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Figure 19: Results of fits for the generic model 2 (see text): the results indicated by a full box are obtained for
a benchmark model with e↵ective coupling strengths for loop processes allowing non-SM contributions, and a
floating BRi. ,u. allowing non-SM contributions to the total decay width. The fit results indicated by a full circle
represent a benchmark model where the total Higgs boson decay width is not modified with respect to the SM.
The hatched area indicates regions that are outside the defined parameter boundaries. The inner and outer bars
correspond to 68% CL and 95% CL intervals. The confidence intervals of BRi. ,u. and, in the benchmark model
with the constraints kW < 1 and |kZ | < 1, also kW and kZ , are estimated with respect to their physical boundaries
as described in the text. Numerical results are shown in Table 8.
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Figure 16: Likelihood scans for parameters in a model with coupling scaling factors for the
SM particles, one coupling at a time while profiling the remaining five together with all other
nuisance parameters; from top to bottom: kV (W and Z bosons), kb (bottom quarks), kt (tau
leptons), kt (top quarks), kg (gluons; effective coupling), and kg (photons; effective coupling).
The inner bars represent the 68% CL confidence intervals while the outer bars represent the
95% CL confidence intervals.
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Figure 17: Likelihood scans for parameters in a model without assumptions on the total width
and with six coupling modifier ratios, one parameter at a time while profiling the remaining
six together with all other nuisance parameters; from top to bottom: kgZ (= kgkZ/kH), lWZ
(= kW/kZ), lZg (= kZ/kg), lbZ (= kb/kZ), lgZ (= kg/kZ), ltZ (= kt/kZ), and ltg (= kt/kg).
The inner bars represent the 68% CL confidence intervals while the outer bars represent the
95% CL confidence intervals.
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After the Higgs discovery at the LHC,
already at Run 1 we entered the era of Higgs precision.

Introduction

Preparing for Run 2, and beyond, we need a framework 
capable of collecting, in a systematic way, all available 
experimental information on the h(125) particle with the 
least theoretical bias possible: LHC legacy.

2

ATLAS-CONF-2015-007

Many of the
Higgs couplings to 
SM particles have 
been measured.
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2015/03/27

CMS-HIG-14-042
ATLAS-HIGG-2014-14

Combined Measurement of the Higgs Boson Mass in pp
Collisions at

p
s = 7 and 8 TeV with the ATLAS and CMS

Experiments

The ATLAS and CMS Collaborations⇤

Abstract

A measurement of the Higgs boson mass is presented based on the combined data
samples of the ATLAS and CMS experiments at the CERN LHC in the H ! gg and
H ! ZZ ! 4` decay channels. The results are obtained from a simultaneous fit to
the reconstructed invariant mass peaks in the two channels and for the two experi-
ments. The measured masses from the individual channels and the two experiments
are found to be consistent among themselves. The combined measured mass of the
Higgs boson is mH = 125.09 ± 0.21 (stat.)± 0.11 (syst.) GeV.

Submitted to Physical Review Letters

c� 2015 CERN for the benefit of the ATLAS and CMS Collaborations. CC-BY-3.0 license

⇤See appendices A and B for lists of collaboration members.
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Future Higgs studies

High-precision Higgs physics Exotic decays
this talk

At Run-1, measurements of Higgs properties were reported in the κ-framework: 

M. González-Alonso /10EFT analyses of  NP

What was done in run 1? Kappa framework

Application to Higgs physics

Virtues: Clean SM limit (k→1), well-def. exp & th, quite general.

Limitations: 

What about NP affecting mainly diff. distr?  
(easy to conceive, e.g. CPV) 

What about hVff terms? (diff. in production & decay)

Clear SM limit (κ → 1), theoretically well defined, model independent,
can be matched to match to any EFT in any basis.

Cons:

Pros:

Limited to total rates:
can’t describe deviations in differential distributions, e.g. CPV or h → 4f

Need to extend the κ-framework retaining all its good properties:
Higgs pseudo-observables

3



Pseudo-observables

Realistic
Observables

Lagrangian
parameters

Pseudo
Observables

Raw data,
Fiducial cross sections,
etc…

Couplings,
running masses,
Wilson coefficients
etc …

Pole masses, decay widths,
kappas, distributions, etc..

2.1 Pseudo-observables in Z ! ff̄ and W ! ff̄ decays

The SM charged and neutral current interactions are

LJ
SM = eAµJ

µ
em +

g

cw
ZµJ

µ
Z +

gp
2

�
W+

µ Jµ
+ + h.c.

�
, (1)

where

Jµ
em =

X

f=fL,fR

Qf f̄�
µf ,

Jµ
Z =

X

f=fL,fR

(T f
3 �Qfs

2
w)f̄�

µf ,

Jµ
+ =

X

`

⌫̄`L�
µ`L +

X

u,d

Vud ūL�
µdL , (2)

sw = sin ✓W , cw = cos ✓W , e = (4⇡↵em)1/2 and Vud denote the elements of the Cabibbo-
Kobayashi-Maskawa (CKM) mixing matrix.

The e↵ective interactions of the Z and W bosons to fermions are modified beyond the
SM. This e↵ect can be taken into account by introducing appropriate e↵ective couplings
to describe the on-shell couplings of Z and W to fermions. In particular, we define the
e↵ective couplings gfZ , g

`
W and gudW as follows2

A(Z(") ! ff̄) = i
X

f=fL,fR

gfZ "µ f̄�µf ,

A(W+(") ! `+⌫) = ig`W "µ ⌫̄`L�
µ`L , A(W+(") ! ud̄) = igudW "µ ūL�

µdL .

(3)

These e↵ective couplings can be unambiguously determined from data using Z-pole ob-
servables (Z-boson partial decay widths, forward-backward or polarization asymmetries,
together with the information on mZ from the Z line shape), and on-shell W decays.3 As
such, they are well-defined (basis-independent) pseudo-observables. In absence of rescat-
tering e↵ects, the Hermiticity of the underlying e↵ective Lagrangian implies that the gfZ
are real couplings, while g`W and gudW can be complex.

These pseudo-observables can be computed in any EFT. Within the SM, at the tree-
level, one finds

gf,SMZ =
g

cw
(T f

3 �Qfs
2
w) , g`,SMW =

gp
2
, gud,SMW =

gp
2
Vud . (4)

2In general, one could also write a right-handed coupling of W boson to quarks; however, this is
forbidden in the limit of unbroken U(1)uR ⇥ U(1)dR flavor symmetry.

3In particular, LEP measurements at the Z pole allow to set very precise constraints on the Z couplings
to each charged lepton, to neutrinos (summed over all possible light species), to the b, c and u quarks [7],
and a common coupling to the s and d quarks. Also the W couplings to each lepton flavor, and a
combination of the couplings to the light quarks can be constrained with high precision [12].

6

PO encode experimental information in idealized observables, of easy theoretical 
interpretation. This approach is old: developed at LEP to describe the Z properties.
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6

PO can then be matched, by theorists, to any explicit scenario — SM EFT, SUSY, 
Composite Higgs, etc.. — at the desired order in perturbation theory.

PO encode experimental information in idealized observables, of easy theoretical 
interpretation. This approach is old: developed at LEP to describe the Z properties.
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µdL , (2)

sw = sin ✓W , cw = cos ✓W , e = (4⇡↵em)1/2 and Vud denote the elements of the Cabibbo-
Kobayashi-Maskawa (CKM) mixing matrix.

The e↵ective interactions of the Z and W bosons to fermions are modified beyond the
SM. This e↵ect can be taken into account by introducing appropriate e↵ective couplings
to describe the on-shell couplings of Z and W to fermions. In particular, we define the
e↵ective couplings gfZ , g

`
W and gudW as follows2

A(Z(") ! ff̄) = i
X

f=fL,fR

gfZ "µ f̄�µf ,

A(W+(") ! `+⌫) = ig`W "µ ⌫̄`L�
µ`L , A(W+(") ! ud̄) = igudW "µ ūL�
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6

PO can then be matched, by theorists, to any explicit scenario — SM EFT, SUSY, 
Composite Higgs, etc.. — at the desired order in perturbation theory.

