

Outline

- motivation
- matrix element method
- •l+jets measurement
- additional JES
- template method
- dilepton measurement
- systematic uncertainty
- summary & Outlook

Measurements of the top quark mass using 9.7 fb⁻¹ of DØ Run II data

Huanzhao Liu Southern Methodist University

On behalf of the D0 Collaboration

DIS2015

4/29/2015

Motivation

Top quark in the Standard Model (SM)

- Most heavy fundamental particle
- The top Yukawa coupling is very close to unity, indicating that the top quark may play a special role in ESWB
- Self-consistency test of the SM
- Relates to the stability of Higgs potential

Buttazzo et al arXiv:1307.3536

Tevatron, DØ and top production

DØ experiment is one of the two experiments at Tevatron Hadron Collider, Fermilab

Calorimeter **Tracker** Tevatron Run II 2001-2011 MAIN INJECTOR System RECYCLER **TEVATRON** Anti-TARGET HALL protons protons ANTIPROTON Beamline **Shielding** COCKCROFT-WALTON delivered 11.9 fb⁻¹ recorded 10.7 fb⁻¹ 20 m **Electronics** selected 9.7 fb⁻¹

Tevatron Run II: σ (mt=173GeV) ~ 7.5 pb (arXiv:1112.5675) 85% qqbar annihilation, 15% gg fusion

Top Pair Branching Fractions

Matrix Element Method in lepton+jets channel

I+jets: Matrix Element method + in-situ jet energy scale (k_{JES})

$$L(x_1,...,x_n; m_t, k_{\text{JES}}, f) = \prod_{i=1}^n P_{\text{evt}}(x_i; m_t, k_{\text{JES}}, f)$$

$$P_{\text{evt}}(x; m_t, k_{\text{JES}}, f) = f \cdot P_{\text{sig}}(x; m_t, k_{\text{JES}}) + (1 - f) \cdot P_{\text{bkg}}(x; k_{\text{JES}})$$

$$P_{\text{sig}}(x; m_t, k_{\text{JES}}) = \frac{1}{\sigma_{\text{obs}}(p\overline{p} \to t\overline{t}; m_t, k_{\text{JES}})} \times \sum_{perm} w_i \int_{q_1, q_2, y} \sum_{flavors} dq_1 dq_2 f(q_1) f(q_2) \frac{(2\pi)^4 |\mathcal{M}(q\overline{q} \to t\overline{t} \to y)|^2}{2q_1 q_2 s} d\Phi_6 W(x, y; k_{\text{JES}})$$

CTEQ6L PDF

LO Matrix Element Detector Resolution

in-situ Jet energy calibration in lepton+jets channel

- in-situ JES calibration
 - 2 light quarks from W boson decay (W->qq')
 - provides a way to measure light quark JES
 - constraining the invariant mass to world average value of the W boson mass
 - This greatly reduces the uncertainty on JES absolute scale

 k_{JES} - additional JES factor that corrects measured jet energy to particle level

$$k_{JES}$$
 = 1.0250 ± 0.0046 * (typical JES uncertainty is ~2%)

- k_{JES} can also be adopted in the dilepton channel
- By adopting k_{JES}, the JES systematic uncertainty in dilepton channel is reduced by a factor ~4

^{*} Phys. Rev. Lett. **113**, 032002 (2014)

Precise measurement of the top quark mass in I+jets final states using 9.7fb⁻¹ of D0 data

 $m_t = 174.98 \pm 0.76 \text{ GeV}$ $m_t = 174.98 \pm 0.58 \text{ (stat + JES)} \pm 0.49 \text{ (syst) GeV}$ 0.43% precision most precise single channel measurement

submitted to Phys. Rev. D (Phys. Rev. Lett. **113**, 032002 (2014))

Data sample and event yields for dilepton final states

ttbar MC sample:

130 – 200 GeV with 5 GeV increment & 172.5 GeV sample (ALPGEN+PYTHIA)

• backgrounds:

Z->II+jets (ALPGEN+PYTHIA), diboson (PYTHIA), instrumental (data)

Kinematic selection:

two isolated leptons with opposite charge: pT > 15 GeV, $|\eta|$ < 2.5

at least two jets with: pT > 20 GeV, $|\eta|$ < 2.5

additional topological requirement *

At least one jet originates from b quark

Event yields after selection

Channel	expected	data
eμ	298.1 ± 24.6	336
ee	106.5 ± 11.0	113
μμ	103.5 ± 8.3	109

^{*=}subject of optimization for this analysis

Neutrino Weighting + Template Method in dilepton final states

- Event can be reconstructed for given mtop and two neutrino rapidities
- The agreement between calculated MET and observed MET is quantified by a weight ω
- For each given mtop, Integrate ω over all possible combinations of the two neutrino η 's and jet-lepton assignments

Iteratively fit negative log likelihood with parabola

- fitted m_{top} = minimum of parabola
- estimated statistical uncertainty = deviation from minimum of parabola to minimum + 0.5

Optimization in dilepton final states using template method

Category	Parameters	Expected improvement	
Event Selection	Kinematic cuts:	~~~.	
	H _τ (eμ)		
	E _T significance (ee / μμ)		
	E _τ (μμ)	~3% in stat.uncert.	
	E _T in Zmass Window (ee)		
	Btagging maxMVA cut (ee/eμ/μμ)		
weight calculation	Unclustered missing E _T resolution	~5% in stat.uncert.	
	Scanned mass range	~6% in stat.uncert.	
Likelihood Calculation	Template bin size ($μ_w$, $σ_w$) (ee/e $μ$ / $μ$ $μ$)	~10% in stat.uncert.	
	Number of pseudo-experiments	stablize syst.uncert.	

