Beyond-the-Standard Model Higgs Physics using the ATLAS Experiment

Marco Vanadia on behalf of the ATLAS Collaboration

Sapienza University of Rome & INFN

28 April 2015, DIS2015

Introduction

The story so far

- 2012 discovery by ATLAS & CMS of a new resonance, with properties compatible with that of SM Higgs
- No surprises so far for CP properties and couplings; uncertainties on $\sigma \times BR \approx 20\text{--}30\%$

Run-2

- \sqrt{s} : 8 TeV \rightarrow 13 TeV !!!
- $O(10) \text{ fb}^{-1} \text{ in } 2015$

 ${\rm BR}(h{\to}{\rm non-SM})_{LHC}\lesssim\!\!30\%$: lots of space for BSM physics in the Higgs sector!

ATLAS-CONF-2015-007

2

What are we looking for?

- 2 Higgs Doublets Models (2HDMs): 7 parameters, 4 types depending on structure of the couplings
 - Prediction: 5 particles, CP-even h and H, CP-odd A, H^{\pm}
- SUSY: possible solution for hierarchy problem and Dark Matter
 - Prediction of the minimal model (MSSM): Type-2 2HDM-like Higgs sector, 2 free parametrs (e.g. M_A, tanβ) for a given benchmark
- Single additional EW singlet: mixing between Higgs doublet and EW singlet, possible solution for Dark Matter
 - Prediction: 2 CP-even particles h, H
- Higgs portal towards Dark Matter/hidden sectors: Higgs interacting with WIMPs or non-SM sectors
 - Prediction: invisible decays for Higgs, long lived particles...
- ullet Composite Higgs: e.g. MCHMs, naturalness restored by a compositeness scale f
 - ullet Prediction: Higgs couplings eq SM
- Higgs triplets, next-to-minimal extensions, ...

And how?

SM <i>h</i> constraints	Model-independent	Specific models	Exotic signatures
BSM interpretation of <i>h</i> couplings	SM-like searches $H \rightarrow \gamma \gamma$, $H \rightarrow VV$,	Search for new particles A , H^{\pm} ,	H o INV, LFV, long-lived particles

ATLAS Run-1: 2 Higgs Doublets Models searches

Charged Higgs

- $H^{\pm} \rightarrow W^{\pm} Z$: arXiv:1503.04233
- $H^{\pm} \rightarrow \tau^{\pm} \nu$: JHEP03 (2015) 088, JHEP06(2012)039
- ${\it H}^{\pm}
 ightarrow {\it \tau}^{\pm} {\it
 u}$ in $t \bar t$ through lepton universality violation: JHEP03(2013)076
- $H^{\pm} \rightarrow c\bar{s}$: EPJC, 73 (2013) 2465

Neutral Higgs

- A → Zh: PLB 744 (2015) 163-183
- $h/A/H \rightarrow \tau \tau$: JHEP11(2014)056
- $H \rightarrow hh \rightarrow \gamma \gamma b\overline{b}$: PRL 114, 081802
- $H \rightarrow hh \rightarrow b\overline{b}b\overline{b}$: ATLAS-CONF-2014-005, superseeded by ATLAS-EXOT-2014-11
- H → ZZ: PLB 707 (2012)
- $X \rightarrow \gamma \gamma$: PRL 113, 171801 (2014)

2HDM cascade

 $\bullet \ \ H^0 \rightarrow W^\mp H^\pm \rightarrow W^\mp W^\pm h^0 \rightarrow W^\mp W^\pm b\overline{b}: \ \text{PRD 89, 032002 (2014)}$

ATLAS Run-1: other BSM Higgs searches

NMSSM

• $aa \rightarrow \mu \mu \tau \tau$: ATLAS-HIGG-2014-02

$Higgs \rightarrow invisible$

- VH → hadronic + INV: arXiv:1504.04324
- VBF h with h → invisible ATLAS-CONF-2015-004
- Mono-jet arXiv:1502.01518
- $ZH \rightarrow \ell \overline{\ell} + INV$: PRL 112, 201802 (2014)

Exotic Higgs

- lacktriangle Exotic h decays with at least 1 γ , E_T^{miss} and 2 forward jets ATLAS-CONF-2015-001
- H(narrow scalar) → tt̄: ATLAS-CONF-2015-009
- $H \rightarrow ZZ_{dark}, H \rightarrow Z_{dark}Z_{dark}$: ATLAS-CONF-2015-003
- Pair produced double-charged H±±: CERN-PH-EP-2014-158
- h → long lived particles: ATLAS-CONF-2014-041, JHEP11(2014)088
- Wh with h → hidden sector: New J. Phys. 15 (2013) 043009
- Search for $W\gamma$ and $Z\gamma$ resonances: PLB 738, 428 (2014)
- .

