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Introduction

Artificial Neural Networks in HEP/Nuclear Data Analyses
Self Organizing Maps (SOMs) Algorithm

SOMPDFs

Quantitative example: d/u ratio at large x

Conclusions/Outlook/Extension to GPDs, TMDs...



proton structure function F,

Issues in dealing with an increasingly complicated and diverse set of observables
TMDs

PDFs
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0. Eonz;ez-;I,;rnaondez, S.L. And more...
Fragmentation Functions (FFs)
Fracture Functions (FFs)...



\/Conventional models give interpretations in terms of the microscopic properties of the
theory (focus on the behavior of individual particles)

Parameterizations depend on the analytical form of the PDFs

f(x, QOZ;AZ.,bl....) = A x"(L- x)° (1+a’l.x+el.x2 +...)

In a nutshell:

1) One finds the best-fit values of parameters.

2) The uncertainty is determined in most cases with the Hessian method.

Conventional methods’ problem: fits to data depend on the specific functional form

Initial bias!



‘/To overcome this S. Forte et al. introduced an Artificial Neural

Network based approach (NNPDF)

\/Attacking the problem from a different perspective: study the
behavior of multi-particle systems as they evolve from a large and
varied number of initial conditions: this goal is at reach with HPC

\/However ANN approach has an inherent problem:

renouncing to a specific form makes extrapolation difficult
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Of fundamental importance for
TMD,GPD analysis!

If data are missing it is not possible
to determine output!

tfbefor'e LHC data

Is there a way of keeping “the best of both worlds”?



In J. Carnahan, H. Honkanen, S.Liuti, Y. Loitiere, P. Reynolds, Phys Rev D79, 034022 (2009) we came
to the conclusion that one must improve on the ANN type algorithm!

Self Organizing Maps (SOMs) NN based on “"Unsupervised Learning”
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Initial Data set Winner node/Latent Variables

No a priori examples are given.
The NN learns by finding how the data cluster or self-organize



Artificial Neural Networks in HEP/Nuclear Data Analyses

X,

Input Layer

Weights

Hidden Layer

Output Layer

yi&l

Back propagation/supervised

learning
1. Take the output from the
network

2. Compare it to the real data
values

3. Calculate how wrong the

network was (error= how wrong the
weights were)

4. Use this information to calculate
the partial derivatives in the
parameters/weights which are
necessary to minimize the cost



NNPDFs...(S.Forte, et al.)
http://nnpdf.hepforge.org/html/GenStr.html

+ Monte Carlo generation of data replicas Experimental Data

— no need for linear propagation of errors

— possibility to test for non Gaussian behaviour ‘ ' '
in fitted PDFs

+ Neural Networks parametrization of PDFs MC gsneration {,
— 7 independent PDFs, 259 parameters
TRAINING

— unbiased parametrization
| | | |

EVOLUTION

» Evolution using DGLAP equations

» Genetic Algorithm's training of neural networks
parameters
« Analysis of 2 distributions I Barems izaton




NNPDF including LHC data, THEP(2012)
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New issues, new benchmarks discussed at this meeting address:

1) Possible non-Gaussian behavior of data; error treatment (H12000,...)
2) Study of variations from using different data sets and different methods

(Alekhin,...)
3) Comparison of parameterizations where fits where error treatment is the

same but methods are different
4)

What is the ideal flexibility of the fitting functional forms?
What is the impact of such flexibility on the error determination?

=>» SOMs are ideal to study the impact of the different fit variations!



Self Organizing Maps (SOMs)



The various nodes form a topologically ordered map
during the learning process.

Xl ‘\\ U

The learning process is unsupervised = no “correct
response’ reference vector is needed.

The goal is to minimize the cost function by similarity
relations, or by finding how the data cluster or self-
organize
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Initial Data set Winner node/Latent Variables

The nodes are decoders of the input signals -- can be
used for pattern recognition.



SOMs Algorithm

Each cell (neuron) is sensitized to a different domain of vectors:
cell acts as decoder of domain

l

Initialization = Input vector of dimension “n” associated to cell “i”:

Vi = [T-‘i”, '.'-'f_"}}

V. is given spatial coordinates that define the geometry/topology of a 2D map

Training_— Input data:

r— [e0 _em]  isomorphic
=) H N

x compared to V; 's with “similarity” metric(L1):
|| & —my ||

(Aggawal et al., 2000)

Location of best match “winner” gives location of response
(active cell, all others are passive)

Learning (updating) —» cells V, that are close up to a certain distance

activate each other to “learn” from x



Learning:

Map cells, V, that are close to “winner neuron”
activate each other to “learn” from x

V,(n+1) = Vi(n) + b, (n) x(n) - V()]

iteration number
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éhborhood function decreases with “n” and “distance”



Map representation of 5 initial samples: blue, yellow, red, green, magenta

“Colors” Example




Simple Functions Example
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Initialization: functions are Training: “winner” node is selected,
placed on map Learning: adjacent nodes readjust

according to similarity criterion

Final Step : clusters of similar functions from input data get
distributed on the map



Now on to PDFs...

