Spin Physics Highlights: WG6

DIS 2015 XXIII International Workshop on

Deep-Inelastic Scattering and Related Subjects

Dallas, Texas April 27 – May 1, 2015

Francesca Giordano, Ted Rogers, Patricia Solvignon

DIS 2015: spin session

Proton Helicity

Hari Guragain Xuan Li Devika S Gunarathne Mike Beaumier Nilanga Liyanage

GPDs

Philipp K Gorg Carlos M Camacho Maxime Defurne Pawel Sznajder Simonetta Liuti Carlos Granados

Experiment

TMDs

Twist 3

Yuji Koike Daniel Pytoniak (Andreas Metz) Anselm Vossen Erin Seder Giulio Sbrizzai Salvatore Fazio Kalyan Allada Kenneth Barish James L Drachenberg

Isabella Garzia

John Collins Wenjuan Mao Lingyun Dai Osvaldo Gonzales Cristian Pisano Matthias Burkardt

Future Experiments

Zhihong Ye Markus Diefenthaler Elke C Aschenauer

And more...

Peter Lowdon (Boundary terms) Aurore Courtoy (DiHadrons) Nobuo Sato (proton/nuclear pdf) Tomas Kasemets (double parton scattering)

Spin Physics and Transverse Structure

TMD structures for quark and gluon PDFs

Piet Mulders

QUARKS	P	₽ Υ ₅	$\not\!$
U	f_1		h_1^\perp
L		$g_{_{1L}}$	$h_{_{1L}}^{\perp}$
Т	$f_{_{1T}}^{\perp}$	$g_{_{1T}}$	$h_{_{1T}}, h_{_{1T}}^{\perp}$

GLUONS	$-g_T^{lphaeta}$	$oldsymbol{arepsilon}_T^{lphaeta}$	$p_{\scriptscriptstyle T}^{lphaeta}$
U	f_1^g		$h_1^{\perp g}$
L		$oldsymbol{g}_{1L}^{g}$	$h_{\scriptscriptstyle 1L}^{\scriptscriptstyle ot g}$
Т	$f_{1T}^{\perp g}$	$oldsymbol{g}^{g}_{1T}$	$h_{1T}^g, h_{1T}^{\perp g}$

Plenary Session

Non-universality because of process dependent gauge links

$$\Phi_{ij}^{q[C]}(x, p_T; n) = \int \frac{d(\xi.P) d^2 \xi_T}{(2\pi)^3} e^{i_P \xi} \left\langle P \middle| \overline{\psi}_j(0) U_{[0,\xi]}^{[C]} \psi_i(\xi) \middle| P \right\rangle_{\xi,n=0}$$
TMD
path dependent gauge link

 Gauge links associated with dimension zero (not suppressed!) collinear Aⁿ = A⁺ gluons, leading for TMD correlators to process-dependence:

3

TMD factorization, Non-Perturbative Evolution

John Collins

$$\begin{aligned} \frac{\mathrm{d}\ln\tilde{f}_{f/H}(x,b_{\mathsf{T}};Q^{2};Q)}{\mathrm{d}\ln Q} &= \gamma(\alpha_{s}(Q)) - \int_{\mu_{b}}^{Q} \frac{\mathrm{d}\mu}{\mu} \gamma_{K}(\alpha_{s}(\mu)) + \tilde{K}(b_{\mathsf{T}};\mu_{b}) \\ &= \gamma(\alpha_{s}(Q)) - \int_{\mu_{b_{*}}}^{Q} \frac{\mathrm{d}\mu}{\mu} \gamma_{K}(\alpha_{s}(\mu)) + \tilde{K}(b_{*};\mu_{b_{*}}) - g_{K}(b_{\mathsf{T}};b_{\max}) \end{aligned}$$

$$g_{K}(b_{\mathrm{T}}; b_{\mathrm{max}}) = g_{0}(b_{\mathrm{max}}) \left(1 - \exp\left[-\frac{C_{F}\alpha_{s}(\mu_{b_{*}})b_{\mathrm{T}}^{2}}{\pi g_{0}(b_{\mathrm{max}})b_{\mathrm{max}}^{2}} \right] \right)$$
$$g_{0}(b_{\mathrm{max}}) = g_{0}(b_{\mathrm{max},0}) + \frac{2C_{F}}{\pi} \int_{C_{1}/b_{\mathrm{max},0}}^{C_{1}/b_{\mathrm{max}}} \frac{d\mu'}{\mu'} \alpha_{s}(\mu')$$

(JCC & Rogers, PRD 91, 074020 (2015), arXiv:1412.3820)