Indirect measurements

- $H \rightarrow J/\Psi \gamma$ and $H \rightarrow \Upsilon \gamma$: arXiv:1501.03276
- Constraints from h couplings: ATLAS-CONF-2014-010, ATLAS-CONF-2015-007

2 Higgs Doublets Models (2HDMs)

- 2 Higgs doublets, 5 particles: h and H CP-even, A CP-odd, H^{\pm}
- 7 free parameters (with minimum assumptions: no CP-violation in Higgs sector, no FCNC)
 - 4 masses
 - 1 soft symmetry breaking parameter
 - $\tan \beta = v_2/v_1$, fraction of the vacuum expectation values of the doublets
 - α , mixing angle between h and H. Often $\cos(\beta \alpha)$ is used as parameter, which controls couplings (in particular of H to VV, if $\to 0$ then $2HDM \to SM$)
- Classified depending on the structure of the couplings in 4 types
 - Type-I (Fermiophobic in the zero mixing limit)
 - Type-II (MSSM-like)
 - Lepton-specific
 - Flipped

w Corpus retargodate				
Model	u_R^i	d_R^i	e_R^i	
Type I	Φ_2	Φ_2	Φ_2	
Type II	Φ_2	Φ_1	Φ_1	
Lepton-specific	Φ_2	Φ_2	Φ_1	
Flipped	Φ_2	Φ_1	Φ_2	

Branco et al. arXiv:1106.0034

- Only one among the possible models, but an important benchmark for interpreting experimental results
- Type-II is an approximation for SUSY with a high mass scale

Indirect constraints on 2HDMs

2HDM parameter space is significantly constrained by *h*SM couplings measurements

Plots from ATLAS-CONF-2014-010

7

$h/H/A \rightarrow \tau \tau$ JHEP11(2014)056

- Model-independent search for scalar resonances
- ullet Key search for high-tan eta MSSM
- Search channels:
 - $au au o\ell\ell(+neutrinos)$, low mass
 - $\tau \tau \rightarrow \ell + hadrons(+neutrinos)$, low/high mass
 - au au o hadrons(+neutrinos), high mass

Neutrinos in the final state, thus complete kinematics reconstruction is not possible

Missing Mass Calculator

Missing Mass Calculator used for the reconstruction (MMC, NIM A 654 (2011) 481–489):

- E_T^{miss} and 4-momenta of all visible objects are used
- $m_{\tau\tau}$ most probable value is calculated with a likelihood

$h/H/A \rightarrow \tau\tau$ results JHEP11(2014)056

- High $\tan \beta$ 2HDMs significanlty constrained for $m_A \ll 1$ TeV
- High $\tan \beta$, $m_A \approx 1$ TeV region is a target for very early Run-2 measurements
- Low $\tan \beta$, $m_A \approx 300$ GeV region explored by other Run-1 searches
 - \rightarrow focus of the following slides

9

$A \rightarrow Zh$: PLB 744 (2015) 163-183

$$A o Zh o (\ell\ell/
u
u)b\overline{b}$$

- $\ell\ell$: 2 b-jets selected, >2 vetoed, $105 < m_{bb} < 145$ GeV. $\sigma(m_A)/m_A \approx 2\text{-}3\%$
- $\nu\nu$: discriminant variable $m_A^{rec} = \sqrt{E_T^{bb} + E_T^{miss})^2 + (\vec{p}_T^{bb} + \vec{E}_T^{miss})^2}$

$$A \rightarrow Zh \rightarrow \ell\ell\tau\tau$$

- ullet au au decay reconstructed with MMC
- Constraints to $m_{\ell\ell}$ and $m_{\tau\tau}$: $m_{\Delta}^{rec} = m_{\ell\ell\tau\tau} - m_{\ell\ell} - m_{\tau\tau} + m_Z + m_h$
- $\sigma(m_A)/m_A \approx 3-5\%$

$A \rightarrow Zh$: PLB 744 (2015) 163-183

Sensitive up to $\tan \beta \approx$ 5-7, complementary to $A \rightarrow \tau \tau$

Comparison with indirect constraints

• Here shown a "quick-and-dirty" overlay of the exclusion plot in the $\tan \beta$ vs $\cos (\beta - \alpha)$ space of $A \to Zh$ and $A \to \tau\tau$ searches, assuming $m_A = 300$ GeV, and the one obatined by indirect constraints produced measuring h couplings, for 2HDM Type II models

2HDMs with $m_A \approx 300$ GeV are significantly constrained

 $\cos(\beta-\alpha)$

H^{\pm} ATLAS searches

• tb decays dominating BR for high mass, but $\tau \nu$ decays have cleaner signature

ATLAS $H^+ o au
u + jets$ [JHEP03 (2015) 088]: most of the $m_{H\pm} \lesssim m_{top}$ region excluded

