Impact of direct photon production at NLO+NLL on gluon distribution at large x

Nobuo Sato

- The data of direct photon production has the potential to constrain large *x* gluons.
- Currently, direct photon data are largely excluded from global fits due to inconsistencies among the data and the theory at NLO in pQCD.

• Threshold resummation at NLO+NLL seems to alleviate the disagreement (Catani *et al*, de Florian,Vogelsang).

The *leading-order* (LO)

• In proton-proton collisions direct photon productions is dominated by qg scattering.

Do we understand direct photons?

Can we improve the theory predictions?

Rapidity integrated cross section

$$p_T^3 \frac{d\sigma}{dp_T}(x_T^2) = \sum_{a,b,c} \int_{x_T^2}^1 dx_a f_{a/A}(x_a, \mu_{IF}) \int_{x_T^2/x_a}^1 dx_b f_{b/B}(x_b, \mu_{IF})$$
$$\times \int_{x_T/\sqrt{x_a x_b}}^1 dz z^2 D_{\gamma/c}(z, \mu_{FF}) \frac{\hat{x}_T^4 \hat{s}}{2} \frac{d\sigma_{a,b}^{(0)}}{d\hat{x}_T^2} (\hat{x}_T^2, \mu_R)$$
$$\times \left[1 + \alpha_s(\mu_R) \{A' \ln^2(1 - \hat{x}_T^2) + B' \ln(1 - \hat{x}_T^2) + C' + \dots\}\right]$$

•
$$x_T = 2p_T/\sqrt{S}$$

• $\hat{x}_T = 2p_T/z\sqrt{x_a x_b S}$

• At large x_T the role of logs are more relevant.

$$p_T^3 \frac{d\sigma(x_T)}{dp_T} = \sum_{a,b,c} f_{a/A}(x_a, \mu_{IF}) * f_{b/B}(x_b, \mu_{IF}) * D_{\gamma/c}(z, \mu_{FF}) * \hat{\Sigma}(\hat{x}_T, \dots)$$

$\hat{\Sigma}(\hat{x}_T,) \supset$	1				LO
	$\alpha_s L^2$	$\alpha_s L$	α_s		NLO
	$\alpha_s^2 L^4$	$lpha_s^2 L^3$	$\alpha_s^2 L^2$	$\alpha_s^2 L$	NNLO
	÷	÷		÷	:
	$\alpha_s^n L^{2n}$	$\alpha_s^n L^{2n-1}$	$\alpha_s^n L^{2n-2}$		N ⁿ LO
	LL	NLL	NNLL		

 \bullet It is possible to include "towers" of logs into the cross section \to Threshold Resummation

• Resummation is performed in "mellin space":

$$f_N = \int_0^1 dx x^{N-1} f(x) \qquad f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dN x^{-N} F_N$$

• The invariant cross section in N-space:

$$p_T^3 \frac{d\sigma(N)}{dp_T} = \sum_{a,b,f} f_{a/A}(N+1) f_{b/B}(N+1) D_{\gamma/c}(2N+3)\hat{\Sigma}(N)$$

• The partonic cross section at NLO:

$$\hat{\Sigma}^{\text{NLO}}(\hat{x}_T) = \hat{\Sigma}^{\text{Born}} \left[1 + \alpha_s \ln(1 - \hat{x}_T^2)^2 + ... \right] \\ \hat{\Sigma}^{\text{NLO}}(N) = \hat{\Sigma}^{\text{Born}} \left[1 + \alpha_s \ln(1 + N)^2 + ... \right]$$

• The resummed partonic cross section in N-space is given by:

$$\hat{\Sigma}^{\mathsf{NLL}}(N) = C\left(\Delta_N^a \Delta_N^b \Delta_N^c J_N^d \sum_i G_i \Delta_{i,N}^{(\mathsf{int})}\right) \hat{\Sigma}^{\mathsf{Born}}(N)$$

Global analysis

Example: UA6 experiment ($\sqrt{s} = 24.3$ GeV)