TMD factorization, Non-**Perturbative Evolution**

John Collins

(JCC & Rogers, PRD 91, 074020 (2015), arXiv:1412.3820)

J Osvaldo González Hernández Large and small q_T Matching

- Message: Large-small q_T matching is important and delicate

Overview of Twist-3 Factorization by Yuji Koike

- Twist-3 approaches has been extensively developed for both pole and non-pole contributions.
- $\begin{aligned} \star \text{ Quark-gluon correlation functions in the } \bot \text{ polarized nucleon.} \\ {}^{"F-type"} \\ \int \frac{d\lambda}{2\pi} \int \frac{d\mu}{2\pi} e^{i\lambda x_1} e^{i\mu(x_2-x_1)} \langle PS | \bar{\psi}_j(0) g F^{\alpha\beta}(\mu n) n_{\beta} \psi_i(\lambda n) | PS \rangle \\ &= \frac{M_N}{4} (\not{p})_{ij} \epsilon^{\alpha p n S_{\perp}} G_F(x_1, x_2) + i \frac{M_N}{4} (\gamma_5 \not{p})_{ij} S^{\alpha}_{\perp} \tilde{G}_F(x_1, x_2) + \cdots \\ \int \frac{d\lambda}{2\pi} \int \frac{d\mu}{2\pi} e^{i\lambda x_1} e^{i\mu(x_2-x_1)} \langle PS | \bar{\psi}_j(0) D^{\alpha}_{\perp}(\mu n) \psi_i(\lambda n) | PS \rangle \\ &= \frac{M_N}{4} (\not{p})_{ij} \epsilon^{\alpha p n S_{\perp}} G_D(x_1, x_2) + i \frac{M_N}{4} (\gamma_5 \not{p})_{ij} S^{\alpha}_{\perp} \tilde{G}_D(x_1, x_2) + \cdots \\ p^2 = n^2 = 0, \ p \cdot n = 1 \end{aligned}$

Overview of Twist-3 Factorization by Yuji Koike

- Twist-3 approaches has been extensively developed for both pole and non-pole contributions.
- \star Quark-gluon correlation functions in the \perp polarized nucleon. "F-type"
 - \star Twist-3 "three-gluon" correlation functions

 $\int d\lambda \int d\mu = -$

Beppu-Koike-Tanaka-Yoshida (PRD 82('10)054005) See also, Belitsky-Ji-Lu-Osborne, PRD63,094012(2001) Braun-Manashov-Pirnay, PRD80,114002(2009).

 $(x_2 - x_1)p^+$

Overview of Twist-3 Factorization by Yuji Koike

* Relation between TMD and Twist-3 at intermediate P_T ($\Lambda_{\rm QCD} \ll P_T \ll Q$)

 $\Lambda_{\rm QCD} \ll P_T \ll Q$

Equivalent for Sivers asymmetry $F^{\sin(\phi_h - \phi_S)}$ and for DY, consistently with $f_{1T}^{\perp}|_{\text{DIS}} = -f_{1T}^{\perp}|_{\text{DY}}$. · Ji-Qiu-Vogelsang-Yuan (PRL 97('06)082002, PLB638('06)178). · Koike-Vogelsang-Yuan (PLB'07) ($\leftarrow \tilde{G}_F$ -contribution)

· 3-gluon contribution to $F^{\sin(\phi_h - \phi_S)}$ is also shown to be consistent between the two frameworks. (Dai,Kang,Prokdin,Vitev,arXiv:1409.5851[hep-ph])

· Similar equivalence also shown for Collins asymmetry $F^{\sin(\phi_h + \phi_S)}$.

NLO weighted Sivers asymmetry in SIDIS: three-gluon correlator

Three gluon contribution to:

evolution of Qiu-Sterman function

$$\frac{\partial}{\partial \ln \mu_f^2} T_{q,F}(x_B, x_B, \mu_f^2) = \frac{\alpha_s}{2\pi} \int_{x_B}^1 \frac{dx}{x^2} P_{q \leftarrow g}(\hat{x}) \left(\frac{1}{2}\right) \left[O(x, x, \mu_f^2) + O(x, 0, \mu_f^2) + N(x, x, \mu_f^2) - N(x, 0, \mu_f^2)\right]$$

coefficient function

$$\begin{aligned} C_{q \leftarrow g,1}(\hat{x}) &= \frac{\alpha_s}{4\pi} \left[P_{q \leftarrow g}(\hat{x}) \ln\left(\frac{c^2}{b^2 \mu^2}\right) + \hat{x}(1-\hat{x}) \right], \\ C_{q \leftarrow g,2}(\hat{x}) &= \frac{\alpha_s}{4\pi} \left[P_{q \leftarrow g}(\hat{x}) \ln\left(\frac{c^2}{b^2 \mu^2}\right) - \frac{1}{2} \left(1 - 6\hat{x} + 6\hat{x}^2\right) \right]. \end{aligned}$$