- Recently published search for VBF $H^{\pm} o W^{\pm} Z$ [ATLAS-HIGG-2014-13]
- $H^\pm \to W^\pm Z$ appears at loop level in 2HDMs, but at tree level in Higgs Triplet Model
- Limits are set for 2HDM and for the Georgi-Machacek HTM
- Plot on the right is the limit for s_H , fraction of m_W^2 and m_Z^2 due to the triplet, in GMHTM

hh searches in Run-1

H o hh searches already sensitive to BSM models in Run-1, and important for preparation to long-term non-resonant hh measurements

- resonant: 2HDMs, hidden sectors, exotic models (e.g. gravitons), ...
- non-resonant enhancement: compositeness, colored scalars, 4th generation, ...

ATLAS publications

 $hh o bb\gamma\gamma$, hh o 4b

plot from PRL 114, 081802

$hh o bb\gamma\gamma$ PRL 114, 081802

- Non-resonant: fit of continuum + SM h+ BSM to $m_{\gamma\gamma}$
- Resonant: counting analysis cutting on $m_{\gamma\gamma}$ and $m_{bb\gamma\gamma}$
- ullet Sensitive for anetapprox 1
- Observed (expected) for non-resonant production: 2.2 pb $(1.0^{+0.5}_{-0.2} \text{ pb})$

hh searches in Run-1

 $H \rightarrow hh$ searches already sensitive to BSM models in Run-1, and important for preparation to long-term non-resonant hh measurements

- resonant: 2HDMs, hidden sectors. exotic models (e.g. gravitons), ...
- non-resonant enhancement. compositeness, colored scalars, 4th generation, ...

ATLAS publications $hh \rightarrow bb\gamma\gamma$, $hh \rightarrow 4b$ Exp. 95% C.L. Limit √s =8 TeV (Ldt = 19.5 fb-1 Exp. Limit +1a Exp. Limit ±2σ Type-II, m_H =500 GeV 10 10⁰

0.2 0.4 0.6

 $\cos(\beta-\alpha)$

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 plot from ATLAS-EXOT-2014-11

$hh \rightarrow 4b$ ATLAS-EXOT-2014-11

- $hh \rightarrow 4b$ new paper soon in arXiv (preliminary results were in ATLAS-CONF-2014-005)
- Analysis performed both with resolved jets and for "fat"-jets, for boosted topologies (i.e. high mass)
- Limits set for resonances, e.g. KK graviton or additional Higgs in 2HDM, non-resonant limits set too

$h \rightarrow invisible$

- Many BSM models predict invisible h decays
 - SUSY
 - extra-dimensions
 - ullet 4th generation u
 - ...
- Indirect measurement constraint $BR(h \rightarrow invisible)$ to less than 30% (but with assumptions on other h couplings...)

ATLAS-CONF-2015-007

Parameter value

Direct measurements by ATLAS

- Vh with $V \rightarrow hadrons$, $h \rightarrow invisible$ (arXiv:1504.04324)
- *VBF h* with $h \rightarrow invisible$ ATLAS-CONF-2015-004
- Zh with $Z \rightarrow \ell\ell$, $h \rightarrow$ invisible PRL 112, 201802 (2014)
- ullet Mono-jet general search, with h o invisible results arXiv:1502.01518

VBF h with $h \rightarrow invisible$ ATLAS-CONF-2015-004

- 2 jets with $p_T^1 > 75$ GeV, $p_T^2 > 50$ GeV
- \bullet Veto for $b/\tau\text{-tagging, veto for }e/\mu$ inside jets, veto for third jet
- $E_T^{miss} > 150$ GeV, $\Delta \eta_{jj} < 2.5$, $\Delta \eta_{jE_T^{miss}} > 1$ to suppress QCD multi-jet
- ullet Jets with big rapidity gap $\Delta\eta_{jj}>$ 4.8, and $m_{jj}>$ 1 TeV

- $Z \to \ell \ell$ and $W \to \ell \nu$ measured in data control samples
- Extrapolated to signal sample with correction factors evaluated with simulations
- Combined fit to event yields in signal and control samples

- Observed (expcted) BR limit 29% (35%) → comparable with indirect limit
- New result for VH with $V \rightarrow hadrons$: 78% (86%) [arXiv:1504.04324]
- Result from Zh with $Z \rightarrow \ell\ell$, $h \rightarrow invisible$: 75% (63%) [PRL 112, 201802 (2014)]

Many BSM models introduce new scalar or pseudoscalar particles, e.g. ${\sf NMSSM}$

- $m_h = 125$ GeV creates a small hierarchy problem for MSSM
- This is solved in NMSSM with the introduction of light pseudoscalar Higgs particles a $(m_a < m_b)$