PO encode experimental information in idealized observables, of easy theoretical 
interpretation. This approach is old: developed at LEP to describe the Z properties.

PO is the place where experimentalists (data) and theorists (EFT) should meet.

PO
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LEP-1 Strategy: on-shell Z decays

The goal was to parametrize on-shell Z decays as much model-independently as possible,
in a way which would decouple infrared radiation (QED & QCD) effects.

[Bardin, Grunewald, Passarino ’99]

3 Pseudo-Observables

There remains to be investigated the systematic errors arising from theory and
possible ambiguities in the definition of the MI fit parameters, the POs.

3.1 Definition of Pseudo-Observables

Independent of the particular realization of the effective couplings they are
complex-valued functions, due to the imaginary parts of the diagrams. In the
past this fact had some relevance only for realistic observables while for pseudo-
observables they were conventionally defined to include only real parts. This
convention has changed lately with the introduction of next-to-leading correc-
tions: imaginary parts, although not next-to-leading in a strict sense, are size-
able two-loop effects. These are enhanced by factors π2 and sometimes also
by a factor Nf , with Nf being the total number of fermions (flavour⊗ colour)
in the SM. Once we include the best of the two-loop terms then imaginary
parts should also come in. The latest versions of TOPAZ0 and ZFITTER therefore
include imaginary parts of the Z-resonance form factors.

The explicit formulae for the Zff vertex are always written starting from a
Born-like form of a pre-factor × fermionic current, where the Born parameters
are promoted to effective, scale-dependent parameters,

ρf
Z
γµ

[(

I(3)
f + i aL

)

γ+ − 2 Qfκf
Z
s2 + i aQ

]

= γµ

(

Gf
V

+ Gf
A

γ5

)

, (6)

where γ+ = 1 + γ5 and aQ,L are the SM imaginary parts. Note that imaginary
parts are always factorized in ZFITTER and added linearly in TOPAZ0.

By definition, the total and partial widths of the Z boson include all cor-
rections, also QED and QCD corrections. The partial decay width is therefore
described by the following expression:

Γf ≡ Γ
(

Z → ff
)

= 4 cf Γ0

(

|Gf
V
|2 Rf

V + |Gf
A
|2 Rf

A

)

+ ∆
EW/QCD

, (7)

where cf = 1 or 3 for leptons or quarks (f = l, q), and the radiator factors

Rf
V and Rf

A describe the final state QED and QCD corrections and take into
account the fermion mass mf .

There is a large body of contributions to the radiator factors in particular for
the decay Z → qq; both TOPAZ0 and ZFITTER implement the results that have
been either derived or, in few cases, confirmed in some more general setting by
the Karlsruhe group, see for instance [15]. The splitting between radiators and
effective couplings follows well defined recipes that can be found and referred to
in [4, 16]. In particular our choice has been that top-mass dependent QCD cor-
rections are to be considered as QCD corrections and included in the radiators
and not in the effective quark couplings.

The last term,

∆
EW/QCD

= Γ(2)
EW/QCD

−
αS

π
Γ(1)

EW
, (8)
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Radiators: final state radiation

non-factorizable SM corrections,
very small.

The PO are defined as

accounts for the non-factorizable corrections. The standard partial width, Γ0,
is

Γ0 =
GF M3

Z

24
√

2 π
= 82.945(7) MeV. (9)

The hadronic and leptonic pole cross-sections are defined by

σ0
h = 12π

ΓeΓh

M2
Z
Γ2

Z

σ0
ℓ = 12π

ΓeΓl

M2
Z
Γ2

Z

, (10)

where ΓZ is the total decay width of the Z boson, i.e, the sum of all partial
decay widths. Note that the mass and total width of the Z boson are defined
based on a propagator term χ with an s-dependent width:

χ−1(s) = s − M2
Z

+ isΓZ /MZ . (11)

The effective electroweak mixing angles (effective sinuses) are always defined by

4 |Qf | sin2 θf
eff = 1 −

Re Gf
V

Re Gf
A

= 1 −
gf

V

gf
A

, (12)

where we define
gf

V
= Re Gf

V
, gf

A
= Re Gf

A
. (13)

The forward-backward asymmetry A
FB

is defined via

A
FB

=
σ

F
− σ

B

σ
F

+ σ
B

, σ
T

= σ
F

+ σ
B

, (14)

where σ
F

and σ
B

are the cross sections for forward and backward scattering,
respectively. Before analysing the forward-backward asymmetries we have to
describe the inclusion of imaginary parts. A

FB
is calculated as

A
FB

=
3

4

σ
VA

σ
T

, (15)

where

σ
VA

=
GF M2

Z√
2

√
ρeρf QeQfRe

[

α∗(M2
Z
)Ge

V
Gf

A
χ(s)

]

+
G2

F M4
Z

8 π
ρeρfRe

[

Ge
V

(

Ge
A

)∗
]

Re
[

Gf
V

(

Gf
A

)∗
]

s |χ(s)|2. (16)

In case of quark-pair production, an additional radiator factor multiplies σ
VA

,
see also Eq.(53).

This result is valid in the realization where ρf is a real quantity, i.e., the
imaginary parts are not re-summed in ρf . In this case

Gf
V

= Re
(

Gf
V

)

+ i Im
(

Gf
V

)

= gf
V

+ i Im
(

Gf
V

)

, Gf
A

= I(3)
f + i Im

(

Gf
A

)

. (17)
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To be model-independent it is important to work with on-shell initial and final states.

M. González-Alonso /10EFT analyses of  NP

Pseudo-observables in Higgs decays (linear EFT)

Exampl
e:

What’s the room for NP in 
Higgs decays taking into 

account LEP results?

Z

[MGA, Greljo, Isidori & Marzocca, arXiv:1504.xxxx]
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LHC and on-shell Higgs decays: extending the κ-framework

h

f,̅ γ

f, γ

2.2 Pseudo-observables in h ! ff̄ decays

In analogy to the e↵ective couplings of Z and W bosons to fermions, for each fermion
species we can introduce two real e↵ective couplings (yfS,P ) defined by

A(h ! ff̄) = � ip
2

h
(yfS + iyfP )f̄LfR + (yfS � iyfP )f̄RfL

i
. (5)

The “dressing” of this amplitude with soft QED and QCD radiation is straightforward.
The measurement of �(h ! ff̄) determines the combination |yfS|2+ |yfP |2, while the yfP/yfS
ratio can be determined only if the lepton polarization is experimentally accessible. If CP
is conserved only one of the two e↵ective couplings is allowed: if h is a CP-even state,
then only yfS is allowed.

Within the SM, at the tree-level, one finds

yf,SMS =

p
2mf

vF
, yf,SMP = 0 , (6)

where vF = (
p
2GF )�1/2, and GF is the Fermi constant extracted from the muon decay.

The e↵ective couplings yfS,P provide an explicit breaking of the U(1)fL ⇥ U(1)fR flavor
symmetry, which is not assumed to hold in the case of third generation fermions.

3 Higgs decays mediated by electroweak gauge bosons

In this section we provide a unified decomposition of the Higgs decay amplitudes into four
fermions (h ! 4f), a fermion-anti fermion pair and one hard photon (h ! ff̄�), and two
photons (h ! ��). The h ! 4f amplitudes are particularly interesting since they allow us
to investigate the e↵ective hW+W� and hZZ interaction terms, which cannot be probed
on-shell. However, in order to extract such information in a model-independent way, it is
necessary to take into account also the possible additional contributions to h ! 4f due
to contact terms and the e↵ective couplings of the Higgs to photons.

The purpose of our approach is to characterise, as precisely as possible, the three point
function of the Higgs boson and two fermion currents,

h0|T �
Jµ
f (x), J

⌫
f 0(y), h(0)

 |0i , (7)

where all the states are on-shell. This correlation-function is probed by the experiments
in h ! 4f decays, but also in Higgs associated production (pp ! h + W,Z) and in
Higgs production via vector-boson fusion. Extracting the kinematical structure of Eq. (7)
from data will allow us both to determine the e↵ective coupling of h to all the SM gauge
bosons, and also to investigate possible couplings of h to new massive states. The former
are associated to a well-defined double-pole structure in Eq. (7), while the latter can lead
to local interactions with one or no poles.
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Two-body decays
h → 2f,γγ

The kinematic is fixed.
No polarization information is retained.

the total rate (κ) is all that can 
be extracted from data



LHC and on-shell Higgs decays: extending the κ-framework

The kinematics is much richer: 
kinematical distributions.