- TMD and collinear twist-3 formalisms are consistent in $\Lambda_{QCD} \ll p_{h\perp} \ll Q$ region

Lingyun Dai Kang, Prokudin, Vitev arXiv:1409.5851

NLO weighted Sivers asymmetry in SIDIS: three-gluon correlator

three-gluon correlation functions contribution:

$$\begin{split} \frac{d\langle p_{h\perp}\Delta\sigma\rangle}{dx_Bdydz_h} &= -\frac{z_h\sigma_0}{2}\frac{\alpha_s}{2\pi}\sum_q e_q^2 \int_{x_B}^1 \frac{dx}{x^2} \int_{z_h}^1 \frac{dz}{z} D_{h/q}(z) \bigg\{ \delta(1-\hat{z})\ln\left(\frac{Q^2}{\mu_f^2}\right) P_{q\leftarrow g}(\hat{x}) \\ &\times \left(\frac{1}{2}\right) \left[O(x,x,\mu_f^2) + O(x,0,\mu_f^2) + N(x,x,\mu_f^2) - N(x,0,\mu_f^2)\right] \\ &+ \left(\frac{1}{4}\right) \left[\left(\frac{dO(x,x,\mu_f^2)}{dx} - \frac{2O(x,x,\mu_f^2)}{x}\right) \hat{H}_1 + \left(\frac{dO(x,0,\mu_f^2)}{dx} - \frac{2O(x,0,\mu_f^2)}{x}\right) \hat{H}_2 \\ &+ \frac{O(x,x,\mu_f^2)}{x} \hat{H}_3 + \frac{O(x,0,\mu_f^2)}{x} \hat{H}_4 \right] + \left(\frac{1}{4}\right) \left[\left(\frac{dN(x,x,\mu_f^2)}{dx} - \frac{2N(x,x,\mu_f^2)}{x}\right) \hat{H}_1 \\ &- \left(\frac{dN(x,0,\mu_f^2)}{dx} - \frac{2N(x,0,\mu_f^2)}{x}\right) \hat{H}_2 + \frac{N(x,x,\mu_f^2)}{x} \hat{H}_3 - \frac{N(x,0,\mu_f^2)}{x} \hat{H}_4 \right] \bigg\}, \end{split}$$

- TMD and collinear twist-3 formalisms are consistent in $\Lambda_{QCD} \ll p_{h\perp} \ll Q$ region

11

Transverse single-spin asymmetries in pion and photon production from proton-proton collisions

Kanazawa, Koike, Metz, DP - PRD 89(RC) (2014)

Daniel Pitonyak

- → Without the 3-parton FF, one has difficulty describing the RHIC data
 - *H* term dominates the asymmetry

Transverse single-spin asymmetries in pion and photon production from proton-proton collisions

Kanazawa, Koike, Metz, DP - PRD 89(RC) (2014)

Daniel Pitonyak

- Sivers-type contribution is dominant, others are negligible
 - → Can "cleanly" extract QS function to help resolve "sign mismatch" issue
 - Clear measurement of a negative A_N would be a strong indication on the process dependence of the Sivers function (see also TSSA in inclusive DIS Metz, et al. (2012), and in jet production from A_NDY Gamberg, Kang, Prokudin (2013))

Twist-3 Spin Observables for Single-Hadron Production in DIS

(A. Metz, Temple University, Philadelphia)

talk mainly based on

arXiv:1407.5078, Gamberg, Kang, A.M., Pitonyak, Prokudin arXiv:1411.6459, Kanazawa, A.M., Pitonyak, Schlegel arXiv:1503.02003, Kanazawa, A.M., Pitonyak, Schlegel

- * error band based on uncertainties of f_{1T}^{\perp} , h_1 , H_1^{\perp} only
- * relatively poor comparison with data, especially for π^+ production
- * potential reasons for discrepancy:
 - (1) no error band for twist-3 FF \hat{H}^{\Im}_{FU} and hence for FF H
 - (2) (significant) other source(s) for A_N in $p p^{\uparrow} \rightarrow h X$
 - (3) leading order formalism not appropriate for rather low P_{h⊥} of available data;
 HERMES: even data at highest P_{h⊥} dominated by quasi-real photo-production
 → calculation of NLO correction needed


```
Phys.Rev. D90 (2014) 1, 014048
```