Initialization: a set of database/input PDFs is obtained selecting at random from existing
PDF sets and varying their parameters according to a pre-defined procedure.
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Training: A subset of input PDFs (envelope) is used to train the map.

Learning:The similarity is tested by comparing the PDFs at given (x,Q?) values.
The new

map PDFs are obtained by averaging the neighboring PDFs with the

“winner” PDFs.)




X2 minimization through genetic algorithm

Once the first map is trained, the x2per map cell is
calculated.

We take a subset of PDFs that have the best ¥2 from the
map and form a new initialization set including them.

We train a hew map, calculate the x2 per map cell, and
repeat the cycle.

We iterate until the x2 stops varying (stopping criterion).

x




Error Analysis

Treatment of experimental error is complicated because of incompatibility
of various experimental 2.

Treatment of theoretical error is complicated because they are not well
known, and their correlations are not well known.

In our approach we performed the theoretical error evaluation with the

Lagrange multiplier method and using the generated PDFs as a statistical
ensemble



Advantages over NNPDFs

Clustering properties: generic ANNs do not keep track of inter-
connections/correlations of data at the various stages of the network training

Advantages over “conventional” PDFs

Similarly to NNPDFs we eliminate the bias due to the initial
parametric form
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Strange, ubar, dbar
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SOMs can do more than this:

e SOMs differently from standard ANN methods are “unsupervised”: they find similarities
in the input data without a training target.

 They have been used in theoretical physics approaches to critical phenomena, to the
study of complex networks, and in general for the study of high dimensional non-linear
data (e.g. Der, Hermann, Phys.Rev.E (1994), Guimera et al., Phys. Rev.E (2003) )

* Our final goal: use SOMs to study multidimensional parton distributions/multiparton
correlations (GPDs...)

Example
(7.1 x -' al -"f-'
OO0 00000 bquarks . . 7
20 0O 000 e @ b quarks
-
OO0 0 @0 @O @caus W)
. ¢ quarks e
oo U . .' . . () uds quarks o '
e 0 0000 . v
[ERT - .
Ol N N N N ] uds quarks e e
= W
~ l::l . . . . . (7.7 - r ¥ f-’”ff

Lonnblad, Peterson, Pi, Computer Physics Comm. 1991



Large x = d/u ratio
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Most of the large x data lie in the resonance region: use Bernstein polynomials to

average the data
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How the Bernstein polynomials work: weighted average with data
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Analysis with no Q? dependent cog;ec‘rions (no TMCs etc...)
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E. Askanazi, K. Holcbimb, S. Liuti, J. Phys. G 42, no. 3, 034030 (2015) [arXiv:1411.2487 [hep-ph]].



Study clustering properties of data/correlations of various effects to reduce size of the error

A ¥

...ongoing



... analysis of various components



We are studying similar characteristics of SOMs to devise a fitting

procedure for GPDs: our new code has been made flexible for this use

Main question: Which experiments, observables, and with what
precision are they relevant for which GPD components?

From Guidal and Moutarde, and Moutarde analyses (2009)
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8 GPD-related functions

sin b oS o cos 2d Ccos 3
Aoy Aey Arey Aoy Ao

£101 ¢ Cos g sin 2¢
A{LL'.-D‘-*TFSP A{f_..r,-',m’c:_e:] ? H{LU:L}L’L‘H] ’A{LL’:J_J VOS)
sin o COS o sin 2eb
A,[L{__r._f}, A H A

LU Iy LU Iy LT}
A ey
A[L"y,l:"'if 8}
Aqyy and AP, (13)

17 obsvervables (6 LO) from HERMES +
Jlab data

“a challenge for phenomenology...” (Moutarde) + “theoretical bias”



The 8 GPDs are the dimensions in our analysis
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Conclusions/Outlook

v’ Presented: a new computational method,
Self-Organizing Maps
for parametrizing nucleon PDFs ... and beyond...

v The method works: we succeeded in minimizing the x2and in performing

error analyses for PDFs
E. Askanazi, K. Holcomb, S. Liuti, J. Phys. G 42, no. 3, 034030 (2015) [arXiv:1411.2487 [hep-ph]].

v' In progress: study more observables from varied sets of data where
predictivity/theoretical input is important (d/uatx=>1, ...)

v'Future Studies: GPDs, theoretical developments, connection with “similar
approaches”, complexity theory...



Issues for discussion

New ingredients for multi-variable analysis

Theoretical vs. Experimental, Systematic and Statistical Uncertainties
(correlations)

Estimators: x?, weighted x?, ...

Non-linearity