2.2 Pseudo-observables in h ! ff̄ decays

In analogy to the e↵ective couplings of Z and W bosons to fermions, for each fermion
species we can introduce two real e↵ective couplings (yfS,P ) defined by

A(h ! ff̄) = � ip
2

h
(yfS + iyfP )f̄LfR + (yfS � iyfP )f̄RfL

i
. (5)

The “dressing” of this amplitude with soft QED and QCD radiation is straightforward.
The measurement of �(h ! ff̄) determines the combination |yfS|2+ |yfP |2, while the yfP/yfS
ratio can be determined only if the lepton polarization is experimentally accessible. If CP
is conserved only one of the two e↵ective couplings is allowed: if h is a CP-even state,
then only yfS is allowed.

Within the SM, at the tree-level, one finds

yf,SMS =

p
2mf

vF
, yf,SMP = 0 , (6)

where vF = (
p
2GF )�1/2, and GF is the Fermi constant extracted from the muon decay.

The e↵ective couplings yfS,P provide an explicit breaking of the U(1)fL ⇥ U(1)fR flavor
symmetry, which is not assumed to hold in the case of third generation fermions.

3 Higgs decays mediated by electroweak gauge bosons

In this section we provide a unified decomposition of the Higgs decay amplitudes into four
fermions (h ! 4f), a fermion-anti fermion pair and one hard photon (h ! ff̄�), and two
photons (h ! ��). The h ! 4f amplitudes are particularly interesting since they allow us
to investigate the e↵ective hW+W� and hZZ interaction terms, which cannot be probed
on-shell. However, in order to extract such information in a model-independent way, it is
necessary to take into account also the possible additional contributions to h ! 4f due
to contact terms and the e↵ective couplings of the Higgs to photons.

The purpose of our approach is to characterise, as precisely as possible, the three point
function of the Higgs boson and two fermion currents,

h0|T �
Jµ
f (x), J

⌫
f 0(y), h(0)

 |0i , (7)

where all the states are on-shell. This correlation-function is probed by the experiments
in h ! 4f decays, but also in Higgs associated production (pp ! h + W,Z) and in
Higgs production via vector-boson fusion. Extracting the kinematical structure of Eq. (7)
from data will allow us both to determine the e↵ective coupling of h to all the SM gauge
bosons, and also to investigate possible couplings of h to new massive states. The former
are associated to a well-defined double-pole structure in Eq. (7), while the latter can lead
to local interactions with one or no poles.
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LHC and on-shell Higgs decays: extending the κ-framework

The kinematics is much richer: 
kinematical distributions.

2.2 Pseudo-observables in h ! ff̄ decays

In analogy to the e↵ective couplings of Z and W bosons to fermions, for each fermion
species we can introduce two real e↵ective couplings (yfS,P ) defined by

A(h ! ff̄) = � ip
2

h
(yfS + iyfP )f̄LfR + (yfS � iyfP )f̄RfL
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. (5)

The “dressing” of this amplitude with soft QED and QCD radiation is straightforward.
The measurement of �(h ! ff̄) determines the combination |yfS|2+ |yfP |2, while the yfP/yfS
ratio can be determined only if the lepton polarization is experimentally accessible. If CP
is conserved only one of the two e↵ective couplings is allowed: if h is a CP-even state,
then only yfS is allowed.

Within the SM, at the tree-level, one finds

yf,SMS =

p
2mf

vF
, yf,SMP = 0 , (6)

where vF = (
p
2GF )�1/2, and GF is the Fermi constant extracted from the muon decay.

The e↵ective couplings yfS,P provide an explicit breaking of the U(1)fL ⇥ U(1)fR flavor
symmetry, which is not assumed to hold in the case of third generation fermions.

3 Higgs decays mediated by electroweak gauge bosons

In this section we provide a unified decomposition of the Higgs decay amplitudes into four
fermions (h ! 4f), a fermion-anti fermion pair and one hard photon (h ! ff̄�), and two
photons (h ! ��). The h ! 4f amplitudes are particularly interesting since they allow us
to investigate the e↵ective hW+W� and hZZ interaction terms, which cannot be probed
on-shell. However, in order to extract such information in a model-independent way, it is
necessary to take into account also the possible additional contributions to h ! 4f due
to contact terms and the e↵ective couplings of the Higgs to photons.

The purpose of our approach is to characterise, as precisely as possible, the three point
function of the Higgs boson and two fermion currents,

h0|T �
Jµ
f (x), J

⌫
f 0(y), h(0)

 |0i , (7)

where all the states are on-shell. This correlation-function is probed by the experiments
in h ! 4f decays, but also in Higgs associated production (pp ! h + W,Z) and in
Higgs production via vector-boson fusion. Extracting the kinematical structure of Eq. (7)
from data will allow us both to determine the e↵ective coupling of h to all the SM gauge
bosons, and also to investigate possible couplings of h to new massive states. The former
are associated to a well-defined double-pole structure in Eq. (7), while the latter can lead
to local interactions with one or no poles.
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Example:   h → e+e- μ+μ- 

Only 3 Lorentz structures allowed by U(1)em gauge symmetry:

Higgs to 4-fermion decays
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Example:   h → e+e- μ+μ- 

Only 3 Lorentz structures allowed by U(1)em gauge symmetry:

Higgs to 4-fermion decays
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(ē�↵e)(µ̄��µ)⇥


F eµ
1 (q21, q

2
2)g

↵� + F eµ
3 (q21, q

2
2)
q1 · q2 g↵� � q2↵q1�

m2
Z

+ F eµ
4 (q21, q

2
2)
"↵�⇢�q2⇢q1�

m2
Z

�
(6)

2

8

2.2 Pseudo-observables in h ! ff̄ decays

In analogy to the e↵ective couplings of Z and W bosons to fermions, for each fermion
species we can introduce two real e↵ective couplings (yfS,P ) defined by

A(h ! ff̄) = � ip
2

h
(yfS + iyfP )f̄LfR + (yfS � iyfP )f̄RfL

i
. (5)

The “dressing” of this amplitude with soft QED and QCD radiation is straightforward.
The measurement of �(h ! ff̄) determines the combination |yfS|2+ |yfP |2, while the yfP/yfS
ratio can be determined only if the lepton polarization is experimentally accessible. If CP
is conserved only one of the two e↵ective couplings is allowed: if h is a CP-even state,
then only yfS is allowed.

Within the SM, at the tree-level, one finds

yf,SMS =

p
2mf

vF
, yf,SMP = 0 , (6)

where vF = (
p
2GF )�1/2, and GF is the Fermi constant extracted from the muon decay.

The e↵ective couplings yfS,P provide an explicit breaking of the U(1)fL ⇥ U(1)fR flavor
symmetry, which is not assumed to hold in the case of third generation fermions.

3 Higgs decays mediated by electroweak gauge bosons

In this section we provide a unified decomposition of the Higgs decay amplitudes into four
fermions (h ! 4f), a fermion-anti fermion pair and one hard photon (h ! ff̄�), and two
photons (h ! ��). The h ! 4f amplitudes are particularly interesting since they allow us
to investigate the e↵ective hW+W� and hZZ interaction terms, which cannot be probed
on-shell. However, in order to extract such information in a model-independent way, it is
necessary to take into account also the possible additional contributions to h ! 4f due
to contact terms and the e↵ective couplings of the Higgs to photons.