Transverse Force on Quarks in DIS

Matthias Burkardt

Transverse Force on Quarks in DIS

Matthias Burkardt

straight line $(\rightarrow Ji)$	light-cone staple (\rightarrow Jaffe-Manohar)
$\frac{1}{2} = \sum_{q} \frac{1}{2} \Delta q + \mathbf{L}_{q} + J_{g}$ $\mathbf{L}_{q} = \int d^{3}x \langle P, S \bar{q}(\vec{x}) \gamma^{+} \left(\vec{x} \times i \vec{D} \right)^{z} q(\vec{x}) P, S \rangle$	$\frac{1}{2} = \sum_{q} \frac{1}{2} \Delta q + \mathcal{L}_{q} + \Delta G + \mathcal{L}_{g}$ $\mathcal{L}^{q} = \int d^{3}x \langle P, S \bar{q}(\vec{x}) \gamma^{+} \left(\vec{x} \times i \vec{\mathcal{D}} \right)^{z} q(\vec{x}) P, S \rangle$
• $i\vec{D} = i\vec{\partial} - g\vec{A}$	$i\mathcal{D}^j = i\partial^j - gA^j(x^-, \mathbf{x}_\perp) - g\int_{x^-}^{\infty} dr^- F^{+j}$

difference $\mathcal{L}^q - L^q$

 $\mathcal{L}^{q} - L^{q} = -g \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+} \left[\vec{x} \times \int_{x^{-}}^{\infty} dr^{-} F^{+\perp}(r^{-}, \mathbf{x}_{\perp}) \right]^{z} q(\vec{x}) | P, S \rangle$

Towards a Direct Measurement of the Quark Orbital Angular Momentum Distribution Simonetta Liuti University of Virginia

$$\underbrace{x\tilde{G}_{2}(x) + xG_{2}(x)}_{t = 3} = \underbrace{\int d^{2}k_{T} \frac{k_{T} \cdot \Delta_{T}}{\Delta_{T}^{2}} G_{14}(x, 0, \vec{k}_{T}) + \int d^{2}k_{T} \frac{k_{T}^{2}}{M^{2}} F_{14}(x, 0, \vec{k}_{T})}_{\tau = 3} + \underbrace{\bar{G}_{2}^{tw3}}_{\tau = 3}$$

$$\tau = 2$$

$$x\tilde{G}_{2}(x) + xG_{2}(x) = G_{14}^{(1)} + F_{14}^{(1)} + \overline{G}_{2}^{tw3}$$
A sum rule relating Ji and JM OAM

Left-right asymmetry of transverse densities from chiral dynamics

Carlos Granados

Transverse polarization and asymmetry

LFWF components of a transversely polarized nucleon,

$\Phi_{ m tr}(+,+)$	=	$\sin lpha U_1,$
$\Phi_{\rm tr}(-,-)$	=	$-\sin \alpha U_1,$
$\Phi_{\rm tr}(+,-)$	=	$U_0 + \cos lpha U_1,$
$\Phi_{ m tr}(-,+)$	=	$-U_0 + \cos lpha U_1,$

Define Left and Right transverse densities from LFWF at $\alpha = 0$,

$$\begin{cases} \rho_{\text{left}}^{V}(b) \\ \rho_{\text{right}}^{V}(b) \end{cases} \\ \end{bmatrix} = \int_{0}^{1} dy \; \frac{|\Phi_{\text{tr}}(y, \mp r_{T} \boldsymbol{e}_{x}; -, +)|^{2}}{2\pi y \bar{y}^{3}} \\ [r_{T} = b/\bar{y}] \end{cases}$$

to find for the charge and magnetization densities that

$$\left. \begin{array}{l} \rho_1^V(b) \\ \widetilde{\rho}_2^V(b) \end{array} \right\} \hspace{2mm} = \hspace{2mm} \frac{1}{2} [\pm \rho_{\rm left}^V(b) + \rho_{\rm right}^V(b)].$$

 $-\widetilde{\rho}_2$ measures Left-Right asymmetry of LF currents in the nucleon.

Strikingly large in the chiral periphery, generates the near equality $\rho_1 \approx -\widetilde{\rho}_2$.

Spatial Boundary Terms, Angular Momentum and QFT

Peter Lowdon

• It turns out that by using this more rigorous QFT approach one can determine a necessary and sufficient condition for these terms to vanish [Lowdon (2014)]:

$$\int d^3x \; \partial_i B^i \; \text{ vanishes in } \mathcal{H} \; \iff \; \int d^3x \; \partial_i B^i |0\rangle = 0$$

An interesting feature of this condition is that it only / depends on the action of the operator on the vacuum state

...and from this one has the following condition:

If
$$\exists |p\rangle \in \mathcal{H}$$
 s.t: $\langle p| \int d^3x \ \partial_i B^i |0\rangle \neq 0 \implies \int d^3x \ \partial_i B^i \neq 0$

 \rightarrow which can then be applied to the superpotentials \mathcal{S}_1^i and \mathcal{S}_2^i

[P. Lowdon, Nucl. Phys. B 889, 801 (2014).]

