  < 2.96
- POWHEG predictions do not include nuclear shadowing effects
- Agreement between measurement and POWHEG predictions is within 1.5σ

### Measured cross sections vs pQCD NLO predictions





- ho  $\sigma_{\mu\pm\leftarrow~W\pm}$  measured in rapidity intervals: 2.03 <  $y_{\rm cms}^{\mu}$  < 3.53 and -4.46 <  $y_{\rm cms}^{\mu}$  < -2.96
- PQCD NLO with CT10 (PDFs) predictions by Paukkunen et al.\* are in agreement with the measurements within uncertainties \*Hannu Paukkunen and Carlos A Salgado, JHEP 1103 (2011) 071
- Consistent with observations by CMS collaboration arXiv:1503.05825

# Measured cross sections vs pQCD at NLO predictions with nuclear PDFs





- $\succ \sigma_{\mu\pm\leftarrow~W\pm}$  measured in rapidity intervals: 2.03 <  $y_{\rm cms}^{\mu}$  < 3.53 and -4.46 <  $y_{\rm cms}^{\mu}$  < -2.96
- PQCD NLO with CT10 (PDFs) and EPS09 (nPDFs) predictions by Paukkunen et al.\* are compared with measurements \*Hannu Paukkunen and Carlos A Salgado, JHEP 1103 (2011) 071
- ightharpoonup At forward rapidity measured  $\sigma_{\mu^+\leftarrow W^+}$  and  $\sigma_{\mu^-\leftarrow W^-}$  are in better agreement with predictions including nPDFs
- ➤ Consistent with observations by CMS collaboration arXiv:1503.05825

### Yields of $\mu^{\pm} \leftarrow W^{\pm}$ scaled to $\langle N_{\text{coll}} \rangle$



- $ightharpoonup W^{\pm}$  production is a hard process thus it is expected to scale with the number of binary nucleon-nucleon collisions,  $N_{\text{coll}}$
- $\gt$   $\langle N_{\rm coll} \rangle$  expected to correlate with the event activity
- $\triangleright$  Use different estimators with different approaches to extract  $\langle N_{\rm coll} \rangle$ 
  - Glauber fit + Negative Binomial Distribution fit to V0A, V0C



- Hybrid Method  $\langle N_{\rm coll}^{
  m Mult} \rangle$  is calculated by scaling  $\langle N_{\rm coll} \rangle$  in minimum-bias collisions by the ratio between the average multiplicity density measured at mid-rapidity for a given ZDC energy event class and the one measured in minimum bias collisions
- Systematic uncertainty on the normalization to  $\langle N_{\rm coll} \rangle$ : 8 21% depending on a multiplicity bin

### Yields of $\mu^{\pm} \leftarrow W^{\pm}$ normalized to $\langle N_{\rm coll} \rangle$







- ightharpoonup The yield of  $\mu^{\pm} \leftarrow W^{\pm}$  is normalized to  $\langle N_{\rm coll} \rangle$  to test binary scaling
- $\succ$  To increase statistics, results of  $\mu^+ \leftarrow W^-$  and  $\mu^- \leftarrow W^-$  are added together
- $\blacktriangleright$  Within uncertainties, the yield of  $\mu^{\pm} \leftarrow W^{\pm}$  per binary collision is independent of the event activity
- Results from different estimators are compatible within uncertainties

### Summary



- $\triangleright \mu^{\pm} \leftarrow W^{\pm}$  are measured in two rapidity intervals in p-Pb collisions at  $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
- Cross-section results
- Isospin effects are visible at backward rapidity: more d quarks than u quarks in Pb compared to proton
  - $\rightarrow \sigma_{W_{-}} \sim \sigma_{W_{+}}$  at forward rapidity and  $\sigma_{W_{-}} > \sigma_{W_{+}}$  at backward rapidity
- Measured cross sections agree with POWHEG predictions within 1.5σ
- Agreement between measured cross sections with predictions by pQCD NLO without shadowing (CT10 PDFs) is within uncertainties
- A pQCD calculation including nuclear shadowing (nPDFs) agrees better with the measured cross sections
- Results are consistent with observations by CMS collaboration arXiv:1503.05825
- $\triangleright$  Yields scaled to  $\langle N_{\rm coll} \rangle$  is estimated using different estimators
- Results from different estimators are compatible within uncertainties
- $Y_{\mu\pm} \leftarrow W_{\pm} / \langle N_{\text{coll}} \rangle$  is independent of the event activity within systematic uncertainties