The purpose of our approach is to characterise, as precisely as possible, the three point
function of the Higgs boson and two fermion currents,

h0|T �
Jµ
f (x), J

⌫
f 0(y), h(0)

 |0i , (7)

where all the states are on-shell. This correlation-function is probed by the experiments
in h ! 4f decays, but also in Higgs associated production (pp ! h + W,Z) and in
Higgs production via vector-boson fusion. Extracting the kinematical structure of Eq. (7)
from data will allow us both to determine the e↵ective coupling of h to all the SM gauge
bosons, and also to investigate possible couplings of h to new massive states. The former
are associated to a well-defined double-pole structure in Eq. (7), while the latter can lead
to local interactions with one or no poles.
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We expand around the physical poles:
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A = i
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↵� + F eµ
3 (q21, q
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q1 · q2 g↵� � q2↵q1�
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Z

+ F eµ
4 (q21, q
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"↵�⇢�q2⇢q1�

m2
Z

�
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To eq.(8) I added a (flavour universal) local interaction

F ff 0

1 �
�ff 0

m4
Z

(1)

and keep also quadratic terms (the diagonal ones only, just for an example)

�e+e�µ+µ�

�SM
e+e�µ+µ�

= 2ZZ + ZZ (�2.5✏ZeR + 2.9✏ZeL � 2.5✏ZµR + 2.9✏ZµL + 1.5�`L`L � 2.7�`L`R + 1.1�`R`R)+

+ 6.4
�
✏2ZeR + ✏2ZeL + ✏2ZµL

+ ✏2ZµR

�
+ 8.4(�2`L`L + 2�2`L`R + �2`R`R)+

+ all the mixed terms

(2)

See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m2
Z/⇤

2
and �X ⇠ m4

Z/⇤
4
, and therefore to neglect the quadratic

terms.

e = eL, eR, µ = µL, µR (3)

1
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We expand around the physical poles:

In the SM
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(ē�↵e)(µ̄��µ)⇥

✓
ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+

✏Ze

m2
Z

gµZ
PZ(q22)

+
✏Zµ

m2
Z

geZ
PZ(q21)

+�SM
1 (q21, q

2
2)

◆
g↵�+

+

✓
✏ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+ Z�✏

SM-1L
Z�

✓
eQµgeZ

q22PZ(q21)
+

eQeg
µ
Z

q21PZ(q22)

◆
+ ��✏

SM-1L
��

e2QeQµ

q21q
2
2

+�SM
3 (q21, q

2
2)

◆
⇥

⇥ q1 · q2 g↵� � q2↵q1�

m2
Z

+

+

✓
✏CP
ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+ ✏CP

Z�

✓
eQµgeZ

q22PZ(q21)
+

eQeg
µ
Z

q21PZ(q22)

◆
+ ✏CP

��
e2QeQµ

q21q
2
2

◆
"↵�⇢�q2⇢q1�

m2
Z

�

(4)

A = i
2m2

Z

vF
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To eq.(8) I added a (flavour universal) local interaction

F ff 0

1 �
�ff 0

m4
Z

(1)

and keep also quadratic terms (the diagonal ones only, just for an example)

�e+e�µ+µ�

�SM
e+e�µ+µ�

= 2ZZ + ZZ (�2.5✏ZeR + 2.9✏ZeL � 2.5✏ZµR + 2.9✏ZµL + 1.5�`L`L � 2.7�`L`R + 1.1�`R`R)+

+ 6.4
�
✏2ZeR + ✏2ZeL + ✏2ZµL

+ ✏2ZµR

�
+ 8.4(�2`L`L + 2�2`L`R + �2`R`R)+

+ all the mixed terms

(2)

See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m2
Z/⇤

2
and �X ⇠ m4

Z/⇤
4
, and therefore to neglect the quadratic

terms.

e = eL, eR, µ = µL, µR (3)

1
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contact terms
only source of

flavor dependence
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=

- related to physical distributions, measurable experimentally.

- defined from the residues of the Green function on its poles.

- Can be matched with Wilson coefficients at the desired order.
(at tree level they are a simple linear combination of coefficients)

- QED radiation corrections (radiator functions) are being computed.

To eq.(8) I added a (flavour universal) local interaction

F ff 0

1 �
�ff 0

m4
Z

(1)

and keep also quadratic terms (the diagonal ones only, just for an example)

�e+e�µ+µ�

�SM
e+e�µ+µ�

= 2ZZ + ZZ (�2.5✏ZeR + 2.9✏ZeL � 2.5✏ZµR + 2.9✏ZµL + 1.5�`L`L � 2.7�`L`R + 1.1�`R`R)+
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+ all the mixed terms
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See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m2
Z/⇤

2
and �X ⇠ m4

Z/⇤
4
, and therefore to neglect the quadratic

terms.
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[Isidori et al, work in progress]
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Parameter counting and symmetry assumptions

h → e+e-μ+μ-

h → μ+μ-μ+μ-

h → e+e-e+e-

h → γe+e-

h → γμ+μ-

h → γγ
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Neutral current

Symmetries impose relations among these observables.

3/4

Charged
current
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h → e+e-νν
h → μ-μ+νν

N. & C.
interference

others +

5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (27)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (28)

Finally, the mixed processes h ! e±µ⌥⌫⌫̄ can be described by a subset of the coe�cients
already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (29)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (30)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).
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5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (27)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (28)

Finally, the mixed processes h ! e±µ⌥⌫⌫̄ can be described by a subset of the coe�cients
already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (29)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (30)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).
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5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (27)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (28)

Finally, the mixed processes h ! e±µ⌥⌫⌫̄ can be described by a subset of the coe�cients
already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (29)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (30)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).
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5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (27)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (28)

Finally, the mixed processes h ! e±µ⌥⌫⌫̄ can be described by a subset of the coe�cients
already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (29)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (30)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).
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5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (27)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (28)

Finally, the mixed processes h ! e±µ⌥⌫⌫̄ can be described by a subset of the coe�cients
already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (29)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (30)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).
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We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
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h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (28)

Finally, the mixed processes h ! e±µ⌥⌫⌫̄ can be described by a subset of the coe�cients
already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (29)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (30)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).
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Constraints on the PO in the linear EFT

2

In doing so, one realizes that the Higgs contact terms eZ f
and eW f [1] can be expressed in a closed form in terms of
quantities already strongly constrained by LEP and Tevatron
data [5–7], such as the Z and W effective on-shell couplings
to fermions, and the effective anomalous TGC:

eZ f =
2mZ

v

�
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q T 3
f + s2

qYf )13dg1,z + t2
qYf 13dkg

�
,

eW f =

p
2mW

v

�
dgW f � c2

q 13dg1,z
�
. (1)

Here, generalising the notation of Ref. [1], we treat eZ f and
eW f as 3⇥ 3 matrices in flavor space (with implicit flavor
indices). On the right-hand side, dgZ f and dgW f denote the
anomalous effective on-shell Z and W couplings to the fer-
mion f , again in an implicit 3⇥3 notation, 13 is the identity
matrix, and dg1,z and dkg are the effective anomalous TGCs
extracted from e+e� !W+W� and single W production [8]
(see Appendix A for the definition of the various terms).1

The parameters {cq ,sq , tq} denote the cosine, sine and tan-
gent of the Weinberg angle, defined as in Ref. [9].

The parameters dgZ f relevant to this work are the lep-
tonic Z couplings, which have been constrained at the per-
mil level at LEP-I [5, 8, 10]. Per-mil constraints on the dgZ`

hold also in the most generic flavor scenario [11], and the
(mild) relaxation of the bounds due to off-shell Z effects [12]
has no practical consequences to the present analysis. This
implies that lepton flavor non-universal effects are strongly
suppressed.

