Measurement of Neutrino Induced Resonance Production

Xinchun Tian

Department of Physics and Astronomy

DIS 2015 @ Dallas, TX, 4/27-5/1, 2015

Outline

Introduction

Resonance production at NOMAD

3-Track Analysis

2-Track Analysis

Combined Analysis

Resonance Production at DUNE/LBNF

Introduction

Introduction

Resonance production at NOMAD 3-Track Analysis

2-Track Analysis

Combined Analysis

Resonance Production at DUNE/LBNF

Single Pion Production

- A neutrino inelastically scatters off target nucleon, with a short-lived resonant state of the excited target nucleon created (N^*, Δ) which decay into a nucleon and a single pion
 - $\nu_{\mu} + p \rightarrow \mu^{-} + \Delta^{++} \rightarrow \mu^{-} + p + \pi^{+}$
 - $\nu_{\mu} + n \rightarrow \mu^{-} + \Delta^{+} \rightarrow \mu^{-} + n + \pi^{+}$
 - $\nu_{\mu} + n \rightarrow \mu^{-} + \Delta^{+} \rightarrow \mu^{-} + p + \pi^{0}$

Why Single Pion Production

• The most important channel for the next generation long-baseline neutrino experiments in few-GeV energy region, e.g. DUNE

Why Single Pion Production

10

10

Ξ.

- Many of the measurements on light targets (H₂ & D₂)
- Heavy targets suffer from nuclear effects

E, (GeV)

10

E. (GeV)

Why Single Pion Production - Puzzles

 Better agreement between MiniBooNE and GiBUU w/o FSI

MINER ν A, arXiv:hep-ex/1406.6415

- According to GENIE, MINER ν A cross section should be $\sim \times 2$ that large as MiniBooNE, but is not
- According to GENIE both distributions have peak at ~ 60 MeV, which is the case for MINERνA, but not for MiniBooNE

The NOMAD Detector

Average neutrino energy is $\sim 25~\text{GeV}$

sub-detectors		performance
Drift Chambers (2.7 tons)	Target & tracking	$\delta r < 200 \; \mu \mathrm{m}$
$ ho=0.1~{ m g/cm}^3$		$\delta p \sim 3.5\%$ @ $p < 10$ GeV/ c
Transition Radiation Detector (TRD)	e^{\pm} identification	90% e^{\pm} eff. with π rejection @10 3
Muon Chambers	Muon identification	$\epsilon \sim 97\%$ @ $p_{\mu} > 5~{ m GeV}/c$
Electromagnetic Calorimeter (ECL)	Lead glass	$\frac{\sigma(E)}{E} = (1.04 \pm 0.01)\% + \frac{3.22 \pm 0.07}{\%} E(\text{GeV})$
Hadronic Calorimeter (HCAL)	neutron and K_I^0 veto	

Resonance Topologies in NOMAD Detector

Good resolution to measure the Δ^{++} product

- Two topologies considered
 - 3-Track: $\nu_{\mu} + p \to \mu^{-} + \Delta^{++} \to \mu^{-} + p + \pi^{+}$
 - 2-Track: $\nu_{\mu} + \mathbf{n} \rightarrow \mu^{-} + \Delta^{+} \rightarrow \mu^{-} + \mathbf{n} + \pi^{+}$ $\nu_{\mu} + \mathbf{n} \rightarrow \mu^{-} + \Delta^{+} \rightarrow \mu^{-} + \mathbf{p} + \pi^{0}$
 - Dominate background: CC-DIS

3-Track Analysis

Introduction

Resonance production at NOMAD 3-Track Analysis

2-Track Analysis
Combined Analysis

Resonance Production at DUNE/LBNF

3-Track Analysis

- Selec μ^- and (+,+) topology
- Soft kinematic cuts to reduce DIS background
- Multivariate analysis

GENIE Prediction Agrees Quite Well With Data

Agreement between Data and MC (GENIE), overall, is satisfactory. But disagreement seen in specfic kinematic region.

Backward-going Pions

- The pion momentum is most sensitive to nuclear effects
- Although overall MC agree with data, backward-going pions are not well described by GENIE (\sim 34% π backward going)
- Could provide a handle to constrain nuclear effects

2-Track Analysis

Introduction

Resonance production at NOMAD

3-Track Analysis

2-Track Analysis

Combined Analysis

Resonance Production at DUNE/LBNF

2-Track Analysis

- μ^- and positive track
- Less well constrained than 3-Track ⇒ larger background, larger systematic errors
- Rate $(R_{2-\text{Track}}/R_{\text{CC}})$ and cross section agree between the two topologies

Combined Analysis

Introduction

Resonance production at NOMAD

3-Track Analysis

2-Track Analysis

Combined Analysis

Resonance Production at DUNE/LBNF

3-Track + 2-Track Combined Analysis

- Result shown as ratio of fully-corrected resonance events to inclusive charged current events
- 2-track result is consistent with 3-track analysis
- Combine 3-track result with 2-track result to reduce statistic uncertainty. Also the combined analysis is less sensitive to some systematics

3-Track + 2-Track Combined Analysis

- Result shown as ratio of fully-corrected resonance events to inclusive charged current events
- 2-track result is consistent with 3-track analysis
- Combine 3-track result with 2-track result to reduce statistic uncertainty. Also the combined analysis is less sensitive to some systematics

Cross-Section and Systematics

- Cross-section measurement agrees with GENIE prediction ($M_A=1.12$ GeV, $M_V=0.84$ GeV)
- Systematic uncertainties ±5.3%
 - MC modeling $(M_A, M_V, MFP) \pm 3.2\%$
 - ullet Event selections (pre-selection cuts, NN) $\pm 1.2\%$
 - Flux \pm 2.5% overall (4.1% in lowest two bins)

Resonance Cross-Section

Sensitivity Study of Resonance Production in a Fine Grain Straw Tube Tracker (STT) - the proposed DUNE Near Detector

• The DUNE ND will have a much a higher resolution and statistics $(\times 50)$ than NOMAD, but lower energy $(\sim 1/4)$

The proposed High Resolution DUNE/LBNF Near Detector

- Built on the NOMAD experience
- Determination of the beam flux at the Near Site and the measurement of ν_e -appearance backgrounds (Primary purpose)
- Precision Standard Model neutrino physics measurements, such as precise measurement of neutrino-nucleus cross sections, the weak mixing angle

Resonance Production at DUNE ND

- Preliminary study shows, for 3-track Resonance, the average signal efficiency is 33% with 23% background
- The projected precision has statistical error only, systematical uncertainties under investigation

- We have conducted a measurement of resonance interaction using NOMAD data.
- Kinematics like Q2, invariant mass, hadron momentums are consistent with GENIE prediction.
- Backward-going pions are poorly predicted by GENIE.
- The most precise measurement of resonance interaction in 2.5 GeV 200 GeV.
- An important benchmark to validate the proposed DUNE/ELBNF Fine-Grained Tracker near detector, which has a similar design as NOMAD.