## THANK YOU



# Back up slides implement

## Fit examples: Signal extraction for W-boson in p-Pb collisions



## proton-going direction





## Fit examples: Signal extraction for W-boson in p-Pb collisions



## Pb-going direction





#### Glauber fit + NBD



#### Same procedure as for Pb-Pb

ALICE, Phys. Rev. C 88, 044909 (2013)

- $\triangleright$  Glauber MC to obtain  $P(N_{part})$  assuming  $N_{part}$  = number of particle sources (ancestors)
- multiplicity distribution per ancestor from Negative Binomial Distribution (NBD)
- minimization procedure to find NBD parameter values
- centrality classes defined slicing measured multiplicity distributions in percentiles of cross section
- >  $< N_{part} >$ ,  $< N_{coll} >$ ,  $< T_{pA} >$  for each centrality class from Glauber



#### Glauber fit + SNM



Similar procedure but coupled with a model for slow nucleon emission (SNM)

No model is currently available for LHC energies!

F. Sikler, arXiv: 0304.065

Features of emitted nucleons weakly dependent on projectile energy from 1 GeV to 1 TeV

- → "Phenomenological" model based on experimental results at lower energies
- number of protons and neutrons as a function of N<sub>coll</sub>
- kinematical properties of emitted slow nucleons
- → able to reproduce essential features of the spectrum, still ongoing work!



#### W-bosons in Heavy-Ion: Nuclear PDFs



\*Hannu Paukkunen and Carlos A Salgado, JHEP 1103 (2011) 071

#### Nuclear effects:

 Difference between cross sections in collisions involving heavy-ion and those in free nucleons (EPS09)

$$x_a = \frac{M_W}{\sqrt{s}} exp(y_W), x_b = \frac{M_W}{\sqrt{s}} exp(-y_W)$$

- W-boson are sensitive to nuclear effects: Fermi motion
   EMC effects
   anti-shadowing shadowing
- Isospin effects remain sizable



#### Signal extraction: example of global fit



- Fit range:  $12 < p_T < 80 \text{ GeV/c}$
- ightharpoonup Raw  $N_{\mu+\leftarrow W+}$  and  $N_{\mu-\leftarrow W-}$  extracted by integrating  $\mu^{\pm}\leftarrow W^{\pm}$  at  $10 < p_{T}^{\mu} < 80$  GeV/c

#### proton-going direction





#### Normalization of yields to MB cross section



To obtain the cross section  $\sigma_{\mu\leftarrow W}$  the yield of  $\mu^{\pm}\leftarrow W^{\pm}$  is normalized to the MB cross section by considering

$$\sigma_{\mu \leftarrow W} = \frac{N_{\mu \leftarrow W}}{A \times \varepsilon} \times \frac{\sigma_{MB}}{N_{MSH} \times F_{norm}}$$
,

#### where

- A x ε factor for the acceptance and efficiency
- $N_{MSH}$  number of high- $p_T$  muon triggered (MSH) events
- $\sigma_{\rm MB}$  the MB cross section is 2.09±0.07 barn for p-Pb collisions and 2.12±0.06 barn for Pb-p JINST 9 (2014) 11, P11003
- F<sub>norm</sub> fraction of MSH events in MB-triggered data computed using 2 methods:
  - Method 1: uses offline information from trigger inputs
  - Method 2: uses online information from trigger counters
  - → Systematic difference between methods is ~ 1%

### Systematic uncertainties



- $\triangleright$  Number of  $\mu^{\pm}\leftarrow$  W<sup>±</sup> is a weighted average over a number of fit trials obtained by varying
  - p<sub>T</sub> range of the fit
  - QCD background description
  - Fraction of  $Z^0/\gamma^*$  to W decay muons obtained from PYTHIA and POWHEG
  - Alignment effects varying the position of detector elements
- Systematic uncertainties considered are

| Summary of systematic uncertainties                                                                                                      |                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Signal extraction                                                                                                                        | ~ 6-10%                                          |
| Acceptance x efficiency - Tracking / trigger efficiency - Alignment                                                                      | 2.5%<br>1%                                       |
| Normalization to MB $ \begin{array}{l} \text{-} F_{\text{norm}} \\ \text{-} \sigma_{\text{MB}} \\ \text{-} \text{ Pile up} \end{array} $ | 1%<br>3.2% (LHC13de) and 3% (LHC13f)<br>0 - 7.5% |