In general, the parameters describing anomalous TGC in
the effective Lagrangian are not PO [13]. Here we follow
the approach of Ref. [8] where the e+e� ! W+W� cross-
section is parameterized in terms of the effective on-shell
Z and W couplings to fermions plus the three parameters
{dg1,z,dkg ,lZ}, which therefore represent a consistent TGC
PO set. The constraints on this set obtained in Ref. [8] are
collected in Appendix A. It should be stressed that a flat di-
rection is present when all three TGC PO are included at the
linear level [14] (see also [15]), which reflects into a very
loose bound on dg1,z when lZ is marginalized. In the fol-
lowing we will present results both for this case and for the
case where lZ is fixed to zero, which is a common condition
in many interesting explicit UV models.2

1We stress that the pseudo-observables eW f and dgW f , which in general
are complex, are real in the linear EFT scenario [1].
2The flat TGC direction is lifted if quadratic terms in the cross section
are included. In principle, this procedure is not consistent with the EFT
power counting, given the lack of inclusion of contributions from d = 8
operators, that are formally of the same order. However, in Ref. [8]
it is argued that the result of the quadratic fit are consistent with the

Given the strong bounds on dgZ`, and the anticipated
precision on the Higgs contact terms, we can fix the for-
mer parameters to their SM values in Eq. (1) and study the
allowed range of eZ f as determined by the TGC couplings
only (whose constraints are obtained in the same limit). In
Fig. 1 we present the bounds on the eZeL and eZeR pseudo-
observables (relevant for h ! 2e2µ,4e,4µ decays) both in
the general case (lZ 6= 0, marginalised) and for lZ = 0. It is
interesting to notice that, even in the general case, only the
direction eZeR ' 0.48⇥eZeL is loosely bounded, and that siz-
able positive values of the contact terms are excluded. The
particular flat direction in the contact terms can be under-
stood analytically by the fact that dkg is much more con-
strained than dg1,z. As a result, we can also set dkg ⇡ 0 in
Eq. (1), which implies eZeR ⇡ 2s2

weZeL ⇡ 0.46⇥eZeL (up to a
⇠ 10% accuracy).

EW data also allows to bound the following custodial-
symmetry-violating combination of PO [1, 7],

kWW �kZZ +
2
g

⇣p
2eWe +2cq eZeL

⌘

= 2dgWe +4dgZeL +4dm ,
(2)

where dm ⌘ dmW/mW is also constrained to be below the
per-mil level [8,11]. Substituting the contact terms from Eq. (1)
one gets [7]: kWW �kZZ =�2s2

q dg1,z +2t2
q dkg +4dm.

The remaining 9 Higgs pseudo-observables e(CP)
ZZ,WW,Zg,gg

and kZZ are not constrained by EW data alone. However,
only five of them are independent in the linear EFT due to
the following relations:

deZZ = degg +
c2q

sq cq
deZg �

1
c2

q
dkg , (3)

deWW = c2
q deZZ +2cq sq deZg + s2

q degg , (4)

and likewise for their CP counterparts (see also Refs. [4, 7,
9]). Here and in the following we denote by deX the NP con-
tribution to the pseudo-observable eX once the one-loop SM
contribution is removed: deX = eX � eSM�1L

X .
Since no LEP bound is available on the CP-violating

TGC coupling d k̃g , at present eCP
ZZ is an independent vari-

able. However, in the future significant constraints on d k̃g
could be obtained from LHC data [16]. All in all, we are
left with 3 CP-conserving couplings, kZZ and egg,Zg , and 3
CP-violating ones, eCP

gg,Zg,ZZ .

EFT expansion since higher-dimension operators contributing to the s-
channel give a suppressed contribution. For our purposes, we notice
that the constraints on {dg1,z,dkg} obtained from the quadratic fit are
essentially equivalent to those obtained setting lZ = 0.

2

In doing so, one realizes that the Higgs contact terms eZ f
and eW f [1] can be expressed in a closed form in terms of
quantities already strongly constrained by LEP and Tevatron
data [5–7], such as the Z and W effective on-shell couplings
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�
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q T 3
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qYf 13dkg

�
,

eW f =

p
2mW

v

�
dgW f � c2

q 13dg1,z
�
. (1)

Here, generalising the notation of Ref. [1], we treat eZ f and
eW f as 3⇥ 3 matrices in flavor space (with implicit flavor
indices). On the right-hand side, dgZ f and dgW f denote the
anomalous effective on-shell Z and W couplings to the fer-
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matrix, and dg1,z and dkg are the effective anomalous TGCs
extracted from e+e� !W+W� and single W production [8]
(see Appendix A for the definition of the various terms).1

The parameters {cq ,sq , tq} denote the cosine, sine and tan-
gent of the Weinberg angle, defined as in Ref. [9].

The parameters dgZ f relevant to this work are the lep-
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mil level at LEP-I [5, 8, 10]. Per-mil constraints on the dgZ`

hold also in the most generic flavor scenario [11], and the
(mild) relaxation of the bounds due to off-shell Z effects [12]
has no practical consequences to the present analysis. This
implies that lepton flavor non-universal effects in the Z cou-
plings are strongly suppressed. The leptonic W couplings
dgW` are instead constrained only at the percent level, in the
following we consider the bounds from the non-universal fit
of Ref. [11], reported also in Appendix A.

In general, the parameters describing anomalous TGC in
the effective Lagrangian are not PO [13]. Here we follow
the approach of Ref. [8] where the e+e� ! W+W� cross-
section is parameterized in terms of the effective on-shell
Z and W couplings to fermions plus the three parameters
{dg1,z,dkg ,lZ}, which therefore represent a consistent TGC
PO set. The constraints on this set obtained in Ref. [8] are
collected in Appendix A. It should be stressed that a flat di-
rection is present when all three TGC PO are included at the
linear level [14] (see also [15]), which reflects into a very
loose bound on dg1,z when lZ is marginalized. In the fol-
lowing we will present results both for this case and for the
case where lZ is fixed to zero, which is a common condition
in many interesting explicit UV models.2

1We stress that the pseudo-observables eW f and dgW f , which in general
are complex, are real in the linear EFT scenario [1].
2The flat TGC direction is lifted if quadratic terms in the cross section
are included. In principle, this procedure is not consistent with the EFT

Given the strong bounds on dgZ`, and the anticipated
precision on the Higgs contact terms, we can fix the for-
mer parameters to their SM values in Eq. (1) and study the
allowed range of eZ f and eW` as determined by the TGC
(whose constraints are obtained in the same limit) and W
couplings only. [I moved the part referring to Fig.1 from here
to after we give the analytic bounds.]

EW data also allows to bound the following custodial-
symmetry-violating combination of PO [1, 7],

kWW �kZZ +
2
g

⇣p
2eWe +2cq eZeL

⌘

= 2dgWe +4dgZeL +4dm ,
(2)

where dm ⌘ dmW/mW is also constrained to be below the
per-mil level [8,11]. Substituting the contact terms from Eq. (1)
one gets [7]: kWW �kZZ =�2s2

q dg1,z +2t2
q dkg +4dm.

The remaining 9 Higgs pseudo-observables e(CP)
ZZ,WW,Zg,gg

and kZZ are not constrained by EW data alone. However,
only five of them are independent in the linear EFT due to
the following relations:

deZZ = degg +
2

t2q
deZg �

1
c2

q
dkg , (3)

deWW = c2
q deZZ + s2q deZg + s2

q degg , (4)

and likewise for their CP counterparts (see also Refs. [4,
7, 9]). Here and in the following we denote by deX the NP
contribution to the pseudo-observable eX once the one-loop
SM contribution is removed: deX = eX � eSM�1L

X .
Since no LEP bound is available on the CP-violating

TGC coupling d k̃g , at present eCP
ZZ is an independent vari-

able. However, in the future significant constraints on d k̃g
could be obtained from LHC data [16]. All in all, we are
left with 3 CP-conserving couplings, kZZ and egg,Zg , and 3
CP-violating ones, eCP

gg,Zg,ZZ .
In principle, the measurements of the partial decay widths

G (h ! gg,Zg) allow to set strong bounds on e(CP)
gg,Zg that,

when combined with the TGC bounds, imply strong limits
on eZZ,WW through Eqs. (3) and (4). In practice, the extrac-
tion of such bounds is not straightforward since, at present,
only the measurements of the so-called signal strengths (or
s ⇥BR normalized to SM) are available. The latter include

power counting, given the lack of inclusion of contributions from d = 8
operators, that are formally of the same order. However, in Ref. [8]
it is argued that the result of the quadratic fit are consistent with the
EFT expansion since higher-dimension operators contributing to the s-
channel give a suppressed contribution. For our purposes, we notice
that the constraints on {dg1,z,dkg} obtained from the quadratic fit are
essentially equivalent to those obtained setting lZ = 0.
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Fig. 1 Bounds on the contact terms eZeL ,eZeR (upper row) and eWe,eW µ (lower row) (at 68%, 95% and 99.7% CL) obtained from the W couplings
and TGC constraints, where lZ has been marginalized (left plots) or set to zero (right plots). The dotted contours are G /GSM(h ! 2e2µ) and
G /GSM(h ! eµnenµ ) iso-lines.

and X2e2µ ,X4e are given in Eqs. (10)–(11) (X4µ is trivially
obtained from X4e). The measurements of the integrated de-
cay rates constrain only these particular PO combinations.