Scenarios for searches: either SM $h \to aa$ or additional H decaying in aa Signatures strongly depending on m_a : decay channels are $ee/\mu\mu$, $\tau\tau$ if $m_a>2m_\tau$, bb if $m_b>2m_b$

New ATLAS results for $aa \to \mu\mu\tau\tau$ shown @ Moriond: Limit for h_{SM} decay to aa vs m_a

- Request of $a \to \mu\mu$ decay costs factor 100 due to BR (wrt $a \to \tau\tau$) but still beneficial due to cleanness and trigger
- Current lower limit by ALEPH, $m_H > 107$ GeV with $a \rightarrow 4\tau$ for BR $(H \rightarrow aa)$ =1
- @LEP: ZH production, coupling could be small in NMSSM, important to expolit gg fusion @ LHC
- Mass region explored complementary to CMS measurements $a \rightarrow \mu\mu$, $h \rightarrow 4\mu$, $a \rightarrow bb$

New results for "exotic" Higgs decays searches

$h o ZZ_d o 4\ell$ and $h o Z_dZ_d$ 4ℓ ATLAS-CONF-2015-003

- Models with dark gauge symmetry mediated by vector boson Z_d
- ZZ_d : same selection as $h \to 4\ell$, search excess in $m_{\ell\ell}$
- $Z_d Z_d$: search in m_{Zd} for both pairs, 2 candidates found (both have local sign. $< 2\sigma$)

SUSY: h decays with $\geq 1 \gamma$, E_T^{miss} and 2 forward jets ATLAS-CONF-2015-001

- Gauge mediated symmetry breaking (GMSB) models predict h decays to \tilde{G} and $\tilde{\chi}_0$, with $\tilde{\chi}_0 \to \gamma + \tilde{G}$
- VBF production used to enhance sensitivity
- ullet More stringent limits obtained for di- γ final states

Conclusion and outlook

- New ATLAS results for Higgs BSM searches have been presented
 - Searches of resonances compatible with 2HDMs
 - Search for di-Higgs production resonant and non-resonant enhancement (2HDMs, KK graviton, ...)
 - Search for invisible decays of the SM Higgs
 - Search for additional light Higgs particles (NMSSM, ...)
 - Search for "exotic" Higgs decays (dark sector, SUSY...)
- No BSM physics discovery, but we have Run-2 for this!
- \bullet 8 TeV \to 13 TeV: high priority to $\approx\!$ model independent resonance searches for early Run-2
- ullet Early searches will be analogous to Run-1 h_{SM} ones, and will be interesting already with very few ${
 m fb}^{-1}$
 - $H/A \rightarrow \tau \tau$
 - $H \rightarrow \gamma \gamma$
 - $H \rightarrow ZZ \rightarrow 4\ell$
 - $H^+ \rightarrow \tau \nu + jets$
 - ...

2HDMs phenomenology

Plots from 1304.1787, Djouadi

- For low tan β and $m_X < 2m_{top}$ most sensitive channels:
 - ullet H o hh, H o ZZ, H o WW, H o au au
 - $A \rightarrow \tau \tau$. $A \rightarrow Zh$
- \bullet For high tan β both are completely dominated by $b\overline{b}$ (search with associated production) and $\tau\tau$
- ullet H^+ most relevant search channels are tb (dominant BR) and au
 u (cleaner)

$h/H/A \rightarrow \tau\tau$: single-channel contributions

$A \rightarrow Zh$: PLB 744 (2015) 163-183

- Dominant channel is $h \rightarrow bb$
- $\tau\tau$ channel ensures sensitivity to lepton-specific models, and improves the measured limit @ 300 GeV by 18%

$A \rightarrow Zh$: PLB 744 (2015) 163-183

Sensitivity to 2HDM lepton-specific and flipped models thanks to h o au au

$h \to ZZ_d \to 4\ell$ and $h \to Z_d Z_d$ 4ℓ ATLAS-CONF-2015-003

Hidden or dark sectors included in many BSM models, they provide for example a candidate for DM

- This analyis takes into account models with dark gauge symmetry mediated by a vector boson Z_d
- ZZ_d : same selection as $h \to 4\ell$, search for excesses in dilepton mass m_{34} (pair farthest from m_Z)

ightarrow per BR($h
ightarrow ZZ_d$ 4 ℓ)/BR(h 4 ℓ) > 0.4 excluded range 15 $< m_{Zd} <$ 55 GeV

• 1 event 4e ($m_{12}=28$ and $m_{34}=22$ GeV, loc. sig. 1.7σ) and 1 event 4 μ ($m_{12}=23$ e $m_{34}=18$ GeV, loc. sig. 1.7σ), limits calculated in $15 < m_{7d} < 60$ GeV range

mz [GeV]