Using 9.7 fb⁻¹ of data, the expected improvement in expected statistical uncertainty is > 25% on top of 2X more data

Data result in dilepton final states

Distribution of μ_W before and after all selections and kinematic reconstruction

preliminary data measurement in the dilepton channel

$$m_t = 173.3 \pm 1.4 \text{ (stat)}$$

Systematic Uncertainty and result in dilepton final states

D0 preliminary, 9.7fb⁻¹

Source	σ_{m_t} [GeV]		
Jet energy calibration			
Absolute scale	± 0.5		
Flavor dependence	± 0.3		
Residual scale	± 0.4		
b quark fragmentation	± 0.1		
Signal modeling			
ISR/FSR	± 0.2		
Color reconnection	+0.2		
Higher order effects	+0.3		
Hadronization	-0.1		
PDF uncertainty	-0.1		
Signal fraction	< 0.05		
Object reconstruction			
Electron p_T resolution	< 0.05		
Muon p_T resolution	< 0.05		
Electron energy scale	< 0.05		
Muon p_T scale	< 0.05		
Jet resolution	± 0.1		
Jet identification	< 0.05		
Method			
Calibration	± 0.1		
Template statistics	± 0.2		

In the dilepton channel, the top quark mass measured using template method is

- Smallest systematic uncertainty in dilepton channel
- Consistent with current world average

Recent headlines on the top quark mass

First World combination
March 2014

arXiv:1403.4427

Tevatron+LHC m_{on} combination - March 2014, L_{int} = 3.5 fb⁻¹ - 8.7 fb⁻¹ ATLAS + CDF + CMS + D0 Preliminary CDF RunII, I+jets $172.85 \pm 1.12 (0.52 \pm 0.49 \pm 0.86)$ L_{st} = 8.7 fb⁻¹ CDF RunII, di-lepton 170.28 ± 3.69 (1.95 ± 3.13) L_{st} = 5.6 fb⁻¹ CDF RunII, all jets 172.47 ± 2.01 (1.43 ± 0.95 ± 1.04) CDF RunII, E^{miss}+jets $173.93 \pm 1.85 (1.26 \pm 1.05 \pm 0.86)$ L_{st} = 8.7 fb⁻¹ D0 RunII, I+jets $174.94 \pm 1.50 (0.83 \pm 0.47 \pm 1.16)$ D0 Runll, di-lepton 174.00 ± 2.79 (2.36 ± 0.55 ± 1.38) ATLAS 2011. I+iets 172.31 ± 1.55 (0.23 ± 0.72 ± 1.35) ATLAS 2011, di-lepton 173.09 ± 1.63 (0.64 CMS 2011, I+jets $173.49 \pm 1.06 (0.27 \pm 0.33 \pm 0.97)$ L_{st} = 4.9 fb⁻¹ CMS 2011, di-lepton $172.50 \pm 1.52 \pm 0.43$ CMS 2011, all jets 173,49 ± 1,41(0.69 World comb. 2014 x2 / ndf =4.3/10 $173.34 \pm 0.76 \, (0.27 \pm 0.24 \pm 0.67)$ $173.20 \pm 0.87 (0.51 \pm 0.36 \pm 0.61)$ Tevatron March 2013 (Run I+II) $173.29 \pm 0.95 (0.23 \pm 0.26 \pm 0.88)$ LHC September 2013 total (stat. iJES syst.) 165 170 175 180 m_{top} [GeV] Tevatron Combination
July 2014
arXiv:1407.2682

CMS Combination September 2014

CMS-PAS-TOP-14-015

	World comb.	Tevatron comb.	CMS comb.
m _t [GeV]	173.34 \pm 0.76	174.34 \pm 0.64	172.38 \pm 0.66
Precision	0.44 %	0.37 %	0.38 %

Summary and outlook

```
l+jets m_t = 174.98 ± 0.58 (stat + JES) ± 0.49 (syst) GeV 0.43% precision dilepton preliminary m_t = 173.3 ± 1.4 (stat) ± 0.8 (syst) GeV 0.9% precision
```

- In the dilepton channel, the precision is improved by about a factor of two compared to previous template result for 5.3 fb⁻¹
- We look forward to updated Tevatron combination (and World combination)

Thank you for your attention!

Backup

Calibration and expected stat.uncert. in dilepton channel

- 3000 pseudo-experiments
- fitted top mass vs. input top mass
- good slope and pull

$$m_t^{fit} = \alpha (m_t^{MC} - 170) + \beta + 170$$

$$p = \frac{m_t^{meas, calib} - m_t^{MC}}{\sigma^{meas, calib}}$$

Systematic Uncertainty in the lepton+jets channel

C C	Do . (C.W)
Source of uncertainty	Effect on m_t (GeV)
Signal and background modeling:	
Higher order corrections	+0.15
Initial/final state radiation	± 0.09
Hadronization and UE	+0.26
Color reconnection	+0.10
Multiple $p\bar{p}$ interactions	-0.06
Heavy flavor scale factor	± 0.06
b-jet modeling	+0.09
PDF uncertainty	± 0.11
Detector modeling:	
Residual jet energy scale	± 0.21
Flavor-dependent response to jets	± 0.16
b tagging	± 0.10
Trigger	± 0.01
Lepton momentum scale	± 0.01
Jet energy resolution	± 0.07
Jet ID efficiency	-0.01
Method:	
Modeling of multijet events	+0.04
Signal fraction	± 0.08
MC calibration	± 0.07
Total systematic uncertainty	± 0.49
Total statistical uncertainty	± 0.58
Total uncertainty	± 0.76

Weight distribution

MET resolution

DØ detector has very good MET resolution Important for measurement in dilepton channel using template method