Some comments on these expressions are in order. First,
it is easy to see that the contributions from the CP-violating
terms eCP

ZZ,Zg,gg are safely negligible once the constraints from
G (h ! gg,Zg) are taken into account. We stress that this
conclusion holds even for mmin

`` as low as 1 GeV. Indeed, de-
spite the lack of bounds on eCP

ZZ , its contribution to the total

rate is below 4% even for O(1) values. Thus, G (h ! 4`) can
be expressed in terms of kZZ and the 5 pseudo-observables
bounded by Eq. (6).

The global fit of Ref. [17], that allows approximately for
30% non-standard contributions in G (h ! 4`), can in prin-
ciple be used to obtain a bound on kZZ via Eq. (9). However,
the error in the contact terms gets significantly enhanced
when propagated to the total rate, which makes difficult to
set a meaningful bound on kZZ at this point. Moreover, the fit

[Efrati, Falkowski, Soreq 2015]
[Falkowski, Riva 2014]
Using fits from:

More details in arXiv:1504.04018
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From these bounds we can extract precise predictions for Higgs data, 
such as total decay rates or di-lepton invariant mass spectra:

High correlation between different channels due to flavor universality 
(consequence of the linear EFT).
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Fig. 2 Predictions for h ! 4e versus h ! 2e2µ decay rates implied by TGC constraints. Left: lZ 6= 0 case. Right: lZ = 0 case. The results obtained
varying eZeL and eZeR only (via dg1,z and dkg ), according to Fig. 1 are shown in green (68% CL) and yellow (95% CL). The additional impact of
varying eZg within its current limits is shown in dark (68% CL) and light gray (95% CL) in the right plot. In both plots we have set kZZ = 1.

set a meaningful bound on kZZ at this point. Moreover, the fit
of Ref. [17] assumes SM-like differential spectra in h ! 4`,
that is not necessarily a safe assumption in the presence of
sizable contact terms. We will come back to the combined
bounds on kZZ and the contact terms from the partial rates
at the end of this section, after addressing the possible non-
standard effects on the dilepton invariant-mass spectra.

The dependence of the partial widths, G (h ! 4`), from
all the PO but for kZZ is illustrated in Fig. 2. In the left plot
we consider the general TGC case (no assumptions on lZ).
As can be seen, O(1) variations on the rates are allowed be-

cause of the weak bounds on the contact terms (see Fig. 1
left). However, a tight correlation between h ! 2e2µ and
h ! 4e(4µ) rates holds because of the flavor universality
implied by LEP data under the hypothesis that h(125) be-
longs to a pure SU(2)L doublet. In the right plot we consider
the lZ = 0 case: in this limit the overall modifications are
much reduced but still visible, while the correlation between
h ! 2e2µ and h ! 4e(4µ) remains very strong, with possi-
ble deviations below any future realistic resolution.

The different effect of the photon pole in the two chan-
nels, discussed in Ref. [20], manifests itself in Eq. (9) as

O(1) deviations allowed in the rate.

kZZ = 1

Predictions for h → 4ℓ in the linear EFT
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h ! 4e(4µ) vs. h ! 2e2µ . However, we stress that this is
a tiny effect on the partial rates (below 1% with present cuts)
once the LHC bound on egg is taken into account. This is
why this effect is not visible in Fig. 2. The smallness of this
effect also implies that improving the bounds on egg from
h ! 4e(4µ) is extremely challenging, especially in the gen-
eral case where the SM deviations from all the PO are con-
sidered at the same time.

The strict correlation between h! 2e2µ and h! 4e(4µ)
rates represents a firm prediction of the linear EFT frame-
works that is worth to test with future data: any violation of
the correlation would not only imply the existence of NP, but
would also imply that i) NP does not respect lepton univer-
sality, ii) the Higgs particle has a non-SU(2)L component.3

3.2 Single dilepton invariant-mass spectra

In addition to the partial widths, the rich kinematics of the
h ! 4` processes offers additional handles to probe the rel-
evant pseudo-observables. Since the contact terms eZeL,ZeR

have the same Lorentz structure as the SM term, angular
distributions are not modified and the only effect is on the
differential distributions in the dilepton invariant masses. On
the other hand, the other pseudo-observables, e(CP)

ZZ,Zg,gg , mod-
ify also angular distributions and thus a complete study of
the full kinematics of the events is necessary in order to ex-
tract them as efficiently as possible (see in particular Refs. [20–
24] for a recent discussion). In this work we focus only on
the invariant-mass distributions, both because the effect of
the contact terms in h ! 4` is the one less studied in the pre-
vious literature and because, as shown above, these PO are
the less constrained at the moment (at least in the general
TGC case).

Since the effects on the partial widths have already been
discussed, here we focus on the shapes, i.e. the normalized
differential distributions. To this purpose, we have generated
sets of PO inside the 68% and 95% CL bounds, keeping into
account their correlations. For each set we have determined
the normalized dilepton invariant-mass spectrum and its ra-
tio to the one obtained in the SM at tree level, and we have
finally built the envelopes of such spectra.

In Fig. 3 we present the distributions for h ! 2e2µ and
h ! 4e(4µ), setting kZZ = 1, eZZ,Zg,gg = 0 and letting vary
eZeL and eZeR within their allowed bounds. As can be seen,

3We stress that these two conditions are not sufficient to ensure large
deviations from universality in h ! 4` decays, but are necessary condi-
tions to observe it.

Fig. 4 Single differential distributions in the electron pair invariant
mass for h ! 2e2µ decay obtained by varying egg , eZg and eZZ in-
side the 95% CL bounds obtained from Eqs. (6-7) and setting eZ` = 0,
kZZ = 1. A lower cut on both lepton pair’s invariant masses of 4 GeV is
applied. In the upper plot the differential rate is normalized to the total
rate while in the lower one we take the ratio of this quantity to the one
obtained in the SM at the tree level.

although the effect of the contact terms on the total rate is
very large, of O(100%) in the lZ 6= 0 case, the difference in
the shape with respect to the SM is much smaller, namely
. 15% for lZ 6= 0. A similar cancellation is present also
in the lZ = 0 case, although the relative effect is less pro-
nounced. The cancellation of the non-standard effects in the
normalized spectrum is, at least in part, a consequence of the
strong positive correlation between eZeL and eZeR shown in
Fig. 1.

In Fig. 4 we study the effect of eZZ,Zg,gg on the invariant-
mass distribution. Here it is important to notice that the sen-
sitivity to eZg,gg depends strongly on the infrared cutoff im-
posed on the dilepton invariant masses, as expected due to
the associated photon pole(s). As shown in Ref. [20], de-
creasing the cut on m`` from 12 GeV to 4 GeV substan-
tially improves the sensitivity to these couplings, even ex-
cluding the m`` region around the ° resonances. Moreover,

These PO can be studied also from
angular distributions.

From these bounds we can extract precise predictions for Higgs data, 
such as total decay rates or di-lepton invariant mass spectra:

Predictions for h → 4ℓ in the linear EFT
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Fig. 3 Electron pair invariant mass spectrum with a 4 GeV binning for h ! 2e2µ (top row) and h ! 4e (bottom row) decay obtained by varying
eZeL and eZeR within the 68% (green) and 95% (yellow) CLs bound from TGC (Fig. 1) with lZ generic in Fig. (a,c), and lZ = 0 in Fig. (b,d). In the
h ! 4e channel we pair randomly two opposite-sign leptons.

Small deviations allowed in the shape.



6

h ! 4e(4µ) vs. h ! 2e2µ . However, we stress that this is
a tiny effect on the partial rates (below 1% with present cuts)
once the LHC bound on egg is taken into account. This is
why this effect is not visible in Fig. 2. The smallness of this
effect also implies that improving the bounds on egg from
h ! 4e(4µ) is extremely challenging, especially in the gen-
eral case where the SM deviations from all the PO are con-
sidered at the same time.