exp/col	date	reaction	\sqrt{s} (GeV)	# pts	p_T (GeV) range	x_T range	norm
WA70	1988	pp	23.30	8	[4.0,6.5]	[3.43e-01,5.58e-01]	10.0
NA24	1987	pp	23.75	5	[3.0,6.5]	[2.53e-01,5.47e-01]	7.0
UA6	1998	pp	24.30	9	[4.1,6.9]	[3.37e-01,5.68e-01]	11.0
UA6	1998	$p\bar{p}$	24.30	10	[4.1,7.7]	[3.37e-01,6.34e-01]	11.0
E706	2004	pBe	31.50	17	[3.5,12.0]	[2.22e-01,7.62e-01]	8.0
E706	2004	pp	31.50	8	[3.5,10.0]	[2.22e-01,6.35e-01]	8.0
E706	2004	pBe	38.70	16	[3.5,10.0]	[1.81e-01,5.17e-01]	8.0
E706	2004	pp	38.70	9	[3.5,12.0]	[1.81e-01,6.20e-01]	8.0
R110	1989	pp	63.00	7	[4.5,10.0]	[1.43e-01,3.17e-01]	5.0
R806	1982	pp	63.00	14	[3.5,12.0]	[1.11e-01,3.81e-01]	-
R807	1990	pp	63.00	11	[4.5,11.0]	[1.43e-01,3.49e-01]	-
PHENIX	2012	pp	200.00	18	[5.2,25.0]	[5.25e-02,2.50e-01]	15.29
UA1	1988	$p\bar{p}$	546.00	6	[17.0,46.0]	[6.23e-02,1.68e-01]	23.0
UA1	1988	$p\bar{p}$	630.00	16	[17.0,90.0]	[5.40e-02,2.86e-01]	23.0
UA2	1992	$p\bar{p}$	630.00	13	[15.9,82.3]	[5.05e-02,2.61e-01]	9.0
CDF	2002	$p\bar{p}$	630.00	7	[9.9,33.6]	[3.14e-02,1.07e-01]	12.0
CDF	2002	$p\bar{p}$	1800.00	17	[11.5,114.7]	[1.28e-02,1.27e-01]	12.0
CDF	2009	$p\bar{p}$	1960.00	16	[30.0,400.0]	[3.06e-02,4.08e-01]	6.0
D0	2001	$p\bar{p}$	630.00	7	[7.3,49.0]	[2.33e-02,1.56e-01]	-
D0	2000	$p\bar{p}$	1800.00	9	[10.0,140.0]	[1.11e-02,1.56e-01]	-
D0	2006	$p\bar{p}$	1960.00	17	[23.0,300.0]	[2.35e-02,3.06e-01]	-
CMS	2011	pp	7000.00	15	[25.0,400.0]	[7.14e-03,1.14e-01]	-
ATLAS	2011	pp	7000.00	8	[15.0,100.0]	[4.29e-03,2.86e-02]	-

Global analysis

All the data sets

 \mathbf{X}_{T}

Global analysis

All the data sets without E706

Constraints on Gluon PDF Bayesian Approach

$\mathcal{P}(\vec{a}|D) = \frac{\mathcal{P}(D|\vec{a})}{\mathcal{P}(D)} \times \mathcal{P}(\vec{a})$

• The expectation value

$$\begin{aligned} \mathsf{E}[\mathcal{O}] &= \int d^{n} \alpha \mathcal{P}(\vec{\alpha}|D) \mathcal{O}(\vec{\alpha}) \\ &= \int d^{n} \alpha \frac{\mathcal{P}(D|\vec{\alpha})}{\mathcal{P}(D)} \mathcal{P}(\vec{\alpha}) \mathcal{O}(\vec{\alpha}) \\ &= \frac{1}{N} \sum_{k} w_{k} \mathcal{O}(\vec{\alpha}_{k}) \end{aligned}$$

• The variance

$$\mathsf{Var}[\mathcal{O}] = \frac{1}{N} \sum_{k} w_k (\mathcal{O}(\vec{\alpha}_k) - \mathsf{E}[\mathcal{O}])^2$$

The Bayesian approach in practice

- Construct replica PDFs (Monte Carlo sampling) from the uncertainty band of a gives PDF set
- Compute replica cross sections.
- Assign a weight to each replica PDF:

$$w_k \propto \exp\left(-\frac{1}{2}\sum_e \chi_e^2(k)\right)$$

• Get reweighted theoretical cross sections

$$\mathsf{E}[\sigma] = \sum_{k} w_k \sigma_k$$
$$\mathsf{VAR}[\sigma] = \sum_{k} w_k (\sigma_k - \mathsf{E}[\sigma])^2$$

• Get reweighted PDFs

$$\mathsf{E}[f] = \sum_{k} w_k f_k$$
 $\mathsf{VAR}[f] = \sum_{k} w_k (f_k - \mathsf{E}[f])^2$

• MC sampling in PDF space

$$f_k(x) = f^0(x) + \frac{1}{2} \sum_i R_i^k (f_i^+(x) - f_i^-(x))$$

= $f^0(x) + \frac{1}{2} \sum_i R_i^k \Delta f_i(x)$

• MC cross sections

$$\sigma_k(x_T) = \sigma_{00}(x_T) + \frac{1}{2} \sum_i R_i^k \left[\sigma_{0i}(x_T) + \sigma_{i0}(x_T)\right]$$

Results

Reweighting PDFs

All the data sets

April 30, 2015 20 / 26

Reweighting PDFs

All the data sets excluding E706

- Threshold resummation can provide a consistent picture of direct photon phenomenology from $\sqrt{s} = 23$ GeV to 7 TeV. (except for E706 data)
- The uncertainties of the gluon can be decreased by $\sim 10\%$ in the range of $x \simeq 0.4 0.6$ using direct photon data (w/o E706).

END