Spatial Boundary Terms, Angular Momentum and QFT

Peter Lowdon

• It turns out can determ to vanish []

An interesting depends on the ac

...and fron

If $\exists |p\rangle$

 \rightarrow which car

- So in this case if $\exists |p\rangle \in \mathcal{H}$ *s.t.* $\langle p|\mathcal{S}_1^i|0\rangle \neq 0$ or: $\langle p|\mathcal{S}_2^i|0\rangle \neq 0$ then \mathcal{S}_1^i or \mathcal{S}_2^i are non-vanishing as operators
- Choosing $|p\rangle = |0\rangle$ one has: $\langle 0|S_1^i|0\rangle \sim \epsilon^{ijk}\epsilon^{0jkl}\langle 0|\overline{\psi}\gamma^l\gamma^5\psi|0\rangle$
 - $\rightarrow \,$ which suggests: $\, J^i_{QCD} \neq S^i_q + L^i_q + S^i_g + L^i_g \,$

Evidence [Pasupathy, Singh (2006)] *to suggest this is non-vanishing*

- This condition therefore casts doubt on the validity of the Jaffe-Manohar angular momentum operator decomposition
 - → what's interesting about the apparent failure of this decomposition is that it follows from the non-trivial structure of the QCD vacuum

[J. Pasupathy and R. K. Singh, Int. J. Mod. Phys. A 21, 5099 (2006).]

[The University of Adelaide (2015)]

Update on the phenomenology of collinear Dihadron FFs Aurore Courtoy

- Collinear extraction [Pavia]
- TMD extraction [Anselmino et al, Kang et al]
- GPD extraction [Goldstein et al]

State-of-the-art: Extractions of transversity

NEW 1 σ error band from replicas @2.4 GeV²

 $\alpha_{s}(M_{z}^{2})=0.125$

 $\alpha_{s}(M_{z}^{2})=0.139$

Two Values for $\alpha_{s}(M_{z}^{2})$

COMPASS data for identified pions

NEW FOR DIFF EXTRACTION

→Replica methods for both pol. DiFF & transversity

Kang et al central value

Pavia 15 1503.03495

Nobuo Sato

The new JLab data conclusively favors the extraction of g₁ and g₂ with HT contributions.

The JAM analysis (summary)

The new JLab data conclusively favors the extraction of g₁ and g₂ with HT contributions.

Polarization in Double Parton Scattering

Tomas Kasemets

Polarization in DPS

- Longitudinal polarization:
 - Changes rate as well as rapidity and $|p_T|$ distributions
- Transverse quark/linear gluon polarization
- Leads to azimuthal asymmetries
- Double Drell-Yan

 $d\sigma_{DPS}(pp \to ZZ \to l_1 \bar{l}_1 l_2 \bar{l}_2) \subset A\cos\left(2\Delta\phi\right) f_{\delta q \delta q} f_{\delta \bar{q} \delta \bar{q}}$

TK, M. Diehl, 2012

 $d\sigma_{DPS}(pp \to c_1 \bar{c}_1 c_2 \bar{c}_2) \subset B \cos(2\Delta\phi) f_{\delta gg} f_{g\delta g} + C \cos(4\Delta\phi) f_{\delta g\delta g} f_{\delta g\delta g} f_{\delta g\delta g}$

for linearly polarized gluons

Echevarria, TK, Mulders, Pisano, 2015

Gluon TMDs and Higgs Cristian Pisano Phenomenology

News from the Experiments

Francesca Giordano, Ted Rogers

Spin Puzzle

Parton contribution to the proton spin

Proton helicity from Quarks: Valence

Proton helicity from Quarks:Valence

Proton helicity from Quarks: Sea

STAR FINAL Run 2012+2011

Proton helicity from Quarks: Sea

Proton helicity from Gluons

Proton helicity from Gluons

PDF & Fragmentation

PDF & Fragmentation

PDF & Fragmentation

 zD_{str}^{K}

Proton distribution in momentum space

Collinear Transversity

Collinear Transversity

Collinear Transversity

GPDs

Proton distribution in impact parameter space

Constraining GPDs

The complete picture

*The elephant and the blind men

What's next?

The complete picture

*The elephant and the blind men

The complete picture

*The elephant and the blind men