The strict correlation between h! 2e2µ and h! 4e(4µ)
rates represents a firm prediction of the linear EFT frame-
works that is worth to test with future data: any violation of
the correlation would not only imply the existence of NP, but
would also imply that i) NP does not respect lepton univer-
sality, ii) the Higgs particle has a non-SU(2)L component.3

3.2 Single dilepton invariant-mass spectra

In addition to the partial widths, the rich kinematics of the
h ! 4` processes offers additional handles to probe the rel-
evant pseudo-observables. Since the contact terms eZeL,ZeR

have the same Lorentz structure as the SM term, angular
distributions are not modified and the only effect is on the
differential distributions in the dilepton invariant masses. On
the other hand, the other pseudo-observables, e(CP)

ZZ,Zg,gg , mod-
ify also angular distributions and thus a complete study of
the full kinematics of the events is necessary in order to ex-
tract them as efficiently as possible (see in particular Refs. [20–
24] for a recent discussion). In this work we focus only on
the invariant-mass distributions, both because the effect of
the contact terms in h ! 4` is the one less studied in the pre-
vious literature and because, as shown above, these PO are
the less constrained at the moment (at least in the general
TGC case).

Since the effects on the partial widths have already been
discussed, here we focus on the shapes, i.e. the normalized
differential distributions. To this purpose, we have generated
sets of PO inside the 68% and 95% CL bounds, keeping into
account their correlations. For each set we have determined
the normalized dilepton invariant-mass spectrum and its ra-
tio to the one obtained in the SM at tree level, and we have
finally built the envelopes of such spectra.

In Fig. 3 we present the distributions for h ! 2e2µ and
h ! 4e(4µ), setting kZZ = 1, eZZ,Zg,gg = 0 and letting vary
eZeL and eZeR within their allowed bounds. As can be seen,

3We stress that these two conditions are not sufficient to ensure large
deviations from universality in h ! 4` decays, but are necessary condi-
tions to observe it.

Fig. 4 Single differential distributions in the electron pair invariant
mass for h ! 2e2µ decay obtained by varying egg , eZg and eZZ in-
side the 95% CL bounds obtained from Eqs. (6-7) and setting eZ` = 0,
kZZ = 1. A lower cut on both lepton pair’s invariant masses of 4 GeV is
applied. In the upper plot the differential rate is normalized to the total
rate while in the lower one we take the ratio of this quantity to the one
obtained in the SM at the tree level.

although the effect of the contact terms on the total rate is
very large, of O(100%) in the lZ 6= 0 case, the difference in
the shape with respect to the SM is much smaller, namely
. 15% for lZ 6= 0. A similar cancellation is present also
in the lZ = 0 case, although the relative effect is less pro-
nounced. The cancellation of the non-standard effects in the
normalized spectrum is, at least in part, a consequence of the
strong positive correlation between eZeL and eZeR shown in
Fig. 1.

In Fig. 4 we study the effect of eZZ,Zg,gg on the invariant-
mass distribution. Here it is important to notice that the sen-
sitivity to eZg,gg depends strongly on the infrared cutoff im-
posed on the dilepton invariant masses, as expected due to
the associated photon pole(s). As shown in Ref. [20], de-
creasing the cut on m`` from 12 GeV to 4 GeV substan-
tially improves the sensitivity to these couplings, even ex-
cluding the m`` region around the ° resonances. Moreover,

These PO can be studied also from
angular distributions.

From these bounds we can extract precise predictions for Higgs data, 
such as total decay rates or di-lepton invariant mass spectra:
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Fig. 3 Electron pair invariant mass spectrum with a 4 GeV binning for h ! 2e2µ (top row) and h ! 4e (bottom row) decay obtained by varying
eZeL and eZeR within the 68% (green) and 95% (yellow) CLs bound from TGC (Fig. 1) with lZ generic in Fig. (a,c), and lZ = 0 in Fig. (b,d). In the
h ! 4e channel we pair randomly two opposite-sign leptons.

Small deviations allowed in the shape.

Crucial to test these predictions from data!

Any measured deviation would have deep physical consequences:
non-linear realization of EW symmetry, flavor non-universality, …



Symmetries impose relations among Higgs PO, which can be tested by Higgs data only.

Assuming a underlying linear EFT we obtained relations among Higgs and non-Higgs 
processes. Given LEP constraints we derived detailed predictions for h → 4ℓ processes.

Testing these predictions from data would provide an important test for the linear EFT.

PO can be implemented both for Matrix Element Methods, and Montecarlo (MG5).

Clear connection to
measurable distributions. Easy to match to any EFT

in any basis.

Pseudo-observables

Directly related to physical
properties of the amplitude.

Conclusions
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Fig. 3 Electron pair invariant mass spectrum with a 4 GeV binning for h ! 2e2µ (top row) and h ! 4e (bottom row) decay obtained by varying
eZeL and eZeR within the 68% (green) and 95% (yellow) CLs bound from TGC (Fig. 1) with lZ generic in Fig. (a,c), and lZ = 0 in Fig. (b,d). In the
h ! 4e channel we pair randomly two opposite-sign leptons.
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Fig. 3 Electron pair invariant mass spectrum with a 4 GeV binning for h ! 2e2µ (top row) and h ! 4e (bottom row) decay obtained by varying
eZeL and eZeR within the 68% (green) and 95% (yellow) CLs bound from TGC (Fig. 1) with lZ generic in Fig. (a,c), and lZ = 0 in Fig. (b,d). In the
h ! 4e channel we pair randomly two opposite-sign leptons.

Predictions for h → 4ℓ in the linear EFT

17

Backup



Predictions for h → 4ℓ in the linear EFT Backup
7

h→2e2μλZ = 0

0 20 40 60 80 100
0.005

0.010

0.050

0.100

Δ
Γ
4
G
eV
/Γ

to
t

(ϵZeL , ϵZeR ) ∈ R68%
(ϵZeL , ϵZeR ) ∈ R95%

SM
Best fit

0 20 40 60 80 100

1.025

0.975

0.950

1.000

1.050

m12 (GeV)

R
at
io
w
.r.
t.
SM

(a) (b)

(c) (d)

Fig. 3 Electron pair invariant mass spectrum with a 4 GeV binning for h ! 2e2µ (top row) and h ! 4e (bottom row) decay obtained by varying
eZeL and eZeR within the 68% (green) and 95% (yellow) CLs bound from TGC (Fig. 1) with lZ generic in Fig. (a,c), and lZ = 0 in Fig. (b,d). In the
h ! 4e channel we pair randomly two opposite-sign leptons.

7

(a) (b)

h→4eλZ = 0

0 20 40 60 80 100
0.005

0.010

0.050

0.100

Δ
Γ
4
G
eV
/Γ

to
t

(ϵZeL , ϵZeR ) ∈ R68%
(ϵZeL , ϵZeR ) ∈ R95%

SM
Best fit

0 20 40 60 80 100

0.975

1.075

0.950

1.000

1.050

1.025

m12 (GeV)

R
at
io
w
.r.
t.
SM

(c) (d)

Fig. 3 Electron pair invariant mass spectrum with a 4 GeV binning for h ! 2e2µ (top row) and h ! 4e (bottom row) decay obtained by varying
eZeL and eZeR within the 68% (green) and 95% (yellow) CLs bound from TGC (Fig. 1) with lZ generic in Fig. (a,c), and lZ = 0 in Fig. (b,d). In the
h ! 4e channel we pair randomly two opposite-sign leptons. 18



Predictions for h → 4ℓ in the linear EFT Backup

19

8

Fig. 4 Single differential distributions in the electron pair invariant mass for the h ! 2e2µ decay obtained by varying egg,Zg,ZZ ,eZeL and eZeR
within the 95%CL limits from Eqs. (6-7) in the lZ 6= 0 (left) and lZ = 0 (right) case. The blue shaded regions are obtained for kZZ = 1 while the
red ones are obtained using kZZ 2 [0.5,1.5]. In both cases we impose that the total rate, computed with a 12 GeV infrared cut on m``, as in Eq. (11),
is within 30% of the SM one.

Fig. 5 Electron-muon invariant mass spectrum with a 10 GeV binning for h ! eµnn decay. In the left plot, we show lZ 6= 0 case where eWe,
eW µ are varied within 68% (green) and 95% CL (yellow) regions from Fig. 1 bottom-left. Shown on the right is lZ = 0 case obtained by varying
eWe, eW µ and eWW within the 95% CL limits from combined TGC (Eq. (A.8)), W couplings (Eq. (A.9)) and h ! Zg (Eq. (5)) measurements after
marginalizing over other parameters.
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Fig. 1 Bounds on the contact terms eZeL ,eZeR (upper row) and eWe,eW µ (lower row) (at 68%, 95% and 99.7% CL) obtained from the W couplings
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also possible non-standard effects in the Higgs production
and in the total decay width (e.g. via kZZ 6= 1). We benefit
from various global fits available in the literature [5, 17–19],
which imply per-mil level limits on e(CP)

gg and per-cent level
limits on e(CP)

Zg . In particular, in the following we use the val-
ues [17]

kgg = 0.90±0.15, |kZg |< 3.18 (95% CL) , (5)

where kgg,Zg ⌘ egg,Zg/eSM�1L
gg,Zg , with eSM�1L

gg ⇡ 3.8⇥ 10�3,
and eSM�1L

Zg ⇡ 6.7⇥10�3. As discussed above, the constraints
on eCP

gg,Zg are equivalent to those shown above for their CP-
conserving counterparts egg,Zg , whereas no bound is avail-
able for kZZ and eCP

ZZ (before analyzing h ! 4` data).

Combining the bounds on the TGC with those on the W
couplings to leptons, we find the following constraints on
the Higgs contact terms (without using any information on

2

In doing so, one realizes that the Higgs contact terms eZ f
and eW f [1] can be expressed in a closed form in terms of
quantities already strongly constrained by LEP and Tevatron
data [5–7], such as the Z and W effective on-shell couplings
to fermions, and the effective anomalous TGC:

eZ f =
2mZ

v

�
dgZ f � (c2

q T 3
f + s2

qYf )13dg1,z + t2
qYf 13dkg

�
,

eW f =

p
2mW

v

�
dgW f � c2

q 13dg1,z
�
. (1)

Here, generalising the notation of Ref. [1], we treat eZ f and
eW f as 3⇥ 3 matrices in flavor space (with implicit flavor
indices). On the right-hand side, dgZ f and dgW f denote the
anomalous effective on-shell Z and W couplings to the fer-
mion f , again in an implicit 3⇥3 notation, 13 is the identity
matrix, and dg1,z and dkg are the effective anomalous TGCs
extracted from e+e� !W+W� and single W production [8]
(see Appendix A for the definition of the various terms).1

The parameters {cq ,sq , tq} denote the cosine, sine and tan-
gent of the Weinberg angle, defined as in Ref. [9].

The parameters dgZ f relevant to this work are the lep-
tonic Z couplings, which have been constrained at the per-
mil level at LEP-I [5, 8, 10]. Per-mil constraints on the dgZ`

hold also in the most generic flavor scenario [11], and the
(mild) relaxation of the bounds due to off-shell Z effects [12]
has no practical consequences to the present analysis. This
implies that lepton flavor non-universal effects in the Z cou-
plings are strongly suppressed. The leptonic W couplings
dgW` are instead constrained only at the percent level, in the
following we consider the bounds from the non-universal fit
of Ref. [11], reported also in Appendix A.

In general, the parameters describing anomalous TGC in
the effective Lagrangian are not PO [13]. Here we follow
the approach of Ref. [8] where the e+e� ! W+W� cross-
section is parameterized in terms of the effective on-shell
Z and W couplings to fermions plus the three parameters
{dg1,z,dkg ,lZ}, which therefore represent a consistent TGC
PO set. The constraints on this set obtained in Ref. [8] are
collected in Appendix A. It should be stressed that a flat di-
rection is present when all three TGC PO are included at the
linear level [14] (see also [15]), which reflects into a very
loose bound on dg1,z when lZ is marginalized. In the fol-
lowing we will present results both for this case and for the
case where lZ is fixed to zero, which is a common condition
in many interesting explicit UV models.2

1We stress that the pseudo-observables eW f and dgW f , which in general
are complex, are real in the linear EFT scenario [1].
2The flat TGC direction is lifted if quadratic terms in the cross section
are included. In principle, this procedure is not consistent with the EFT

Given the strong bounds on dgZ`, and the anticipated
precision on the Higgs contact terms, we can fix the for-
mer parameters to their SM values in Eq. (1) and study the
allowed range of eZ f and eW` as determined by the TGC
(whose constraints are obtained in the same limit) and W
couplings only. [I moved the part referring to Fig.1 from here
to after we give the analytic bounds.]

EW data also allows to bound the following custodial-
symmetry-violating combination of PO [1, 7],

kWW �kZZ +
2
g

⇣p
2eWe +2cq eZeL

⌘

= 2dgWe +4dgZeL +4dm ,
(2)

where dm ⌘ dmW/mW is also constrained to be below the
per-mil level [8,11]. Substituting the contact terms from Eq. (1)
one gets [7]: kWW �kZZ =�2s2

q dg1,z +2t2
q dkg +4dm.

The remaining 9 Higgs pseudo-observables e(CP)
ZZ,WW,Zg,gg

and kZZ are not constrained by EW data alone. However,
only five of them are independent in the linear EFT due to
the following relations:

deZZ = degg +
2

t2q
deZg �

1
c2

q
dkg , (3)

deWW = c2
q deZZ + s2q deZg + s2

q degg , (4)

and likewise for their CP counterparts (see also Refs. [4,
7, 9]). Here and in the following we denote by deX the NP
contribution to the pseudo-observable eX once the one-loop
SM contribution is removed: deX = eX � eSM�1L

X .
Since no LEP bound is available on the CP-violating

TGC coupling d k̃g , at present eCP
ZZ is an independent vari-

able. However, in the future significant constraints on d k̃g
could be obtained from LHC data [16]. All in all, we are
left with 3 CP-conserving couplings, kZZ and egg,Zg , and 3
CP-violating ones, eCP

gg,Zg,ZZ .
In principle, the measurements of the partial decay widths

G (h ! gg,Zg) allow to set strong bounds on e(CP)
gg,Zg that,

when combined with the TGC bounds, imply strong limits
on eZZ,WW through Eqs. (3) and (4). In practice, the extrac-
tion of such bounds is not straightforward since, at present,
only the measurements of the so-called signal strengths (or
s ⇥BR normalized to SM) are available. The latter include

power counting, given the lack of inclusion of contributions from d = 8
operators, that are formally of the same order. However, in Ref. [8]
it is argued that the result of the quadratic fit are consistent with the
EFT expansion since higher-dimension operators contributing to the s-
channel give a suppressed contribution. For our purposes, we notice
that the constraints on {dg1,z,dkg} obtained from the quadratic fit are
essentially equivalent to those obtained setting lZ = 0.
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Fig. 4 Single differential distributions in the electron pair invariant mass for the h ! 2e2µ decay obtained by varying egg,Zg,ZZ ,eZeL and eZeR
within the 95%CL limits from Eqs. (6-7) in the lZ 6= 0 (left) and lZ = 0 (right) case. The blue shaded regions are obtained for kZZ = 1 while the
red ones are obtained using kZZ 2 [0.5,1.5]. In both cases we impose that the total rate, computed with a 12 GeV infrared cut on m``, as in Eq. (11),
is within 30% of the SM one.
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Fig. 5 Electron-muon invariant mass spectrum with a 10 GeV binning for h ! eµnn decay. In the left plot, we show lZ 6= 0 case where eWe,
eW µ are varied within 68% (green) and 95% CL (yellow) regions from Fig. 1 bottom-left. Shown on the right is lZ = 0 case obtained by varying
eWe, eW µ and eWW within the 95% CL limits from combined TGC (Eq. (A.8)), W couplings (Eq. (A.9)) and h ! Zg (Eq. (5)) measurements after
marginalizing over other parameters.
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